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Supplementary Material

Table S1. Development of checkpoint RMSE, reprojection error and number of removed points after
filtering the sparse cloud and the sub-sequential optimization of the cameras (in order of the applied
filters). The initial situation is also given, i.e., the cameras are optimized without filtering. The model
qualities weakened from the previous step due to filtering are marked as bold and the one weak-
ened during the whole filtration process is in ifalics.

Campaign Initial Situation: Filter 1: Filter 2: Filter 3:
Variable Site T Optimization = Reconstruction Projection Reprojection
YPE  without Filtering uncertainty <22  accuracy <5 error < 0.4
Loukkustio IB! 114.961 114.983 114.506 90.666
1A 39.561 39.311 39.032 36.299
Tammalampi CB! 69.473 69.060 69.327 62.961
Checkpoint CA 44322 44.360 44.363 44.073
RMSE (mm) Iso Leviniemi 1B 23.867 23.814 23.823 23.545
1A 68.382 68.700 69.369 69.954
Kirkaslampi CB 30.238 30.241 30.185 28.737
CA 17 167 17 106 17.108 15.380
Loukkusuo IB! 0.615 0.615 0.503 0.430
1A 0.723 0.723 0.464 0.427
Tammalampi CB! 0.839 0.846 0.521 0.456
Reprojection er- CA 0.869 0.865 0.445 0.421
ror (pixels) Iso Levéniemi 1B 0.862 0.862 0.389 0.367
IA 1.090 1.120 0.413 0.380
Kirkaslampi CB 0.559 0.560 0.417 0.372
CA 0.673 0.674 0.431 0.382
B! i 113 50 914 65 822
(<0.1%) (7.9%) (10.2%)
Loukdusuo A ] 52437 55 952 22553
(11.9%) (12.7%) (5.1%)
CB! ) 76 972 62 383 36779
Number of re- Tammalampi (19.2%) (15.5%) (0:2%)
moved points CA i 31096 75 354 15 056
(relative to the in- (69%) (16.9%) (34%)
itial number of 1B - 34249 39651 8139
tie points)  Iso Levaniemi 0.0%) (10.5%) 2.1%)
1A ) 50 508 47 446 12 240
(13.9%) (13.1%) (3.4%)
CB ) 6 020 9027 13 892
Kirkaslampi (4.2%) (6.3%) (9.7%)
CA ) 11 026 12 874 17 005
(6.2%) (7.2%) (9.5%)

Non-RTK campaign.

S1. Metashape Filter Parametrization

Each filter was not allowed to remove more than 10-20% of the total tie points [68] to
avoid over-constraining and the following doming deformations. The campaign with the
highest removal defined the parameter value for all campaigns to homogenize the prod-
uct quality. However, even smaller values were chosen if the point cloud seemed to be-
come visually too sparse after filtration. Also, the Image Count filter has been used in
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other literature [99] but was excluded in our study as it removed too many points (35%
on average), even with the smallest available threshold of 2. Parameters f, k1, k2, k3, cx,
cy, pl and p2 were chosen to be optimized without additional corrections or fitting an
adaptive camera model. After the filtration and optimization, the number of projections
should exceed 100 for each image for fluent dense cloud creation [85]. After excluding the
two such images, the mean number was 441.

For dense cloud production, Quality and Depth Filtering settings needed to be cho-
sen. Our experiments concluded the “Ultra High” and “High” settings (corresponding to
the original resolution and half the original resolution, respectively) to be superior to the
lower qualities (Medium, Low and Lowest). Since the “Ultra High” setting produces a
four-fold number of points compared with High, a corresponding change in disk space
and processing time would have been needed. The visual difference between the two
seemed small, except for the outliers increasing together under “Ultra high”. The resulting
noise level also depends on the chosen depth filter (Disabled, Mild, Moderate, or Aggres-
sive), which excludes excessive points based on their distance from the camera [100]. Our
findings are similar to Hesse (2014) and Tinkham & Swayze (2021): the “Aggressive” set-
ting does not give a correct representation of the vertical structure of the vegetation
[86,100]. Even if the ground surface and the canopy top of the tallest trees are modelled at
the “Aggressive” level, the shorter vegetation is lost (Figure 5b).

S2. Statistical Outlier Filter Parametrization

The Statistical Outlier Filter assesses the points based on their distances to the k-near-
est neighbours that are assumed to be normally distributed. A point is treated as an outlier
if the distance is more than the mean distance added to the standard deviation that is
multiplied by a parameter called nSigma [101]. For example, Lovitt (2017) used k=100 and
nSigma=1.5 for an SfM-derived DSM of a tree covered bog [19]. Parameter choices of k=5-
10 and nSigma=1-2 have been reported for terrestrial LIDAR data in peatlands and other
wetlands [102,103,104]. Pirotti et al. (2018) and Chen et al. (2018) showed the accuracy of
correct classification increasing with increasing k and decreasing nSigma when using SfM
data in vegetated and constructed environments [105,106]. However, increasing k also ex-
tended the processing time. The filter has also been used in a loop (e.g., ten repeats in
Carrilho et al. 2018 and two in Stovall et al. 2019 [70,103]), but we found several rounds to
degrade the quality of the remaining surfaces.

S3. Cloth Simulation Filter Parametrization

CSF has been shown to perform well with SfM datasets, particularly in handling
voids in the ground data caused by interlocking trees [107]. However, CSF is known to
have challenges in processing complex vegetation and terrain [108]. It was described by
Zhang et al. (2016) as follows [109]. The filter uses relatively few parameters to set up a
cloth and settle it on top of an inverted point cloud. After initiating a grid, its particles are
moved according to a physical model describing the forces acting in the cloth. The vertical
movement of each particle ends up either at ground level or, when there is a void in the
ground surface, to a level defined by the internal constraints of the cloth. For steep slopes,
a post-processing step can be applied to prevent the cloth rigidness from causing an inac-
curate representation of the near-vertical surfaces. Eventually, the cloth and the point
cloud are compared, and the ground points are classified according to a distance thresh-
old.

e  Scenes = Flat. Values 1, 2 and 3 of cloth rigidness correspond to the scene options of
Steep slope, Relief and Flat (respectively) in CloudCompare. A very rigid cloth (3) is
useful, e.g., in flat urban areas to prevent the cloth from dropping down to the roofs
of low-rise buildings[107]. In forested environments, a rigidness of 1 has been used
for hilly sites [91,110] and a value of 3 for flat and variable sites [94,108]. However,
Wallace et al. (2019) optimized the CSF parameters for different kinds of vegetations
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and terrains with UAS imagery and, inconsistently with the previous, concluded that
value 1 produces the best classification for sparsely vegetated and flat areas, while 3
is best suited for complex canopy structures covering a dense understory and
smaller-scale topography variance [111]. The optimization results also depended on
whether nadir or oblique imagery was used. We also found varying visual effects
depending on the terrain and vegetation types, but the selection rarely impacted as
false positives (vegetation misclassified as ground). Instead, the number of false neg-
atives (ground misclassified as non-ground) and thus the size of the surface voids
(along the ditch banks in particular) increased when moved towards the steep option.

e  Slope processing = True. We followed recommendation from Pricope et al. (2020)
who found this post-processing to improve the simulation on road ditches with
slopes higher than in wetlands studied with LiDAR data [94]. Similarly, with the pre-
vious parameter, we found few visual impacts as false positives, but the slope pro-
cessing was able to prevent some voids from appearing.

e  Cloth resolution = 1.0 m. According to Brieger et al. (2019), the resolution should be
between the typical diameter of high-vegetation bodies and the average dimension
of microtopography to properly follow the terrain [107]. The literature provided ar-
bitrary choices between 0.1-1.0 m [94,107] and optimization results between 0.1-0.6
m [91,107,108]. We found small values (<0.5 m) increase the false positives for the
forested areas, while large values (2.0 m) increase false negatives and produce voids.
A balance was found between the two which still ensured the absence of the remain-
ing higher vegetation which would make ground analysis impossible.

e  Classification threshold = 0.1 m. This is the maximum distance allowed between the
cloth and a ground point [110]. The literature provided arbitrary choices between
0.1-0.5 m [94,110] and optimization results between 0.05-0.6 m [91,107,108]. Decreas-
ing the classification threshold value shortened the ‘stumps’ (the remaining tree
points close to the ground) while voids occurred on the ground surface when ap-
proaching zero. A balance between the stumps and the holes was found at a value of
0.1m.

e Maximum number of iterations = 500. Our inspections support Zhang et al. (2016)
regarding the achieved maximum height variation (preset in the tool), typically quit-
ting the simulation earlier than the used default iteration limit [109].

S4. Filter Discussion

As we demonstrated in Figure 5b,c, depth filtering and SOR are efficient ways to
reduce the noise. For depth filtering, this comes at the price of data degradation. The filter
intensity should be based on the specific study aims and data requirements. For topo-
graphical analysis, the “Aggressive” setting can be used, however, it ruins the vertical
structure of the vegetation [100] and tends to remove too many points for thorough noise
removal [63]. “Mild” or “Moderate” is recommended when also the vegetation is under
interest. In these cases, the increased noise can be filtered out to some extent with the post-
processing tools.

We found the “Mild” cloud very noisy causing challenges for SOR, but the chosen
“Moderate” was cleaned sufficiently. However, some noise might have remained, since
the SOR filter is known weak in removing noise points near the main geometric struc-
ture[69]. In addition, the reflections from open water remained and needed to be removed
manually. SOR evaluates the outliers by their spatial isolation [71] and thus, cannot rec-
ognize points that form continuous surfaces only in the wrong locations due to reflections
or refractions. The water-related Fresnel reflections also cause the images to align poorly
when mapped from multiple angles [63]. The reflections might cause challenges for mon-
itoring restoration sites since an increase in water table level often leads to increased open
water cover (high-water situation in May illustrated in Figure 9B3). In our analysis, the
pit depths might have been biased due to water cover, but it was not critical as the sinks



Remote Sens. 2022, 14, 3169 4 of 4

SWC (m-%)

1000 1500 2000 2500 3000

500

were eventually filled. Removing the reflection points assumably from trees was effortless
since they appeared deep below the ground. SOR filtering has been shown effective in
cleaning point clouds, but it tends also to remove some non-outliers, particularly from
vertical surfaces [70]. Thus, the site-specific iteration of the parameter values is needed.

Particularly the negative outliers would have been fatal for the used ground classifi-
cation approach with CSF as the cloth settled on top of the inverted point cloud would
have stuck on the flawed points. CSF is known as an effective, freely available, and easy-
to-parametrize approach [107]. We consider CSF performing well in classifying the points
after the optimal parameter values were found first, despite being originally developed
for LiDAR point clouds. However, we did not systematically test the classification and a
part of the determined DTM errors might be due to an improper classification in SOR and
CSF, particularly for the tree-covered edges. CSF has been shown to perform well with
SfM datasets, particularly in handling voids in the ground data due to interlocking trees
[107]. Klapste et al. [108] compared six different ground filters and, contrarily, reported
CSF as the poorest one. For instance, Progressive Triangulated Irregular Network, Pro-
gressive Morphological Filter and Simple Morphological Filter performed better under
complex vegetation and terrain. Further studies on the topic are recommended.

S5. Correlation between Topographic and Field Wetness

The field measured SWC showed a positive correlation with the topography based
SWI for the restored sites but not for the pristine control sites (p < 0.05, Figure S1). The
fitted linear regression models (represented visually in Figure 8) for Loukkusuo and Iso
Levaniemi explain the variation between SWC and SWI moderately well (R? = 0.256 and
0.415, respectively).

_|—2— Tammalampi CA: y=30.3x+659.6, R*=0.011, p = 0.694

_|~~~- Dataset mean

—B— Loukkusuo lIA: y =976 x+ 1922, R?= 0.256, p=0.045

—%— Iso Levéniemi IA:y =194 3 x- 157 8, Ri =0415, p=0.002
Kirkaslampi CA:y=17.0x+ 14789, R"=0.002, p=0.823

e L o
[s)

=
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Figure S1. Gravimetric Soil Water Content (SWC) as a function of topography-based Saga Wetness
Index (SWI) and the fitted regression lines. SWC was determined for IA/CA state by drying samples
from the peatland surface. Corresponding SWI values were extracted from the wetness maps and
smoothed with a low-pass filter. The fits (see also Table 4, d) were used to scale the colours of the
SWC circles in Figure 8.



