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Abstract: Machine learning (ML) classifiers have been widely used in the field of crop classification.
However, having inputs that include a large number of complex features increases not only the
difficulty of data collection but also reduces the accuracy of the classifiers. Feature selection (FS),
which can availably reduce the number of features by selecting and reserving the most essential
features for crop classification, is a good tool to solve this problem effectively. Different FS methods,
however, have dissimilar effects on various classifiers, so how to achieve the optimal combination
of FS methods and classifiers to meet the needs of high-precision recognition of multiple crops
remains an open question. This paper intends to address this problem by coupling the analysis
of three FS methods and six classifiers. Spectral, textual, and environmental features are firstly
extracted as potential classification indexes from time-series remote sensing images from France.
Then, three FS methods are used to obtain feature subsets and combined with six classifiers for
coupling analysis. On this basis, 18 multi-crop classification models (FS–ML models) are constructed.
Additionally, six classifiers without FS are constructed for comparison. The training set and the
validation set for these models are constructed by using the Kennard-Stone algorithm with 70% and
30% of the samples, respectively. The performance of the classification model is evaluated by Kappa,
F1-score, accuracy, and other indicators. The results show that different FS methods have dissimilar
effects on various models. The best FS–ML model is RFAA+-RF, and its Kappa coefficient can
reach 0.7968, which is 0.33–46.67% higher than that of other classification models. The classification
results are highly dependent on the original classification index sets. Hence, the reasonability of
combining spectral, textural, and environmental indexes is verified by comparing them with the
single feature index set. The results also show that the classification strategy combining spectral,
textual, and environmental indexes can effectively improve the ability of crop recognition, and the
Kappa coefficient is 9.06–65.52% higher than that of the single unscreened feature set.

Keywords: coupling; feature selection; machine learning; crop classification; multiple crops

1. Introduction

The spatial distribution pattern of crops in the farmland area is important for macro
agricultural policy formulation, farmers’ production guidance, food production detection,
and prediction [1–3]. Traditional crop classification methods require a large amount of
manual field research, and the timeliness of the data is low, so monitoring regional crops
in real-time is in demand [4,5]. In recent years, the rapid development of agricultural
remote sensing technology has provided effective technical support for realizing the quick
identification and monitoring of large areas of crops.
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Presently, a series of studies have verified the feasibility of remote sensing images
for crop classification. Li et al. [6] achieved high-precision identified winter wheat based
on spectral features. Jiang et al. [7] effectively extracted rice information based on the
spectral features of Landsat images and analyzed the changes in the rice planting system
in Southern China. The analysis of the above research confirms that spectral features
can be used for crop recognition. In addition, the accuracy of multi-crop classification
based on single spectral features is limited due to the widespread phenomenon of “same
matter different spectrum” and “foreign matter same spectrum”, especially in regions
with complex planting structures. Remote sensing images contain abundant textural
features reflecting the spatial distribution structure of ground objects, which can increase
the separation between multiple crops and improve classification accuracy [8]. For example,
some scholars analyzed different textural feature extraction methods in their research and
confirmed that textural features could be used as a reference for crop classification [9,10]. In
addition, environmental characteristics remarkably affect the growth characteristics of crops.
Therefore, environmental characteristic indicators can be used to identify crops considering
the difference driven by the environment, thus improving classification accuracy [11].
Zhang et al. [12] used spectral and environmental indexes for crop classification, and the
results showed excellent accuracy. Therefore, how to construct an effective strategy by
fusing the three types of information to carry out multi-crop classification to meet practical
needs remains worthy of further study.

Machine learning (ML) models have been widely used in the field of crop recognition,
such as random forest (RF) [13], support vector machine (SVM) [14], K-nearest neighbor
(KNN) [15], naïve Bayes (NB) [16], artificial neural network (ANN) [17], and Extreme
Gradient Boost (XGBoost) [18]. Xu et al. [13] and Liu et al. [19] adopted RF to monitor
winter wheat and discussed the influence of different feature combinations on classification
accuracy. Rashmi et al. [20] demonstrated that the XGBoost result had a better performance
than RF and SVM in crop mapping based on spectral features of different crops. Prins
and Niekirk [21] used multiple data sources and classifiers for crop classification, and RF
and XGBoost each provide the highest classification accuracy in different data sets. The
effectiveness of ML classifiers on crop classification has been verified by existing studies. In
addition, deep learning is also widely used in the field of crop identification. Deep-learning-
based crop classification can be classified into two types. The first type is a classification
based on samples, such as a one-dimensional convolutional neural network (1D-CNN) [22].
Another is a classification based on images, but it is limited by its requirement for massive
data and high image resolution, which makes it difficult to be effectively applied under the
conditions of low precision data sources in large areas and limited sample size. Therefore,
the 1D-CNN method is adopted in this study for comparison [23,24].

However, the classification feature types and the number of classification indexes
affect the performance of ML classifiers. If a mass of classification indexes is included in
the model, then the efficiency and accuracy of model prediction will be affected. If only a
few indexes are considered, crop characteristics cannot be adequately reflected, and model
accuracy will be reduced. Therefore, to optimize the ML classifier, the feature selection
(FS) method is generally used for index screening to reduce data redundancy and obtain
the critical indexes for crop recognition. The FS methods commonly used in the literature
include random forest average accuracy (RFAA), random forest average impurity (RFAI),
and recursive feature elimination (RFE). Masoud et al. [25] optimized the crop classification
index set based on RFAA, and the optimized index subset showed an evident improvement
in crop classification. Mahboobeh et al. [26] selected the optimal subset of independent
variables using RFE to reduce the number of input variables and obtain a substantial effect
on model performance. In summary, FS classification methods have many options, but
which FS classification method is optimal remains unclear. Furthermore, the effect of
different FS methods on ML classifiers remains unknown [27].

To sum up, this paper aims to address the above issues by a systematic comparative
study on the various coupling of FS methods and ML classifiers, which is limited in
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existing studies to the best of our knowledge. This paper intends to merge spectral,
textural, and environmental features to construct a more accurate and effective multiple
crop classification method by selecting an optimal coupling model (FS–ML) based on the
FS methods and the ML classifiers. A series of multi-crop FS–ML models are constructed
by coupling six classifiers (namely, RF, SVM, KNN, NB, ANN, and XGBoost) and a series
of typical FS methods. Agriculture in France is flourishing, which is chosen as the study
area. Spectral, textural, and environmental variables are used to quantify the crop growth
characteristics, and the coupling classification methods for recognizing multiple crops are
constructed. The results are assessed by Kappa coefficient, F1-score, accuracy, and other
indicators.

2. Study Region and Dataset

The study region is the native land area of France except for Corsica (Figure 1). Most
of the land area of France is relatively flat and is mild to warm with some rains throughout
the year, and agriculture is well developed and highly modernized in this region. The
main crops include wheat, corn, sugar beet, and sunflower. Rapid monitoring and the
identification of the spatial distribution of crop planting are essential to guide agricultural
production in the region because France is an important supplier of agricultural and sideline
products in the world.
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2.1. Data Acquisition and Analysis in Study Region
2.1.1. Data Source

The sample data with crop types and geographical location information are from
the European LUCAS dataset from 2009. In the sample data, wheat, corn, sugar beet,
and sunflower are the main crop types, which conform to the study crop types in this
paper. The remote sensing data are from the MODIS13Q1 product in 2009 by image mosaic
and clipping using ENVI 5.3 software. To reduce noise while retaining effective spectral
information, the Savitzky–Golay smoothing filter is used for the remote sensing data
(Figure 2).

2.1.2. Crop Phenology Information

Phenology refers to the periodic changes formed by the long-term adaptation of
organisms to various external conditions such as temperature and humidity, which is the
growth and development rhythm coordinated with the external environment. Different
crops usually have dissimilar phenological information. The phenology information of the
crop types (i.e., wheat, corn, sugar beet, and sunflower) in the study area is acquired by
referring to a series of studies [28–31]. Figure 3 shows that the crop growing periods are
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distributed from January to December, which are the time series data for this study. Based
on this, the index calculation period can be obtained.
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3. Methodology

Until now, making a breakthrough in the problem of limited accuracy caused by
“the same object with different spectra” and “the same spectra of foreign matter” remains
challenging. To address the above problem, spectral, textural, and environmental indexes
that can measure crop growth characteristics from different aspects are fused to be the
classification index set, aiming at classifying crop types with high precision. The calculation
of classification indexes is described in Section 3.1. To reduce data redundancy and select
the optimal classification index combination, the indexes calculated in Section 3.1 need to be
optimized. However, the classification results depend not only on the index optimization
strategy but also on the classifiers. As the optimal option of the index optimization methods
and classifiers remains unknown, the influence of index optimization strategy on classifiers
is also unclear. Hence, the coupling analysis of index optimization methods and classifiers
is carried out and elaborated in Section 3.2. Additionally, the classification model is
constructed and evaluated by the training set and the validation set, respectively, as
described in Section 3.3. The evaluation indicators are elaborated in Section 3.4. The whole
workflow of this study is illustrated in Figure 4.
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3.1. Construction of Classification Indexes
3.1.1. Construction of Spectral Indexes

Several studies indicated that the different growth characteristics between crops are
mainly reflected in the time series of the NDVI values [6,7]. NDVI can be calculated based
on images in Figure 2. The phenological periods of the studied four crops in Figure 3
cover the whole year. Therefore, 12-month NDVI values are calculated and set as potential
spectral indexes. Additionally, existing studies verified that the curve trend Pi(j) and the
curve difference Qi(j) shown in Table 1 can further help uncover the differences between
crops and were also adopted in this study. Curve trend Pi(j) reflects the fluctuation
trend of crop growth changes and measures the correlation between curves [32]. The
curve difference Qi(j) measures the distance difference between curves and judges the
dissimilarities between the curves [33]. A higher Pi(j) indicates that the spectral features of
sample i are more similar to the spectral features of crop type j. A lower Qi(j) means the
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differences between the spectral features of sample i and the spectral features of crop type
j are smaller.

Table 1. Spectral indexes and interpretation.

Indicator Calculation Formula Meanings

Pi(j) Pi(j) = ∑(Pin−Pi)(Tjn−Tj)√
∑(Pin−Pi)

2
∑(Tjn−Tj)

2

Similarity between sample i and crop
type j in NDVI index, j = {wheat, corn,

sugar beet, and sunflower}.

Qi(j) Qi(j) =

√
∑
(

Pin − Tjn

)2
Difference between sample i and crop
type j in NDVI index, j = {wheat, corn,

sugar beet, and sunflower}.

i is the lable of classified sample; Tj is the average NDVI value of samples of crop type j during phenological
period of crop type j; Tjn represents the average NDVI value of the crop type j in the month n; n is the label of each
month during phenological period of crop type j; Pi is the average NDVI value of sample i during phenological
period of crop type j; Pin represents the NDVI value of sample i in the month n. Time phases number n in this
paper calculated by crop phenology.

3.1.2. Construction of Textural Indexes

The grey level co-occurrence matrix (GLCM) [24] is one of the commonly used texture
algorithms and was adopted to measure texture information from images in Figure 2 for
multiple crop classification. Eight GLCM based textural indexes (in Table 2) including mean
(B1), variance (B2), homogeneity (B3), contrast (B4), dissimilarity (B5), Entropy (B6), second
moment (B7), and correlation (B8) were calculated using ENVI/IDL software. The mean
value reflects the brightness relationship between the pixels and the surrounding pixels.
Variance reflects the degree of gray change in the local area of the image. Homogeneity
reflects the concentration of pixels in the matrix. Contrast shows the degree of gray
difference in the local area. Dissimilarity is the linear correlation of the local pixel contrast.
Entropy measures the richness of textural information. The richer the textural information
is, the greater the entropy is. Second moment was used to describe the distribution
of image brightness. Correlation reflects the relationship between the pixels and the
surrounding pixels.

Table 2. Textural indexes and interpretation.

Indicator Textural Index

i− B1 Mean in month i, i = {1, 2, · · · , 12}
i− B2 Variance in month i, i = {1, 2, · · · , 12}
i− B3 Homogeneity in month i, i = {1, 2, · · · , 12}
i− B4 Contrast in month i, i = {1, 2, · · · , 12}
i− B5 Dissimilarity in month i, i = {1, 2, · · · , 12}
i− B6 Entropy in month i, i = {1, 2, · · · , 12}
i− B7 Second moment in month i, i = {1, 2, · · · , 12}
i− B8 Correlation in month i, i = {1, 2, · · · , 12}

3.1.3. Construction of Environmental Indexes

Crop growth highly relies on environmental conditions. Crop growth characteris-
tics will be obviously different in different environmental conditions. Therefore, adding
environmental variables as potential classification indexes was expected to improve classi-
fication accuracy. Climate factors and topographic factors are two typical environmental
factors related to crop growth and were calculated as potential classification indexes in this
study (Table 3). For topographic factors, slope and aspect are potential indexes leading to
crop growth characteristics varying with the environment. For climate factors, precipitation
and temperature are clearly related to crop growth. As precipitation and temperature
change over time, precipitation and temperature were calculated at three scales, including
monthly, quarterly, and annual precipitation and temperature indexes.
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Table 3. Environmental indexes and interpretation.

Indicator Meanings

Slope Degree of surface inclination
Aspect Orientation of the topographic slope
Pre(i) Precipitation in month i, i = {1, 2, · · · , 12}

S− Pre(a) Precipitation in season a, a = {1, 2, 3, 4}
A− Pre Average annual precipitation
Tem(i) Temperature in month i, i = {1, 2, · · · , 12}

S− Tem(a) Temperature in season a, a = {1, 2, 3, 4}
A− Tem Average annual temperature

3.2. Coupling Strategy Based on Feature Selection Methods and Machine Learning Classifiers

Substantial differences in textural features between crops are usually concentrated on
some specific features. To reduce data redundancy and improve accuracy, classification
indexes need to be optimized to obtain the optimal combination. To further explore the
effects of the FS methods on different classifiers, coupling analysis was conducted based on
the typical FS methods and six ML classifiers in this paper.

3.2.1. Feature Selection Methods

Feature selection can not only reduce the redundancy of indexes and improve the
efficiency of the classification model but can also eliminate some noise features to improve
the prediction ability of models. In this study, a wrapped feature selection method, RFE,
was considered for feature selection. In addition, embedded feature selection methods,
RFAI and RFAA, were also adopted to examine the suitability for optimizing machine
learning classifiers.

The main principle of recursive feature elimination (RFE) is to obtain the optimal
feature set by repeatedly constructing a model [11,34]. Through iterative loops, the size of
the feature set was continuously reduced to select the required features. In each loop, the
feature with the smallest score was removed, and the model based on the updated feature
set was constructed. This tuning process selected the base function for constructing the
model with the minimum error rate, and the 10-fold validation strategy was used to select
the best basis function.

RF provides two methods for feature selection [35,36]. One is random forest average
impurity (RFAI), which selects indexes by measuring the average of each characteristic
error reduction. The other is average accuracy reduction (RFAA), which selects indexes by
measuring the change in model performance when the order of each feature is disturbed.
RFAI and RFAA will provide a feature ranking based on the weight of each feature. The
hyperparameters in RFAI and RFAA were adjusted in order to construct models with the
minimum error rate. The substantial feature selection methods based on the weights of
features by RFAI and RFAA were labelled as RFAI+ and RFAA+. The implementation
process was as follows: (1) Add the feature with the maximum weight in the model;
(2) Construct an RF model based on the updated feature set and obtain the kappa coefficient
of the model; (3) continue step (1) to (2) and save the feature set constructed from the model
with maximum kappa coefficient as the final selected features.

3.2.2. Machine Learning Classifiers

The classifiers used in this paper include RF, SVM, KNN, NB, ANN, and XGBoost.
The optimal hyperparameters of the classifiers were also evaluated by the acknowledged
error rate and identified using cross-validation [37].

Random forest (RF) is an integrated learning algorithm based on decision trees, which
constructs multiple decision trees for classifying data sets. RF has been widely used in
various classification and pattern recognition fields [13,19]. To perform the RF classifier,
two important hyperparameters, including the number of decision trees (ntree) and the
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number of variables randomly sampled when building a decision tree (mtry), should be
established [37].

A support vector machine (SVM) is a potential nonlinear algorithm for classification.
As the crop types are various, and the relationships between the data and crop types
are complex, simple linear classifiers can be inapplicable. Hence, SVM, as a promising
nonlinear classifier, was adopted. The SVM was constructed with the selection of the
kernel function (e.g., linear, polynomial, sigmoid, and radial kernels) and the tuning of two
hyperparameters: (1) gamma, which will affect the shape of the class-dividing hyperplane;
(2) cost, which refers to the parameter used to penalize the misclassification [37].

K-nearest neighbor classification (KNN) is a nonparametric classification technique
according to distances between samples. It works on the assumption that the instances
of samples of each class are surrounded almost completely by samples of the same class.
The class number k is the key hyperparameter and was chosen to determine the class of
unknown samples by calculating the class of k neighboring samples in KNN [37].

The naïve Bayes (NB) classifier is a simple probabilistic classifier used for classification
tasks that is based on the Bayes theorem [16]. In the NB classifier, the crop type with the
largest posterior probability is set as the classification type of the sample. To perform tuning
for the NB classifier, the hyperparameter Laplace was considered [38].

Artificial neural networks (ANNs) have been widely used to perform classification
tasks in recent years. They contain an input layer, multiple hidden intermediate layers, and
an output layer. Each hidden intermediate layer contains multiple neurons and computes
related mathematical functions to discover complex relationships between the data in the
input layer and the data in the output layer. An ANN is constructed with the tuning of
two hyperparameters: (1) size, which is the number of nodes in the hidden layer; (2) maxit,
which is the number of control iterations [39].

Extreme Gradient Boost (XGBoost) is an extension of the traditional boosting technique.
The basic idea of XGBoost is to construct a strong classifier by superposing the results
of several weak classifiers [40]. XGBoost mainly involves the tuning of the following
hyperparameters: (1) nrounds, which refers to the number of trees; (2) eta, which is the
learning rate; (3) depth, which indicates the depth of the tree [41].

3.3. Construction of Training Set and Validation Set

From Figure 1, we can see that sample sizes between crop types in the study area
are imbalanced. SMOTE, an inspired approach to counter the issue of class imbalance,
was adopted to balance the difference between class sizes within 3 times (Table 4) [42].
Additionally, the performance of the crop classification model is greatly affected by the
regional representativeness of the samples. In the existing research, sample selection
mostly adopts random selection, which easily leads to insufficient representativeness of the
selected sample area and overfitting or underfitting of the model. The Kennard–Stone (KS)
algorithm can select samples with substantial differences in classification characteristics
into the training set to ensure that it has sufficient regional representation. Existing studies
have confirmed that the KS algorithm effectively addresses the problem of overfitting and
underfitting of the model [43]. Additionally, the accuracy of the prediction model depends
on the size of the training set and the validation set. In general, if the size of the validation
set is greater than 60% of the total sample, the model will have higher precision. Therefore,
in this paper, 30% and 70% of the samples were chosen as the validation set and the training
set, respectively.

Table 4. The number of samples for each crop type used for classification.

Wheat Corn Sugar Beet Sunflower

The training set 338 240 100 117
The validation set 146 104 43 48
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3.4. Accuracy Evaluation

Accuracy, recall, precision, and F1-score were applied to evaluate the precision of
the proposed classification strategy in this paper [44]. Recall indicates the proportion
of correctly predicted positive samples in the positive samples. Precision indicates how
many of the predicted samples are true positive samples, and the F1-score represents the
correctly predicted rate of positive samples. However, high recall with low precision, and
high precision with low recall are ubiquitous, which is inconvenient for discriminating
the classification effectiveness of positive samples. For example, when the recall is 0.4
and precision is 0.7 with an F1-score ≈ 5.1, or when the recall is 0.6 and precision is 0.5
with an F1-score ≈ 0.55, the results based on recall and precision are incomparable. The
F1-score can solve this problem, which is introduced as the harmonic value of recall and
precision [45]. Hence, the F1-score was adopted as an evaluation indicator instead of recall
and precision. Additionally, accuracy signifies the proportion of the correctly predicted
rate of the whole sample (in Equation (1)).

Recall : R(j) =
TPj

TPj
+FNj

Precision : P(j) =
TPj

TPj
+FPj

F1− score : F1(j) = R(j)×P(j)×2
(R(j)+P(j))

Accuracy : A(j) =
TPj

+TNj
TPj

+FPj
+TNj

+FNj

(1)

where j is the crop type; TPj is the number of samples of crop type j correctly classified as
crop type j; TNj is the number of samples of the other crop type correctly classified as the
other crop type; FPj is the number of samples of crop type j mistakenly classified as the
other crop type; FNj is the number of samples of the other crop type mistakenly classified
as crop type j.

Given that F1-score is aimed at dichotomies and reflects the classification effect of
single-type crops and is unable to evaluate the results of multiple crop classification, the
kappa coefficient was introduced to evaluate the overall classification efficiency of the multi-
crop classification model. The comprehensive use of the F1-score and kappa coefficient
can fully reflect the overall multi-crop situation in the model and the classification effects.
Referring to previous studies, if the kappa coefficient is less than 0.2, then the effect of the
model is deemed slight. If the kappa coefficient is between 0.21 and 0.40, the classification
ability of the model is considered to be fair. If the kappa coefficient is larger than 0.40
but less than 0.60, then the model exhibits a moderate classification ability. If the kappa
coefficient is between 0.61 and 0.80, then the model is regarded as substantial. If the kappa
coefficient is larger than 0.80, then the model is identified as almost perfect [46]. Generally,
kappa coefficient, F1-score, and accuracy were adopted to evaluate the effectiveness of the
classification results.

4. Results and Discussion
4.1. Classification Indexes

The order of importance of the top 15 indexes generated by different FS methods
is given in Table 5. Some common characteristics are observed in the index sets under
different FS methods. For example, 11 indexes, namely Qi(2), Qi(4), 7− B1, Pi(2), Pi(1),
1− B1, and Tem(4) appear in all the three index screening methods and are in the forefront
in the order of importance. 8− B1, Qi(3), A− Pre and Tem(6) appear in the index sets
under the two FS methods. Indexes are more concentrated in January and from April to
July, partly because of evident differences in phenological characteristics of crops during
the growing period and the harvest period. As a result, the index subsets under different
FS methods retain the indexes under these months, and the classification accuracy of these
indexes for multi-crop situations is considered remarkably improved.
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Table 5. Rank the importance of the top 15 indexes generated by different FS methods.

RFAA+ RFAI+ RFE

Qi(2) Pi(2) Qi(2)
Qi(4) Qi(2) Pi(2)
7− B1 Pi(1) 7− B1
Pi(2) 1− B1 Pi(4)
Pi(1) 7− B1 Pi(4)

8− B1 Tem(4) 8− B1
1− B1 A− Pre Tem(6)
Tem(4) 5− B1 Qi(4)(4)
Qi(1) 7− B7 S− Tem(3)
Qi(3) 12− B1 Tem(4)
9− B1 5− B7 A− Tem
6− B1 7− B6 Tem(8)
3− B1 Qi(4) S− Tem(2)
A− Pre 4− B1 1− B1
Tem(6) Pi(3) Qi(3)

Pi(1) and Qi(1) represent the relationship between the NDVI curve of sample i and the pseudo phenology curve
of the crop type of wheat. Pi(2) and Qi(2) are calculated by the NDVI curve of sample i and the pseudo phenology
curve of the crop type of corn. Pi(3) and Qi(3) indicate the relationship between the NDVI cure of sample i and
the pseudo phenology curve of the crop type of Sugar beet. Pi(4) and Qi(4) are calculated by the NDVI curve of
sample i and the pseudo phenology curve of the crop type of Sunflower.

4.2. Results of the Coupling Classification Models

The KS algorithm was used to construct the training set and validation set in the study
area (Figure 5). The training set was used to construct the FS-ML models, and the validation
set was utilized to verify the results of multi-crop classification. Based on the coupling
of six classifiers and different FS methods, 18 FS–ML models are established. The kappa
coefficient of each model is shown in Figure 6. To further verify the effectiveness of the
proposed FS strategy, the results of crop classifications based on unscreened indexes are
shown in Figure 6.
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Figure 6 shows that the kappa coefficients of the coupling models are generally higher
than that of typical models without the coupled index selection strategy. Compared to un-
screened models, RF increases by 3.57%, SVM 3.6%, NB 36.76%, KNN 3.53%, ANN 11.88%,
and Xgboost 3.66%, demonstrating that coupling methods can considerably improve the
classification accuracy of the models. Overall, the best classification model is RFAA+- RF,
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with a kappa coefficient for multi-crop classification of 0.7968 (Figure 6). These results
show that the proposed coupling not only obtains the best FS–ML model but also finds the
FS method suitable for each classifier. Compared with typical models, the classification
performance of the optimal FS–ML model improves substantially (Figure 6).
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Figure 6. The kappa coefficients of coupling models for multiple crop classification. RF = random
forest; SVM = support vector machine; KNN = K-nearest neighbor classification; NB = naïve bayes;
ANN = artificial neural network; XGBoost = Extreme Gradient Boost; 1D-CNN = one-dimensional
convolutional neural network; RFAA+ = improved average accuracy reduction; RFAI+ = improved
random forest average impurity; RFE = recursive feature elimination.

Figure 7 shows that, in terms of a single crop, the classification effect of wheat in
RFAA+-RF is high, with an F1-score ≈ 0.84, whereas, in other models, the F1-scores are
mostly below 0.8. For corn, RFAA+-RF performs optimally with an F1-score ≈ 0.84 and an
accuracy ≈ 0.91, whereas the classification effect of other FS–ML models are mostly poor,
with an F1-score below 0.9. For sugar beet, RFAI+-SVM can successfully recognize this crop
type with an F1-score ≈ 1, while RFAA+-RF can also achieve high-precision identification
of these crop types with an F1-score ≈ 0.91. For sunflower, RFAA+-RF performs optimally
with an F1-score ≈ 0.87, which is the most effective FS–ML model for these crop types.
In summary, the RFAA+-RF model based on the fusion indexes of spectral, textural, and
environmental indexes has a relatively satisfactory classification effect in the study area.
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Figure 7. Evaluation indicators of single crop under different FS-ML models: (a–g) include the
evaluation indicators (e.g., accuracy and F1-score) optimal coupling results of the specific classi-
fier and classifier based on unscreened indexes. (a) = classification based on random forest (RF);
(b) = classification based on support vector machine (SVM); (c) = classification based on K-nearest
neighbor classification (KNN); (d) = classification based on naïve bayes (NB); (e) = classification
based on artificial neural network (ANN); (f) = classification based on Extreme Gradient Boost
(XGBoost); (g) = classification based on one-dimensional convolutional neural network (1D-CNN).
RFAA+ = improved average accuracy reduction; RFAI+ = improved random forest average impurity;
RFE = recursive feature elimination.

4.3. Comparative Results of the Coupling Classification Models

ID-CNN, as one of the widely used deep learning methods, is used for comparison
by optimizing hyperparameters [47]. The results are shown in Figures 6 and 7 and Table 6.
Contrary to ML classifiers, the 1D-CNN classifier can obtain better results without FS,
indicating that 1D-CNN can effectively obtain its optimal results from big data. However,
the kappa coefficient of the optimal classification result in Table 1 is 0.6507, which is lower
than that of the optimal FS-ML model (RFAA+-RF with kappa coefficient = 0.7968). The
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possible reason for this result is that the training of a deep learning model requires a large
number of datasets [23,24]. When the sample size is limited, machine learning can achieve
a relatively good classification accuracy.

Table 6. The Kappa coefficients under the coupling analysis of different classifiers and FS methods.

Index Set Feature Selection
Method Classifier

RF SVM KNN NB NN XGBoost 1D-CNN

Single
spectral
indexes

RFAA+ 0.5922 0.53 0.5286 0.4606 0.5088 0.5463 0.5392
RFAI+ 0.5806 0.5146 0.5285 0.4581 0.5138 0.5582 0.5498

RFE 0.5498 0.5126 0.5676 0.4325 0.4977 0.5385 0.5414
Unscreened 0.5230 0.4900 0.5232 0.4202 0.4902 0.5378 0.5680

RF SVM KNN NB NN XGBoost 1D-CNN

Single
textural
indexes

RFAA+ 0.7467 0.6700 0.6445 0.4606 0.6161 0.6924 0.6027
RFAI+ 0.7314 0.6736 0.6504 0.2850 0.6079 0.669 0.5830

RFE 0.7189 0.6742 0.6023 0.1682 0.5959 0.6755 0.5964
Unscreened 0.7062 0.6425 0.5377 0.1416 0.5484 0.6387 0.6373

RF SVM KNN NB NN XGBoost 1D-CNN

Single envi-
ronmental

indexes

RFAA+ 0.5113 0.5078 0.5087 0.3242 0.4528 0.4529 0.4290
RFAI+ 0.5220 0.4979 0.4319 0.3205 0.4492 0.4420 0.3536

RFE 0.5003 0.4609 0.4658 0.2914 0.4362 0.4505 0.4129
Unscreened 0.5081 0.4514 0.4371 0.2871 0.4172 0.4485 0.4312

Additionally, the classification results are clearly affected by the classification indexes.
Spectral, textural, and environmental indexes are fused as classification indexes. To verify
the effectiveness of these three types of index-fusing strategies, classification experiments
based on single characteristic indexes were carried out.

The classification results based on single characteristic indexes are shown in Table 6.
The RFAA+-RF model is optimal for single spectral and single textural indexes, and only
the RFAA+-RF and RFAI+-RF model can achieve a kappa coefficient above 0.51 for single
environmental indexes. The RFAA+-RF coupling strategy based on textural indexes obtains
the best classification performance of wheat, corn, sugar beet, and sunflower among the
coupling methods in Table 4. The F1-score and accuracy of wheat, corn, and sugar beet
classification based on single spectral indexes are higher than the classification evaluation
values based on single environmental indexes by using RFAA+-RF. However, contrary to
the above results, these evaluation indicators of sunflower based on single spectral indexes
are lower than the classification effect based on single environmental indexes by RFAA+-RF
(Figure 8). Hence, the combination of spectral, textural, and environmental features for
multi-crop classification is necessary. Furthermore, Figures 7 and 8 and Table 6 indicate
that the classification effect of four crop types based on fusing indexes is remarkably higher
than the effect based on single spectral, textural, or environmental indexes under all the
adopted models. In summary, the proposed multi-crop classification method is effective.
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5. Discussion

Considering that different FS methods have dissimilar effects on various classifiers,
this paper merges spectral, textural, and environmental features to construct a more accu-
rate and effective multi-crop classification method by selecting an optimal FS–ML model
with a coupling strategy based on FS methods and ML classifiers, with the aim of obtain-
ing the best FS–ML model and achieving high-precision multi-crop classification. The
following interesting findings are obtained: (i) A high degree of similarity is observed
in the index sets under different FS methods. These index subsets under different FS
methods retain the indexes under months with considerable differences in crop growth
characteristics. Moreover, classification accuracy by using these indexes for multi-crop
situations is considerably improved. (ii) The results show that coupling FS–ML methods
can substantially improve the classification accuracy of the models. In this study area, the
best classification model is RFAA+-RF, and the kappa coefficient of multi-crop classification
can reach 0.7968, which is 0.33–46.67% higher than that of other classification models. (iii) In
terms of a single crop, the RFAA+-RF model based on fusion indexes of spectral, textural,
and environmental indexes has a relatively satisfactory classification effect in the study
area, and the optimal FS–ML model of each crop can be found effectively through the
proposed coupling strategy. (iv) The optimal FS–ML model based on single spectral and
textural indexes is the RFAA+-RF, which also performs well under single environmental
indexes. The classification effect of four crop types based on fusing indexes is considerably
higher than the effect based on single spectral, textural, or environmental indexes under all
FS–ML models. In summary, RFAA+-RF based on fusing indexes can preferably meet the
demands of crop classification in a large area with limited samples.

6. Conclusions

Multi-crop classification in France is incredibly difficult because of the large area and
limited sample size. In this study, a coupling classification strategy that combines the fea-
ture selection methods and machine learning models based on timing spectral, textural, and
environmental indexes is proposed to mine the coupling features and obtain the optimal
classification method. The strategy shares the following advantages: (1) It can explore the
effects of feature selection methods on machine learning models and obtain the optimal
multi-crop classification strategy. In this study, RFAA+-RF is confirmed as the optimal
crop classification method in the study area with a limited sample size and large area.
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(2) Temporal spectral, textural, and environmental indexes can reflect crop characteristics
from different perspectives, and fusing these three types of indexes can measure the crop
characteristics more comprehensively. The results make clear that crop classifications based
on fused indexes have higher precision than classifications based on a single type of indexes.
(3) Combining feature selection methods can retain valuable indexes, reduce data redun-
dancy, and improve classification accuracy. The results also verify that the classification
combined with feature selection methods is superior to classification based on unscreened
indexes. (4) The coupling crop classification operation can automatically obtain results
without sufficient prior knowledge of the study area, making the optimal classification
method have the potential to be a widely applicable method for crop classification.

Future work will focus on the application of the proposed coupling strategy based
on FS methods and ML classifiers. In this paper, the study area is wide with large-scale
crop distribution. If the study area is small with broken crops, the proposed classification
method based on high–resolution satellite images can also serve as a potential technique to
recognize the crop distribution. In addition, the proposed method can be applied to other
crops except for the four crop types in the study, such as rice or even greenhouse crops
in practice.
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