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Abstract: In recent years, forest-fire monitoring methods represented by deep learning have been
developed rapidly. The use of drone technology and optimization of existing models to improve
forest-fire recognition accuracy and segmentation quality are of great significance for understanding
the spatial distribution of forest fires and protecting forest resources. Due to the spreading and
irregular nature of fire, it is extremely tough to detect fire accurately in a complex environment.
Based on the aerial imagery dataset FLAME, this paper focuses on the analysis of methods to two
deep-learning problems: (1) the video frames are classified as two classes (fire, no-fire) according
to the presence or absence of fire. A novel image classification method based on channel domain
attention mechanism was developed, which achieved a classification accuracy of 93.65%. (2) We
propose a novel instance segmentation method (MaskSU R-CNN) for incipient forest-fire detection
and segmentation based on MS R-CNN model. For the optimized model, the MaskIoU branch is
reconstructed by a U-shaped network in order to reduce the segmentation error. Experimental results
show that the precision of our MaskSU R-CNN reached 91.85%, recall 88.81%, F1-score 90.30%, and
mean intersection over union (mIoU) 82.31%. Compared with many state-of-the-art segmentation
models, our method achieves satisfactory results on forest-fire dataset.

Keywords: fire recognition; instance segmentation; computer vision; deep learning; aerial imagery

1. Introduction

Forest fires have caused substantial economic losses, air pollution, environmental
degradation, and other challenges all over the world, wreaking havoc on human life,
animals, and plants [1–3]. According to incomplete statistics, over 200,000 forest fires occur
worldwide, destroying approximately 10 million hectares of forest land [4]. Furthermore,
the risk of forest fires in China is increasing due to factors such as the wide distribution of
forests, the complex topography of forest areas, and the backward monitoring technology [5].
As a result, rapid detection of forest fires can reduce damage to ecosystems and infrastructure.
In particular, incipient forest-fire recognition technology can provide forest firefighters with
more accurate data on fire behavior, thereby preventing the spread of fires [6].

Traditional forest-fire recognition methods include setting up watchtowers in forest
areas for manual monitoring or using infrared instruments carried by helicopters for forest
fire detection. These methods are time-consuming, laborious, and generally inefficient
in recognition. Thanks to breakthroughs in the field of artificial neural networks, deep
neural networks (DNNs) have recently emerged as the most advanced technology in some
computer vision challenges [7]. The current success of these types of architectures in very
complicated tasks has broadened the scope of their prospective applications and paved
the way for their application to real-world problems [8,9]. Nonetheless, recognizing forest
fires using aerial imagery is challenging due to fire’s various shapes, scopes, and spectral
overlaps [10,11].
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At the moment, computer vision-based fire-recognition algorithms are primarily
concerned with two aspects: (1) flame detection using color and motion features; and (2)
feature extraction and classification using deep neural networks [12]. For example, [13]
explored the trajectory and irregularity of flames for fire detection in differently colored
spaces. [14] separated the chrominance component from luminance using YCbCr and
specific rules. This approach detects fires with high accuracy but is only effective for targets
with large fire points. [15] tried to detect fires using a multi-channel framework composed of
pixels, complex features, and a Bayes classifier. Considering the translucency of smoke, [16]
proposed a semantic segmentation model based on a 3D parallel Fully Convolutional
Network (FCN) [17] for recognizing smoke regions in videos. The method eliminates
background interference to a certain extent and realizes real-time detection. [18] designed
several neural networks to recognize forest-fire images with different backgrounds at night
and day and focused on analyzing the model’s performance under different combinations
of network structures. [19] aimed to avoid false alarms from forest fires using recurrent
neural networks (RNNs). In contrast to other convolutional neural networks (CNNs),
RNN-based models achieve higher fire-detection accuracy, but at the cost of a slower
detection speed and higher equipment requirements. At larger scales, satellite technology
is routinely utilized to assess forest fires globally, but, usually, at a relatively low resolution,
and real-time fire images are limited by satellite trajectory [20,21]. In addition, with the
advantages of all-weather, wide field of view, flexibility, and fast deployment, [22] achieved
incipient forest-fire monitoring in forest areas using an Unmanned Aerial Vehicle (UAV)
equipped with a miniature edge computing platform and visible light lenses.

In specific scenarios, the fire-recognition models mentioned above have obtained good
results with respect to accuracy and speed. However, most of the datasets used in these
studies are composed of images in the middle and later stages of fires and images taken
by ground cameras, characterized by large fires and concentrated fires. Therefore, the
recognition effect of incipient forest fires is poor [23–25]. To our knowledge, there are very
few aerial imagery datasets for forest-fire recognition, and these are urgently needed in the
development of fire-behavior analysis tools for aerial fire forecasting. Note that UAV-based
images show different characteristics, such as dynamic blur and top-view perspective,
which are fundamentally different from those taken by ground-based cameras [26,27].

In this paper, we designed specific solutions to two computer-vision problems using
the FLAME dataset [28] consisting of video frames captured by UAVs: (1) The binary
classification of images, i.e., fire and no-fire. In view of the fact that forest fires are charac-
terized by small targets and complex shapes, the module with an attention mechanism is
incorporated into the structure of the classification network ResNet [29], aiming to focus
on the label-related regions instead of the background; and (2) fire detection using instance
segmentation approaches to accurately distinguish the fire individual and pixel informa-
tion. An improved model based on Mask Scoring R-CNN (MS R-CNN) [30] for forest fire
segmentation is proposed.

The main contributions of this paper are summarized as follows:

• We design a novel attention mechanism module, which consists of two independent
branches for learning semantic information between different channels to enrich
feature representation capability;

• We utilize a U-shaped network to reconstruct the MaskIoU branch of MS R-CNN with
the aim of correcting forest-fire edge pixels and reducing segmentation errors; and

• Experimental results show that the proposed MaskSU R-CNN outperforms many
existing CNN-based models on forest-fire instance segmentation.

The remainder of this paper is organized as follows. Section 2 introduces experimental
materials and methods for two problems, namely, fire classification and fire instance
segmentation. Section 3 provides the experimental results and analysis. Section 4 presents
the discussion. Finally, Section 5 makes a few concluding remarks.
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2. Materials and Methods

This section details the data source and the annotation of the training set, and then
two approaches are presented to solve the different challenges. The first challenge is fire
and no-fire classification using deep-learning (DL) method. The second challenge is fire
instance segmentation, which is complementary to the first problem, and we will further
identify fire regions and distinguish pixel classes on images classified as fire-containing.

2.1. Dataset
2.1.1. Data Source

The data obtained through wireless sensor networks and infrared technology has
been widely used in the detection, monitoring, and evaluation of forest fires. Furthermore,
the aerial superiority of drones allows us to better understand the forest topography
structure and the location of the fire [31]. As a result, we selected the FLAME dataset as
our data source, which can be obtained from the website (https://ieee-dataport.org/open-
access/flame-dataset-aerial-imagery-pile-burn-detection-using-drones-uavs, accessed on
16 December 2021). The FLAME dataset was gathered by drones during the burning of
deposits in Arizona pine forests, and it includes video frames and heatmaps taken by
infrared cameras, such as the WhiteHot and GreenHot palettes. Figure 1 shows some
representative images from fire, no-fire, and thermal videos.
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Figure 1. Frame samples of different videos: (a,b) normal spectrum palette; and (c–e) heatmaps,
including GreenHot, Fusion, and WhiteHot palettes.

2.1.2. Data Collection and Annotation

To meet the requirements of our experiment, four researchers preprocessed the original
FLAME dataset, including video-frame extraction and image annotation. The study is
separated into two parts: forest-fire classification and case segmentation.

For the image-classification task, we extracted 8000 RGB images from the video, which
were divided into two classes (fire and no-fire) and saved as the ‘.jpg’ format with the
size of 254 × 254. The dataset consists of three components: the training set (6400, 80%),
validation set (800, 10%), and testing set (800, 10%). To observe the different effects of
the training set on the model’s performance, we employed four different proportions of
training set to train the model. The validation and testing set in these experiments continue
to use the same images, and both are at a proportion of 10%. The implementation details
are recorded in Table 1.

https://ieee-dataport.org/open-access/flame-dataset-aerial-imagery-pile-burn-detection-using-drones-uavs
https://ieee-dataport.org/open-access/flame-dataset-aerial-imagery-pile-burn-detection-using-drones-uavs
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Table 1. Information about the datasets used for training, validation, and testing.

Dataset Number of Images Proportion

Training set

1600 20%
3200 40%
4800 60%
6400 80%

Validation 800 10%

Testing set 800 10%

Total 8000 100%

For the instance segmentation task, it can be defined as a pixel-level binary classification
problem, in which each pixel is labeled as fire or no-fire (background). To complete the
segmentation of the forest fires, the images labeled as fire from Table 1 are considered as
a training set. In addition, to train the instance segmentation model and guarantee the
quality of the segmentation, we extracted the ground truth of each image through Labelme
software. Figure 2 shows the annotation result of a training sample.
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2.2. Fire Image Classification Using DSA-ResNet

The principle of image classification using deep neural networks is different from
traditional digital image processing techniques [14,32,33]. Traditional methods mostly use
mathematical modeling or shallow networks for processing and then recognition, which
often fail to break the recognition rate bottleneck and have the problem of missed and
false detections in practical applications [26]. However, training a CNN to realize this
image classification task aids in learning elements unrelated to the fire. Among CNNs,
ResNet [29], with many residual blocks, allows for smooth gradient-flow and improves
classification accuracy. Furthermore, the attention mechanism provides new momentum
for the advancement of CNNs to extract more useful information [34,35]. Experiments
show that some attention mechanisms based on channel domain or spatial domain, such as
SENet [36] and CBAM [37], can significantly improve network recognition ability. Forest-
fire recognition is a challenging task due to the interference of smoke and the translucent
nature of the flames. Considering the complexity of forest-fire characteristics, we further
exploit multi-scale information based on the SE module to enhance the representation of
the model. Unlike previous studies, we propose a novel module using attention mechanism
for convolution kernels, which can dynamically select and fuse feature maps from different
scales of convolution kernels, termed the Dual Semantic Attention (DSA) module. To be
more specific, we implement the DSA module via three operators—Separate, Fuse, and
Select, as shown in Figure 3.



Remote Sens. 2022, 14, 3159 5 of 19Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 3. The proposed DSA module. 

Separate: An input feature map H W CX R × ×∈  is converted by two transformations 
with a series of operations, such as grouped convolutions, batch normalization (BN), and 
Rectified Linear Unit (ReLU) activation function, to achieve the output, denoted as 

= H W CF X U R × ×→ ∈   and ˆ ˆ= H W CF X U R × ×→ ∈ . Note that for the purpose of learning the 
weight relations of different branches, we define convolution kernel size of 3 ×  3 and 5 
×  5 for feature extraction. 

Fuse: The purpose of fusion is to learn the channel weights between different feature 
streams by adaptively adjusting the convolutional kernels (neurons). Firstly, we fuse the 
output of F  and F̂  using element-wise summation: 

ˆ=U U U+ , (1)

then we obtained the global representation Cs R∈  by global average pooling: 

1 1

1( ) ( , )
H W

c gp c c
i j

s F U U i j
H W = =

= =
×  , (2)

where cU  denotes the feature map of c-th channel. Furthermore, a fully connected (FC) 
layer is applied to achieve a compact tensor dz R∈  and reduce computational effort: 

( ) ( ( ))fcz F s BN Wsδ= = , (3)

where δ  is the ReLU activation function, ( )BN ⋅  represents the batch normalization, 
C C
rW R

×
∈  is a linear mapping, and r  is the descending ratio, which is set to 16 in our 

experiments. 
Select: Two independent FC layers are used to embed the attention information, fol-

lowed by normalization using softmax function: 

( ( ))i
i fcatt softmax F z= , (4)

where C
iatt R∈  denotes i-th softmax attention, and {1, 2}i = . Finally, the output of DSA 

module V  is obtained via the channel-based attention weights and their corresponding 
feature maps, denoted as: 

1 2
ˆV att U att U= ⋅ + ⋅ . (5)

Note that the above formula is implemented in two branches and one can easily de-
rive the case with more branches by extending Equations (1), (4), and (5). 

On the basis of ResNet, the above-mentioned DSA module is integrated into the 
model, and the network structure of DSA-ResNet with 50 layers is shown in Figure 4. 

Figure 3. The proposed DSA module.

Separate: An input feature map X ∈ RH×W×C is converted by two transformations
with a series of operations, such as grouped convolutions, batch normalization (BN),
and Rectified Linear Unit (ReLU) activation function, to achieve the output, denoted
as F̃ = X → Ũ ∈ RH×W×C and F̂ = X → Û ∈ RH×W×C . Note that for the purpose of
learning the weight relations of different branches, we define convolution kernel size of
3 × 3 and 5 × 5 for feature extraction.

Fuse: The purpose of fusion is to learn the channel weights between different feature
streams by adaptively adjusting the convolutional kernels (neurons). Firstly, we fuse the
output of F̃ and F̂ using element-wise summation:

U = Ũ + Û, (1)

then we obtained the global representation s ∈ RC by global average pooling:

sc = Fgp(Uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

Uc(i, j), (2)

where Uc denotes the feature map of c-th channel. Furthermore, a fully connected (FC)
layer is applied to achieve a compact tensor z ∈ Rd and reduce computational effort:

z = Ff c(s) = δ(BN(Ws)), (3)

where δ is the ReLU activation function, BN(·) represents the batch normalization, W ∈ R
C
r ×C

is a linear mapping, and r is the descending ratio, which is set to 16 in our experiments.
Select: Two independent FC layers are used to embed the attention information,

followed by normalization using softmax function:

atti = so f tmax(Fi
f c(z)), (4)

where atti ∈ RC denotes i-th softmax attention, and i = {1, 2}. Finally, the output of DSA
module V is obtained via the channel-based attention weights and their corresponding
feature maps, denoted as:

V = att1 · Ũ + att2 · Û. (5)

Note that the above formula is implemented in two branches and one can easily derive
the case with more branches by extending Equations (1), (4), and (5).

On the basis of ResNet, the above-mentioned DSA module is integrated into the model,
and the network structure of DSA-ResNet with 50 layers is shown in Figure 4. Similar
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to other CNNs, our DSA-ResNet50 model consists of three primary components: (1) the
input feature matrix, (2) the feature extraction layers, and (3) the output layer. During the
training phase, the input matrix X is firstly resized to 230 × 230 × 3, which is dependent
on the image size and its channels. Then, the data is augmented using random rotation,
horizontal flip, and other techniques to improve the generalization ability of the model and
to avoid overfitting. The feature extraction layers consist of a large number of convolution
blocks (DSA-Residual module), and each block follows identity mapping and a ReLU
activation function [38]. The batch normalization helps to accelerate the convergence of
the loss function and enables the model to learn different distributions of the data by
normalization. The output of the last feature extraction layer is 7 × 7 × 2048, which is later
adjusted to 1 × 1 × 2048 by global pooling. Due to the fact that fire classification is a binary
classification problem, we use the sigmoid activation function to output its probabilities
(fire, no-fire), denoted as:

P( f ire) = σ( f ire|ϕ(θ)) = 1
1 + e−ϕ(θ)

, (6)

where ϕ(θ) represents the output of the FC layer, which is obtained using the input matrix
X, pixel values for each channel, and all weights across the entire feature extraction layer,
and θ is the weight for the last layer. The output is the probability of fire-recognition with a
threshold set to 0.5. To train our DSA-ResNet50 model, a loss function is used to improve
network accuracy and find the best weight matrix, which is defined as a binary cross-entropy:

L(y, ŷ) = − 1
N

N

∑
i=1

(yi · logp(ŷi) + (1− yi) · log(1− p(ŷi))), (7)

where N represents the total number of samples used for each epoch, y is the ground truth
label for each image labeled as fire (y = 1) or no-fire (y = 0) in the training phase, and p(ŷ)
represents the predicted result of an image classified as the fire class. In addition, training
is carried out by Adam optimizer [39] to update gradient flow of the network, with the L2
regularization set to 1× 10−4.
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2.3. Fire Instance Segementation Using MaskSU R-CNN

As an improvement of Mask R-CNN [40], MS R-CNN is the most advanced instance
segmentation method at present. Mask R-CNN regards classification confidence as a
criterion for segmentation quality. However, experimental evidence demonstrates that there
is no significant correlation between predicted mask quality and classification confidence.
To solve this problem, MS R-CNN is obtained by adding a MaskIoU branch to the Mask R-
CNN, which is employed to learn and predict the segmentation results, i.e., the segmentation
confidence. The MaskIoU branch utilizes related feature map and the mask branch’s result
as input (14 × 14 × 257) and then calculates the Intersection Over Union (IoU) between the
predicted mask and its corresponding ground truth label in the image. Consequently, MS
R-CNN is capable of achieving more precise segmentation results than Mask R-CNN.

UNet [41] is a semantic segmentation model based on FCN, which mainly includes
three parts: down-sampling, up-sampling, and concatenation operation. Down-sampling
consists of convolution-pooling blocks and is used to compress the number of channels.
Each block has two convolutional layers, one pooling layer, and ReLU activation function. In
addition, up-sampling doubles the size of the feature map and halves the number of channels
by transposed convolution. After that, the output is connected with the feature map with the
same size obtained by down-sampling. Throughout the entire process, the concatenation of
feature map helps to integrate information in both shallow and deep networks.

Inspired by the UNet structure, we reconstructed the MS R-CNN’s MaskIoU branch
using a U-shaped network called MaskSU R-CNN in this paper, and the model structure is
presented in Figure 5.
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2.3.1. Feature Extraction Network

Given the outstanding performance of the attention mechanism on the image classifica-
tion task, we adopt DSA-ResNet50 as the backbone of our MaskSU R-CNN. In addition, the
introduction of the feature pyramid network (FPN) [42] for multi-scale fusion contributes
to extracting more effective features.

2.3.2. Region Proposal Network (RPN) and Region of Interest (RoI) Align

The RPN [43] is composed of two convolution blocks (3 × 3, 1 × 1): The 3 × 3
convolution block extracts features from the output of the backbone network using 32
convolution kernels; the 1 × 1 convolution block is used to adjust the parameters of each
anchor box and determine whether there is an object in it. During the training phase, the
RPN generates nine anchor boxes for each pixel on the feature map, and then a series of
initial proposal regions are screened using Non-Maximum Suppression (NMS).

Unlike the RoI Pooling in the work of [43], RoI Align [40] is used here to scale the RPN
output to the same size. RoI Align utilizes bilinear interpolation to calculate grid point
coordinates, which effectively preserves the edge pixels of the object to obtain predicted
masks with high quality.

2.3.3. Multi-branch Prediction for Classes, Bounding Boxes, and Masks

The multi-branch prediction network contains three branches: the R-CNN branch
for classification and bounding-box regression, the mask branch for generating predicted
masks, and the MaskIoU branch for segmentation evaluation. The R-CNN branch is
consistent with most object detection methods, using the softmax function for classification
and SmoothL1 loss for bounding-box regression.

In Mask R-CNN model, the segmentation quality is equivalent to the classification
confidence, which is unscientific in practical situations. To address this problem, MS R-CNN
introduces the MaskIoU branch, which evaluates the quality of segmentation by concatenating
the feature map (14 × 14 × 256) with the output of the mask branch (14 × 14 × 1). During
the process of convolution, the features in the shallow network will cause a certain loss.
To better perform feature fusion and reduce feature loss, a U-shaped network is adopted
in this paper to reconstruct the MaskIoU branch. The novel MaskIoU branch (Table 2)
consists of eight convolutional layers, including down-sampling for channel compression,
up-sampling for feature expansion, and concatenation operation. Finally, the IoU value
between the predicted mask and corresponding ground truth is calculated by three FC
layers. The feature concatenation in the U-shaped network integrates the information
between different feature maps, which is significant for segmenting the edge pixels of fire.

Table 2. The details of the proposed MaskIoU branch with U-shaped network. C represents the
number of classes in the dataset.

Operation Kernel/Stride Output

Block1 Conv + ReLU 3 × 3 × 256 14 × 14 × 256
Conv + ReLU 3 × 3 × 256 14 × 14 × 256
Conv + ReLU 3 × 3 × 256 14 × 14 × 256

Block2 Maxpooling 2 × 2 7 × 7 × 256
Conv + ReLU + Concat 3 × 3 × 256 7 × 7 × 512

Block3 Up-sampling 2 × 2 14 × 14 × 512
Conv + ReLU + Concat 3 × 3 × 256 14 × 14 × 512
Conv + ReLU + Concat 3 × 3 × 256 14 × 14 × 512
Conv + ReLU + Concat 3 × 3 × 256 14 × 14 × 512

Block4 Conv + ReLU 3 × 3 × 256 14 × 14 × 512
Maxpooling 2 × 2 7 × 7 × 256

Block5 FC + ReLU / 1024
FC + ReLU / 1024
FC + ReLU / C (MaskIoU)
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2.3.4. Model Training and Loss Function

As a large image dataset in deep learning, COCO [44] has more than 220 k images
with 80 categories. Before training our MaskSU R-CNN model, a COCO-based pretrained
model was applied using transfer learning [45] to train deep neural networks to be more
stable and efficient. During training of the model, the method used in the work of [40] has
been adopted. Thirty-two anchors are randomly selected from each image in the batch, and
the loss is generated based on the positional relationship with the ground truth label. If the
IoU value is greater than 0.5, the RoI is considered as a positive sample; otherwise, it is a
negative sample, and the ratio of positives and negatives is 1:3.

For generating the regression target in MaskIoU branch, the predicted mask is bina-
rized with a threshold of firstly 0.5. Then we regress the MaskIoU between the predicted
mask and its corresponding ground truth by l2 loss. In addition, the mask loss Lmask and
the MaskIoU loss Lmaskiou are defined on positive samples only.

During the training phase, the curve of loss function visually reflects the convergence
of the model. The total loss of MaskSU R-CNN is composed of two components: (1) the
loss in RPN; and (2) the loss generated by the multi-branch prediction network, which can
be described as:

Ltotal = Lrpn + Lmul−branch, (8)

where the RPN loss Lrpn is composed of the classification loss (softmax loss) and the
bounding-box regression loss (SmoothL1 loss), which is used to generate many proposals (the
output of RPN), including the identification of whether or not there are real objects in the
anchor and the parameter adjustment of the anchor position. Lrpn is computed as follows:

Lrpn =
1

Ncls1
∑

i
Lcls(pi, p∗i ) + λ1

1
Nreg1

∑
i

p∗i Lreg(ti, t∗i ), (9)

where Lmul−branch is generated by different branches, including the classification loss (soft-
max loss), the bounding-box regression loss (SmoothL1 loss), the mask loss Lmask and the
MaskIoU loss Lmaskiou. The formula is expressed as follows:

Lmul−branch = L(pi, p∗i , ti, t∗i , si, s∗i )
= 1

Ncls2
∑
i

Lcls(pi, p∗i ) + λ2
1

Nreg2
∑
i

p∗i Lreg(ti, t∗i )

+γ2
1

Nmask
∑
i

Lmask(si, s∗i ) +
1

2Nmask
∑
i

Lmaskiou(si, s∗i )
(10)

where the classification term is normalized by the mini-batch size (i.e., Ncls = 256) and
regression term is normalized by the number of anchor locations (i.e., Nreg~2400); λ∗ and
γ∗ are hyperparameters used to balance the loss of anchors or bounding-boxes regression
and the loss of mask generation during the training phase, which are set to 10 and 1 in
our implementation. The classification loss Lcls, regression loss Lreg, mask loss Lmask, and
MaskIoU loss Lmaskiou are listed as followed:

Lcls(pi, p∗i ) = −logp∗p, (11)

Lreg(ti, t∗i ) = ∑
i

smoothL1(ti − t∗i )

where smoothL1(x) =
{

0.5x2 i f |x| < 1
|x| − 0.5 otherwise

(12)

Lmask(si, s∗i ) = −(s∗i � log◦(si)⊕ (1− s∗i )� log◦(1− si)), (13)

Lmaskiou(si, s∗i ) = (
si ∩ s∗i
si ∪ s∗i

)
−2

, (14)

where pi represents the probability that the predicted result of anchor i is the ground truth.
Since RPN is used to detect the presence of the target (foreground or background) instead
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of classification, the value of p∗i is 1 when anchor i is a positive sample, otherwise it is 0.
ti = (tx

i , ty
i , tw

i , th
i ) represents the regression parameters of anchor i, including the center

coordinates of the bounding box (x, y), the width w, and height h. t∗i indicates the ground
truth corresponding to anchor i. s and s∗ represent the binary matrix of the predicted mask
and ground truth, respectively. �, ⊕, and log◦ denote the pixel-based product, summation,
and logarithm, respectively.

Finally, the segmentation quality of each target can be expressed by mask score Smask:

Smask = Scls · Smaskiou. (15)

where Scls represent the classification confidence obtained from R-CNN branch, and Smaskiou
is the output of MaskIoU branch.

3. Results

This section presents the different performances of two deep neural network models
on forest-fire image classification and segmentation. All the experiments are based on
Python 3.6 and Pytorch using the Windows system. The hardware used is AMD R7-5800H
and an NVIDIA RTX 3070 with 16 GB memory.

3.1. Fire Image Classification
3.1.1. Accuracy Assessment

To observe the performance of the model at different training-set proportions, we com-
pared five existing deep-classification networks (VGGNet [46], GoogleNet [47], ResNet [29],
and SE-ResNet50 [36]) with our DSA-ResNet50. The performance of these models trained
with different proportions (20%, 40%, 60%, and 80%) of training images is shown in Figure 6.
We evaluate the classification performance using four metrics: accuracy (Acc), Kappa coeffi-
cient (K), Omission Error (OE), and Commission Error (CE). According to Figure 6, it can
be noticed that with the increase of training sets, the Acc and K keep growing while the OE
and CE decrease. This is because as the training set increases, the model can learn more
relevant features. In addition, OE is slightly higher than CE, which indicates that some of
the fine fire points are highly similar to the surrounding soil or obscured by vegetation,
making it difficult for the model to classify them accurately. It is worth noting that our
DSA-ResNet50 is superior to other models under different proportions of training images.
The calculation formulas are as follows:

Acc =
TP + TN

TP + TN + FP + FN
, (16)

K =
po − pe

1− pe
, (17)

CE =
FP

TP + FP
, (18)

OE =
FN

TP + FN
. (19)

where TP and FP represent the number of fire or no-fire images classified as fire label,
respectively; FN and TN represent the number of fire or no-fire images classified as no-fire
label, respectively; po is the overall classification accuracy, and pe is the accidental consistency.
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Testing accuracy; (b) kappa coefficient; (c) omission error; and (d) commission error.

Table 3 demonstrates the results of comparison models trained with 80% images,
where our DSA-ResNet50 performs the best (Acc = 93.65%, K = 0.864, OE = 20.59%, and
CE = 4.23%). In addition, with a slight increase in network parameters (1.8 million), the
addition of the DSA module increased Acc and K by 2.37%, 0.025, and decreased OE and
CE by 9.28%, 4.12%, respectively, suggesting that the proposed attention mechanism can
capture more features and thus improve the classification ability of the model.

Table 3. Performances of different models on testing set using 60% training images.

Model Layers Acc (%) K OE (%) CE (%) Params (Million)

VGGNet 16 84.86 0.743 37.54 16.84 138.53
GoogleNet 22 88.23 0.784 34.52 11.61 8.97

ResNet 50 91.28 0.839 29.87 8.35 26.85
SE-ResNet 50 92.46 0.851 25.62 5.62 28.65

DSA-ResNet (ours) 50 93.65 0.864 20.59 4.23 28.43

3.1.2. Visualization Analysis

To better understand CNN’s decision on image classification, the visualization method
Gradient-weighted Class Activation Mapping (Grad-CAM) [48] was used to generate a
heatmap for evaluating important regions in each input image. Figure 7 shows the Grad-
CAM visualizations of forest-fire images taken from different UAV angles (shown in the
first and third columns), based on DSA-ResNet50 model trained with 80% training images.
According to each input image and its corresponding visualization, it can be seen that DSA-
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ResNet50 can easily focus on areas with fire points (marked with red boxes), indicating that
the DSA module enhances the network’s ability to recognize fire areas.
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3.2. Fire Detection and Segmentation
3.2.1. Evaluation Metrics

The accuracy of segmentation results is often measured by IoU, which represents the
overlap rate between the predicted result and its corresponding ground truth label, and the
closer the value is to 1, the better the segmentation performance is. To be fair, we adopt the
mean value of IoUs on the testing set to measure the model, denoted as:

mIoU =
1
N

N

∑
i=1

Pi ∩ Gi
Pi ∪ Gi

, (20)

where Pi and Gi denote the predicted result and corresponding ground truth label for i-th
image, respectively. In our experiment, if the IoU is 0.5 or above, the target is considered a
positive sample, otherwise negative. In addition, the F1-score is used as another evaluation
metric, denoted as:

f =
2TP

2TP + FP + FN
, (21)

where TP, FP, and FN are defined in Section 3.1.1. Obviously, the larger the value of f , the
better the accuracy of the model.

3.2.2. Performance Analysis and Comparison

The proposed MaskSU R-CNN is an instance segmentation model that implements
parallel processing for object detection and segmentation. From the experimental results
(Figure 8b), it can be found that our model can correctly identify forest-fire targets and
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achieve good segmentation results. Compared with the ground truth labels (Figure 8c), they
remain almost the same except for some defects in flame details, and the minor differences
are mainly caused by the translucency of forest fires and the interference of occlusions.
Figure 9 demonstrates the loss curves over 120 epochs for both the training and validation
sets. It can be seen that our model shows an overall smooth decreasing trend and gradually
converges after about 80 epochs.
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To demonstrate the superiority of MaskSU R-CNN on forest-fire segmentation, we
compared our method with several DL-based semantic segmentation models, including
SegNet [49], UNet [41], PSPNet [50], and DeepLabv3 [51]. Noticeably, the same dataset
and configurations were used to train all models to make the predictions comparable.
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We selected a representative part of the images from the testing set for display, and the
predicted results are shown in Figure 10. We can visually see that the segmentation results
of our MaskSU R-CNN outperform other comparison models, especially on images that are
hard for humans to recognize. In terms of apparent forest-fire targets that are significantly
different from the background, most methods produced relatively accurate segmentation
results. As for those forest fires with small targets and high concealment, as marked with
green boxes in Figure 10a, most models generated some degree of under-segmentation,
except for DeepLabv3 and our MaskSU R-CNN. It is worth noting that SegNet showed
serious mis-segmentation (marked with blue boxes), which was mainly caused by the
model without taking full advantage of contextual semantic relationships. Table 4 lists the
results of the quantitative analysis with different comparison models. Our model obtained
the highest f and mIoU on the testing set. Moreover, unlike the above segmentation
methods, our model also achieves the differentiation of individual forest fires, which makes
the fire segmentation more interpretable.
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Table 4. Comparison results between different segmentation models.

Method
Metrics

p (%) r (%) f (%) mIoU (%)

SegNet 71.37 41.33 52.35 35.45
UNet 86.18 85.96 86.07 77.85

PSPNet 83.12 81.25 82.17 69.74
DeepLabv3 90.95 89.64 90.29 81.12

MaskSU R-CNN (ours) 91.85 88.81 90.30 82.31

Furthermore, in order to verify the effectiveness of our improved model MaskSU
R-CNN, we compared it with the original model Mask R-CNN and MS R-CNN, and some
of the segmentation results are shown in Figure 11. It can be intuitively found that our
MaskSU R-CNN achieves the best segmentation results, followed by the MS R-CNN. The
main reason is that these two models both add a new branch MaskIoU on the basis of Mask
R-CNN, and we further improve the quality of the predicted mask after reconstructing the
MaskIoU branch using a U-shaped network. Therefore, the segmentation results are the
most excellent. In particular, our model has a remarkable advantage in the correction of edge
pixels in the fire regions, especially on inconspicuous fire images, such as fire points 1, 2, 6,
and 8 in Figure 11e. As for those highly occluded fire targets in Figure 12, the segmentation
confidence of our method is more reasonable, which is determined by the segmentation
quality, rather than directly using the classification confidence. Meanwhile, the novel branch
MaskIoU greatly improves the fine-grained characterization capability of our model.Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 21 
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Figure 11. Predicted results of three different instance segmentation models: (a) mask R-CNN, (b)
MS R-CNN, (c) our MaskSU R-CNN; (d) ground truth labels; and (e) segmentation details. Note
that numbers 1 to 9 represent the order of fire points, and from left to right are the predicted results
generated by Mask R-CNN, MS R-CNN, MaskSU R-CNN, and the corresponding ground truth label.
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To demonstrate the importance of the novel MaskIoU branch in our model, we con-
ducted a series of ablation experiments. According to the ablation results in Table 5, it can
be found that the MaskIoU branch can significantly improve the segmentation quality of
forest fires (mIoU). In particular, after adding the novel MaskIoU branch with the U-shaped
network, our mIoU reached 80.77%. Meanwhile, introducing the attention mechanism (DSA
module) to the backbone ResNet can further mine the intrinsic information of the features
and improve the performance of the model.

Table 5. Ablation experiments between different instance segmentation variants.

Model Backbone MaskIoU
Metrics

p (%) r (%) f (%) mIoU (%)

Mask R-CNN
ResNet / 85.62 82.61 84.09 75.97

DSA-ResNet / 87.94 85.69 86.80 77.55

MS R-CNN
ResNet FCN 88.95 83.16 85.96 78.61

DSA-ResNet FCN 90.15 87.94 89.03 80.42

MaskSU R-CNN (ours) ResNet U-shaped
network 88.63 88.89 88.76 80.77

DSA-ResNet U-shaped
network 91.85 88.81 90.30 82.31

In addition to evaluating the segmentation performance of comparative methods, we
also calculated the model size and running time. Our novel MaskIoU branch has about 0.63 G
FLOPs compared with 0.39 G FLOPs in MS R-CNN. We use one 3070 GPU to test assess
the running time (sec./frame). As for DSA-ResNet50, the speed is about 0.235 for Mask
R-CNN, and 0.238 for both MS R-CNN and MaskSU R-CNN. Hence, the computation cost
of MaskIoU branch is negligible.

4. Discussion

In contrast to other fixed-form objects, forest fires are dynamic objects with vari-
able shapes and hard-to-depict textures [52]. Generally, a forest fire usually begins as a
small-scale fire, develops into a medium-scale fire, and then becomes a large-scale fire.
Typologically, it starts from ground fire, then spreads to the trunk, and finally to the tree
crown [53,54]. Therefore, the detection of incipient fires appear to be particularly important.
Unfortunately, there is little research on this aspect, and most of their research data sets are
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images of medium-scale or big-scale fires. We focused on this phenomenon and adopted
the forest-fire data set based on UAV aerial photography, with minor fire points and strong
flame concealment. This can have a high degree of simulating incipient fires. This study
proposed a novel method by improving the existing instance segmentation model in order
to provide more accurate fire-behavior data, which deeply explores the shallow information
and deep higher-order semantics in image features and achieves high-precision recognition
of incipient forest fires.

In terms of forest-fire recognition, previous methods have advantages in detecting
fires with a faster speed and higher accuracy [55]. However, difficulties arise when compli-
cations occur, such as when the capture of fires from a drone’s perspective increases the
misdetection rate, and inconspicuous fire points with a small target or high concealment
are not easily discovered. To address the issues above, we reconstructed the MaskIoU
branch of existing MS R-CNN model by adding a U-shaped network. Specifically, the
improved branch cascades feature maps of the same size during encoding and decoding
phase, allowing for better integration of pixel location features in the shallow network and
pixel category features in the deep network, which provides some correction for edge pixels
of forest fire targets.

In order to fully illustrate the rationality of the model in this paper, our MaskSU
R-CNN is compared with the original models Mask R-CNN and Mask Scoring R-CNN
from several perspectives. The convergence comparison in Figure 9 shows that the overall
training loss of our method is slightly lower than the other two models with the same
training samples. The visualization comparison in Figure 11 reveals that the segmentation
mask of our method has the highest matching degree with the actual shape of the forest
fire and has obvious advantages in processing forest-fire edge pixels. The quantitative
comparison in Table 5 shows that our method achieves SOTA performance in terms of both
detection accuracy and segmentation quality. In addition, the fixed structure of our MaskSU
R-CNN allows for end-to-end training. Therefore, it is feasible to prune our method and
deploy it to mobile devices under the premise of ensuring recognition accuracy.

Future research will focus on the model’s recognition capacity in satellite remote-
sensing imageries, and the fusion of satellite multimodal data for forest-fire detection.

5. Conclusions

In this study, we present two solutions regarding the classification and segmentation
of forest-fire images, with the main contributions as follows: (1) we design a novel attention
mechanism (DSA module) to enhance the representation ability of feature channels and
further improve the classification accuracy of incipient forest fires; (2) we merge the DSA
module into ResNet as the backbone network of the instance segmentation model to
improve the feature extraction capability; and (3) we reconstruct the MaskIoU branch of MS
R-CNN using a U-shaped network, aiming to reduce the segmentation error. Experiments
show that our MaskSU R-CNN outperforms many state-of-the-art segmentation models
with a precision of 91.85%, recall 88.81%, F1-score 90.30%, and mIoU 82.31% in incipient
forest-fire detection and segmentation. Our method, with its flexible structure and excellent
performance, represents a shift toward the possibility of unmanned fire monitoring in a
large area of forest.
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