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Abstract: Convolutional neural network (CNN)-based very high-resolution (VHR) image segmenta-
tion has become a common way of extracting building footprints. Despite publicly available building
datasets and pre-trained CNN models, it is still necessary to prepare sufficient labeled image tiles
to train CNN models from scratch or update the parameters of pre-trained CNN models to extract
buildings accurately in real-world applications, especially the large-scale building extraction, due
to differences in landscapes and data sources. Deep active learning is an effective technique for
resolving this issue. This study proposes a framework integrating two state-of-the-art (SOTA) models,
U-Net and DeeplabV3+, three commonly used active learning strategies, (i.e., margin sampling,
entropy, and vote entropy), and landscape characterization to illustrate the performance of active
learning in reducing the effort of data annotation, and then understand what kind of image tiles
are more advantageous for CNN-based building extraction. The framework enables iteratively
selecting the most informative image tiles from the unlabeled dataset for data annotation, training the
CNN models, and analyzing the changes in model performance. It also helps us to understand the
landscape features of iteratively selected image tiles via active learning by considering building as
the focal class and computing the percent, the number of patches, edge density, and landscape shape
index of buildings based on labeled tiles in each selection. The proposed method was evaluated
on two benchmark building datasets, WHU satellite dataset II and WHU aerial dataset. Models
in each iteration were trained from scratch on all labeled tiles. Experimental results based on the
two datasets indicate that, for both U-Net and DeeplabV3+, the three active learning strategies can
reduce the number of image tiles to be annotated and achieve good model performance with fewer
labeled image tiles. Moreover, image tiles with more building patches, larger areas of buildings,
longer edges of buildings, and more dispersed building distribution patterns were more effective for
model training. The study not only provides a framework to reduce the data annotation efforts in
CNN-based building extraction but also summarizes the preliminary suggestions for data annotation,
which could facilitate and guide data annotators in real-world applications.

Keywords: built-up; DeeplabV3+; U-Net; active learning; landscape characterization

1. Introduction

By 2050, about two-thirds of the world’s population will reside in urban areas, owing
to the rise of urbanization and population [1]. Dense urban buildings and slums/urban
villages, as well as the proliferation of human settlements in rural areas, can cause negative
effects on human health and sustainable development [2,3]. According to the United Na-
tions (UN), indicator 11 of the Sustainable Development Goals (SDG) emphasizes inclusive
and sustainable urbanization and promotes the sustainable planning of human settlement
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in all countries by 2030. In this case, building footprint mapping is becoming increasingly
important, as it enables the provision of baseline data for sustainable urban planning.

Numerous convolutional neural network (CNN) models have been utilized in semantic
segmentation of very high resolution (VHR) remote sensing [4], which has been used to
map the footprints of buildings in a variety of landscapes, including urban areas, suburban
areas, urban villages/slums, and damaged buildings [5–9]. Several encoder-decoder
CNN architectures, (e.g., U-Net and DeeplabV3+) demonstrated superior performance
in building extraction across the globe. For example, Pasquali et al. (2019) enhanced
the original U-Net and proposed U-Net variants to extract building footprints in five
cities worldwide using the SpaceNet dataset and obtained relatively high intersection
over union (IoU) values [10]. Touzani et al. (2021) created the DeeplabV3+ model and
extracted buildings accurately in fifteen cities and five counties throughout the United
States [11]. Additionally, some pre-trained models and open-source building datasets, (e.g.,
WHU building dataset I and II, WHU aerial dataset, Aerial imagery for roof segmentation,
SpaceNet 1 and 2, Inria Aerial Image Labeling Dataset, and Massachusetts building dataset)
could be used to train CNN models for building extraction (Table 1). Despite this, it still
requires a large amount of labeled data to calculate and update the parameters of CNN
layers for achieving optimal performance in a particular area or large-scale geographic
region due to differences in landscapes, building diversity, and the elements associated
with sensors, acquisition times and spatial resolutions [12–14].

Table 1. Summary of frequently used public datasets in CNN-based building footprint mapping.

Datasets Resolution
(m)

Number of
Image–Label Pairs

Size of Tiles
(Pixels) Geolocation References

WHU satellite dataset I 0.3 to 2.5 204 512 × 512 10 cities worldwide [15]
WHU satellite dataset II 0.45 4038 512 × 512 East Asia cities [15]

WHU aerial dataset 0.3 8189 512 × 512 Christchurch, New
Zealand [15]

Aerial imagery for roof
segmentation 0.075 1047 10,000 × 10,000 Christchurch, New

Zealand [16]

SpaceNet 1 0.5 9735 439 × 407 Rio de Janeiro, Brazil [17–19]

SpaceNet 2 0.3 10,593 650 × 650 Las Vegas, Paris,
Shanghai, Khartoum [17,19,20]

Inria Aerial Image
Labeling Dataset 0.3 360 5000 × 5000 10 cities worldwide [21]

Massachusetts Buildings
Dataset 1 151 1500 × 1500 Massachusetts, USA [22]

In real-world applications, developing an appropriate CNN model and generating
a building map for a specific study area mainly includes four stages: (1) data acquisition
and preprocessing, (2) data annotation, (3) model training and evaluation, (4) generation
of building map [23–25]. In the first stage, VHR images covering the study area are
collected and preprocessed. Data preprocessing often includes orthorectification, the fusion
of multispectral and panchromatic images, and image mosaicing. In the second stage,
the training, validation, and testing areas are manually delineated within the study area.
The buildings in the three areas are annotated based on visual interpretation and open-
source building datasets. In the third stage, the labeled data are split into image tiles with
a fixed size, (e.g., 128 × 128, 256 × 256, and 512 × 512 pixels). The image–label pairs in
the training area are used for model training, the image–label pairs in the validation area
are used to fit the model parameters, and the image–label pairs in the testing area are
used for assessing the model generalization ability. In the last stage, the application of the
trained model over the study area and post-processing are used together to create the final
building map. Among the above stages, two common challenges for CNN-based building
footprint mapping are the extremely high time and labor costs associated with manual data
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labeling and the great dependence on the expert knowledge of remote sensing images and
annotation tools [26,27].

Deep active learning is an effective technique for resolving this issue by reducing the
number of needed annotations. It prioritizes informative unlabeled data for data annotation,
lowering the cost of data annotation and generating high-performing models with less
labeled data [28]. Furthermore, random sampling is often used as a baseline for evaluating
the contribution of active learning strategies [29,30]. Recent advances in deep active
learning have enabled the segmentation of remote sensing images using deep learning for a
variety of tasks in the remote sensing community, including land cover and land use (LULC)
mapping [29,31] and object detection [32]. Specifically, Robinson et al. (2020) proposed a
framework of human–machine collaboration for fast LULC mapping that enables users to
fine-tune the U-Net using data selected using active learning strategies in LULC mapping
and compared model performance to that of models fine-tuned using human-selected
samples [29]. Xu et al. (2020) combined hierarchical active learning and a pre-trained
Inception-v3 model to detect vehicles efficiently with fewer training samples using VHR
satellite images [32]. However, to our knowledge, little research has been conducted on the
performance of active learning in CNN-based building footprint mapping.

In addition, proposing judicious suggestions for data annotation has been proven
to be very important for reducing the effort of data annotation in image segmentation
tasks [33]. The hypothesis is that a deep active learning loop could be replaced by human–
machine hybrid intelligence when humans could understand the actively selected data [29].
Human–machine intelligence would be more practical and faster for LULC mapping in real-
world applications, compared with repeated data selection and model retraining. However,
even if active learning is capable of selecting the most informative samples for model
training, we are still unable to determine precisely what kind of image tiles require manual
labeling. Thus, it is necessary to implement landscape characterization of selected image
tiles in order to provide a figurative understanding of the landscapes preferred by CNN
models. Landscape characterization based on landscape metrics and segmentation maps
derived from remote sensing data is frequently used to quantify the landscape patterns and
provide understandable spatial characteristics for practical applications [34,35]. It often
characterizes two types of landscape patterns, compositional and configurational, referring
to the abundance of patch types and the spatial characteristics, arrangement, and context
of the patches, respectively [34]. For example, based on binary forest/non-forest maps
derived from SPOT 5 images and a series of metrics relating to the percentage, edge, shape,
and fragmentation of a landscape class, Li et al. (2016) computed metrics for forest class
to characterize the forest/non-forest landscape, and understand which forest/non-forest
landscapes contribute most to human–mosquito encounters and malaria transmission in the
Amazon forest [36]. Li et al. (2019) calculated several landscape metrics based on surface
water maps derived from Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI images to
understand the spatial and interannual variability in the area, edge, shape, aggregation, and
fragmentation of the Mediterranean Lagoon Complex surface water during 2002–2016 [37].
In addition, Jochem et al. (2021) treat the building footprints as focal patches, calculated
several landscape metrics to comprehend the morphological characteristics, (i.e., density,
size, and shape) of urban buildings, and classified the settlement types by using both
landscape metrics of buildings and clustering algorithms [2].

In this context, this study aims to propose a framework incorporating a deep active
learning loop and landscape characterization for reducing the effort, (i.e., the number of
unlabeled images) of data annotation and understanding what kind of landscape should be
annotated to attain the best performance in CNN-based building footprint mapping. This
study makes two contributions: (1) a framework integrating two state-of-the-art (SOTA)
models, U-Net and DeeplabV3+, three commonly used deep active learning strategies, (i.e.,
entropy, margin sampling, and vote entropy), and a series of landscape metrics is proposed;
(2) the proposed framework is applied on two benchmark large-scale building datasets and
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preliminary suggestions of data annotation for effective building footprint mapping are
identified for U-Net and DeeplabV3+.

The remainder of this study is organized as follows: Section 2 describes the materials
and methods, such as the proposed framework incorporating deep active learning and
landscape characterization, datasets, U-Net and DeeplabV3+, active learning strategies,
landscape metrics, and model evaluation. Section 3 presents experimental results. Section 4
discusses landscape characterization and study limitations and makes recommendations
for building footprint mapping. Section 5 summarizes the findings of this study.

2. Materials and Methods
2.1. Framework of Suggestive Data Annotation for CNN-Based Building Footprint Mapping

The framework for suggesting the data annotation in CNN-based building footprint
mapping is shown in Figure 1, which consists of two parts: deep active learning (Figure 1a)
and landscape characterization (Figure 1b). Moreover, the image tiles of a dataset should
be randomly divided into two sets: a seed set, a training set, and a validation set.

Figure 1. The framework for suggestive data annotation in CNN-based building footprint mapping.
Part (a) represents the process of deep active learning for building footprint mapping. Part (b) rep-
resents the steps of interpreting selected image tiles in each iteration by landscape characterization
and visual comparison. The dotted arrow denotes the model training in the first iteration based on
the seed set. The black arrows denote the steps in the deep active learning process. The blue arrows
denote the steps in the interpretation of selected building/non-building landscapes.

In the process of deep active learning (Figure 1a), the CNN model training is from
scratch. In the first iteration, model training is based on the seed set and evaluated based
on the validation set. Starting with the second iteration, all image tiles in the training set
are predicted using the trained model obtained in the previous iteration, and the prediction
result of each pixel in an image tile, (i.e., the probability value that a pixel is classified as
building or non-building) is scored using active learning strategies. A score is given for the
image tile by averaging the scores of pixels. The higher the score of the image tile, the more
informative the image tile is. A fixed number of image tiles with a higher score are selected
per iteration from the training set. Then, all selected image tiles were combined and used for
the next CNN model training from scratch, and the mIoU was computed on the validation
set to assess the model performance in each iteration. In this study, the experiment of deep
active learning was implemented on two Nvidia Tesla V100 GPUs, with a learning rate
of 0.1, and a batch size of 64. The experiment ended when all image tiles in the training
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set were used. In landscape characterization (Figure 1b), a series of landscape metrics are
computed based on labeled tiles selected in each iteration to comprehend the compositional
and configurational patterns of building footprints during the deep active learning process.
Then, the visual comparison among the selected images is implemented to illustrate the
typical landscapes useful for CNN-based building footprint mapping.

2.2. Dataset and Pre-Processing

This study utilized two publicly available datasets, the WHU satellite dataset II and
WHU aerial dataset. WHU satellite dataset II contains image tiles with different image
colors and data sources, various densities, areas, roof colors, shapes of buildings, and similar
building styles in East Asia cities (Figure 2a). It consists of 4038 image–label pairs, all of
which are identical in size, (i.e., 512 × 512 pixels) and spatial resolution, (i.e., 0.45 m per
pixel) [15,38]. All buildings in this dataset were completely manually identified using
ArcGIS software. We combined all image–label pairs and divided them into seed set,
(i.e., 160 tiles), training set, (i.e., 2868 tiles), and validation set, (i.e., 1010 tiles). Moreover,
160 tiles were selected in each iteration (Table 2). Moreover, WHU aerial dataset contains
the image tiles with buildings of different densities, sizes, and shapes in Christchurch, New
Zealand (Figure 2b). All buildings were generated by manually editing the building vector
data. It consists of 8189 image–label pairs with identical size, (i.e., 512 × 512 pixels) and
spatial resolution, (i.e., 0.30 m) [15,38]. We divided all image–label pairs into seed set, (i.e.,
320 tiles), training set, (i.e., 5822 tiles), and validation set, (i.e., 2047 tiles). A total of 320 tiles
were selected in each iteration (Table 2).

Figure 2. Illustration of image–label pairs in WHU satellite dataset II covering East Asia cities (a)
and WHU aerial dataset covering Christchurch, New Zealand (b). For each dataset, the first column
presents the RGB image with 512 × 512 pixels, and the second column presents the labels with white
building pixels.
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Table 2. The seed set, training set, and validation set of building datasets used in this study.

Dataset Seed Set Training Set Validation Set Tiles Selected
per Iteration

Number of
Iterations

WHU satellite dataset II 160 tiles 2868 tiles 1010 tiles 160 tiles 18
WHU aerial dataset 320 tiles 5822 tiles 2047 tiles 320 tiles 19

2.3. U-Net and DeeplabV3+ Architectures

This study used two SOTA CNN architectures in building extractions, U-Net and
DeeplabV3+, in the proposed framework (Figure 1).

U-Net has symmetric structures including encoder, decoder, and skip-connection.
Encoder and decoder have the same number of convolutional blocks, and blocks in the
same level of encoder and decoder are connected by skip-connection. Max pooling lay-
ers reduce the dimension in the encoder and upsample layers increase the dimension
in the decoder [39,40]. In our work, the upsample layers are implemented by bilinear
interpolation. Convolutional blocks in different layers extract multi-scale information,
and skip-connection transfers multi-scale information from the encoder’s block to the
decoder’s block at the same level. The structure of the U-Net used in this study is presented
in Figure 3.

Figure 3. The U-Net architecture used in this study.

DeepLabV3+ is one of the top-performing networks in semantic segmentation that
is an extension of DeeplabV3 by using an encoder and decoder structure to improve the
segmentation results [41]. It encodes multi-view information by DeepLabV3 and uses the
corresponding low-level features in the decoder (Figure 4). In this study, a lightweight Deep
Convolutional Neural Networks (DCNNs), namely MobileNetV2, was used as the backbone
of DeepLabV3. Residual blocks are also used in MobileNetV2. In DCNNS, subsampling
such as pooling and convolution is used to enlarge the receptive field and reduce the
computation. Atrous convolution and ASPP segment the image precisely by extracting
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multi-scale information at different dilation rates. In DeepLabV3+, atrous convolution
is improved as atrous separable convolution, which combines atrous convolution and
depthwise separable convolution to significantly speed up the computation. For ASPP,
the parallel modules were used to improve the performance. In the decoder, the features are
bilinearly upsampled using a factor of four and concatenated with the low-level features
derived from DCNNs. Then, several 3 × 3 convolutions are used to refine the features
followed by another simple bilinear upsampling using a factor of four.

Figure 4. The DeepLabV3+ architecture used in this study.

2.4. Active Learning and Random Selection

By incorporating the CNN model, three active learning strategies were used to iter-
atively select the informative image tiles, including margin sampling, entropy, and vote
entropy. Additionally, random sampling was used as a baseline method for evaluating
the performance of active learning strategies that were not dependent on the CNN model.
Margin sampling is an uncertainty-based technique that calculates the difference between
an image tile’s first and second-largest probability and selects the samples with the smallest
difference [42]. Entropy is another method based on the uncertainty that ranks all unla-
beled image tiles in descending order by computing Shannon’s entropy and selecting the
tiles with high entropy [42]. Vote entropy with Monte-Carlo (MC) Dropout is a query-by-
committee strategy that quantifies committee disagreement and favors samples with the
highest entropy [42].

Margin Sampling = argminx(Pθ(ŷ1|x)− Pθ(ŷ2|x)) (1)
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where ŷ1 and ŷ2 denote the labels with the first and second-largest probabilities, respectively.

Entropy = argmaxx −∑i Pθ(yi|x) ∗ ln Pθ(yi|x) (2)

where yi ranges over all possible labels of x.

Vote Entropy = argmaxx −∑i
V(yi)

C
∗ ln

V(yi)

C
(3)

V(yi) denotes the number of votes received by a label from a committee member and C
denotes the total number of committee members.

2.5. Landscape Metrics

Using the open-source Python landscape characterization library, a series of landscape
metrics was computed to better comprehend the landscape characteristics of selected tiles
in each iteration [43]. Since the images and labels in this study have a uniform size, (i.e.,
512 × 512 pixels), and the class-level landscape metrics measure the spatial pattern of the
focal class in a landscape [44], we treated each label as a landscape (Figure 1), considered
the building footprint as the focal class in the landscape, and calculated the percentage
(PERCENT), number of patches (NP), edge density (ED), and landscape shape index (LSI)
for building class. The four landscape metrics present the area, number, edge complexity,
and aggregation of buildings in the landscape, which are easily understood and visually
identified by data annotators. Then, in each iteration, we determined the average condition
of morphological features of the building class by computing these metrics for every
selected landscape, (i.e., label) and calculating the average of all values.

Based on the equation and description of landscape metrics proposed by McGarigal et al.,
(2012) [34,43], we presented the four metrics used in this study as follows:

The class-level PERCENT of building class in a landscape is calculated as follows:

PERCENTi =
1
A ∑n

i=1 ai (4)

where A is the area of the landscape, ai is the area of the patch i of building. PERCENT
ranges between 0 and 100. PERCENT approaches 0 as building pixels become rare in the
landscape and approaches 100 as the entire landscape is covered by building pixels.

The class-level NP of building class in a landscape is computed as follows:

NPi = n (5)

where n represents the total number of building patches in the landscape. NP has a greater
than 0, and there is no upper limit.

The class-level ED of building class in a landscape is computed as follows:

EDi =
E
A

(6)

where A is the area of the landscape, E represents the length of the edge between building
and non-building. ED is equal to and greater than 0, without limitation. ED is equal to 0
when all pixels are building or non-building class.

The class-level LSI of building class in a landscape is computed as follows:

LSIi =
0.25 ∑m

k=1 ei,k√
A

(7)

where A denotes the area of the landscape, ei,k represents the total edge between class
i and other classes adjacent to the building class. LSI values are greater and equal to 1,
without limit. LSI value is equal to 1 when the landscape consists of a signal building
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patch. LSI value increases without limit when the building patches become more and
more disaggregated.

2.6. Selection of Best Model per Iteration

To select the best model per iteration and understand the change in model perfor-
mance according to the increase in the number of input tiles, we evaluated the model
performance per iteration using the mean intersection over union (mIoU) [45]. For each
class, the intersection over union (IoU) refers to the ratio of intersection and union of
prediction and ground truth. The mIoU is the mean of IoU values of all classes, which was
computed as follows:

mIoU =
1

k + 1 ∑k
i=0

Pii

∑k
j=0 Pij + ∑k

j=0(Pji − pii)
(8)

where k + 1 is the total number of classes. Pii and Pij are the pixels’ number in true pixel
class i that are predicted to be in i and j, respectively. pji is the number of pixels belonging
to j that are predicted to be class i.

Based on the confusion matrix between prediction and ground truth, the mIoU could
be simplified as follows:

mIoU =
1

k + 1 ∑k
i=0

TP
FN + FP + TP

(9)

where k + 1 is the total number of classes. TP, FN, and FP represent the true positives, false
negatives, and false positives, respectively.

In this study, there are 100 epochs per iteration. We saved one trained model every
20 epochs (Figure 1) and evaluated the model performance by segmenting the image tiles of
the validation set using the saved model and computing mIoU between predicted tiles and
labels. The maximum of the five mIoU values was used to indicate the model performance
in each iteration. The mIoU values vary from 0 and 1, and the greater the mIoU value, the
better the model performance.

3. Results
3.1. Comparison of Active Learning Strategies and Baseline Model

Figure 5 presents the model performance quantified by mIoU in the iterations of
the deep active learning loop. The mIoU values based on WHU satellite dataset II are
presented in Figure 5a,b, and the mIoU values based on WHU aerial dataset are presented
in Figure 5c,d.

The mIoU value in the first iteration of each subgraph represents the performance of
the model trained based on the seed set. Based on WHU satellite dataset II (Figure 5a,b),
both models performed not badly, with a mIoU of 0.75 for U-Net and 0.65 for DeeplabV3+.
Similarly, based on WHU aerial dataset (Figure 5c,d), the mIoU values of the two models
are 0.89 and 0.75, respectively. In terms of mIoU values, CNN trained on the seed sets
provide a good initial learner for deep active learning in the next iteration.

From the second iteration, the consistent results could be observed for U-Net and
DeeplabV3+ based on the two datasets (Figure 5): (1) the mIoU value increases with the
increase in the number of labeled tiles selected via active learning and random sampling;
(2) before the last iteration, models with the three active learning strategies surpassed those
with random sampling; (3) it is impossible to determine which active learning strategy
is better for both two models; (4) in the last iteration, all image–label pairs were used,
and models with active learning strategies had the equivalent performance with those with
random sampling.



Remote Sens. 2022, 14, 3147 10 of 17

Figure 5. Comparison of active learning and random sampling based on WHU satellite dataset II
and WHU aerial dataset. (a,b) Represent the results based on WHU satellite dataset II for U-Net and
DeeplabV3+, respectively. (c,d) Represent the results based on WHU aerial dataset for U-Net and
DeeplabV3+, respectively. The x-axis and y-axis represent the number of iterations and mIoU values
in each iteration, respectively. The horizontal red dotted lines indicate one mIoU for comparing the
models with active learning and models with random sampling, and the vertical red dotted lines
indicate the number of iterations when the model performance is archived.

Although the U-Net and DeeplabV3+ learned more information while the number
of input image–label pairs increased; however, compared to random sampling, the three
active learning strategies allow the two CNN models to learn more useful information
during the process. Specifically, compared to random sampling, active learning reduced
the number of image tiles to be annotated while achieving the same model performance
(Figure 5 and Table 3). For example, based on WHU satellite dataset II, U-Net with active
learning in the sixth iteration has the equivalent performance, (i.e., mIoU of 0.83) to that
in the twelfth iteration (Figure 5a), and 960 tiles do not need to be annotated (Table 3);
DeeplabV3+ with active learning in the eighth iteration has the equivalent performance,
(i.e., mIoU of 0.80) to that in the eleventh iteration (Figure 5b), and 480 tiles do not need to
be annotated (Table 3). Moreover, based on WHU aerial dataset, U-Net with active learning
in the fourth iteration has the equivalent performance, (i.e., mIoU of 0.93) to that in the
sixth iteration (Figure 5c), and 640 tiles do not need to be annotated (Table 3); DeeplabV3+
with active learning in the eighth iteration has the equivalent performance, (i.e., mIoU of
0.90) to that in the tenth iteration (Figure 5d), and 640 tiles do not need to be annotated
(Table 3).
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Table 3. Examples of the reduced number of image tiles to be annotated.

Models WHU Satellite Dataset II WHU Aerial Dataset

U-Net
Active learning 6th iteration (160 tiles × 6) 4th iteration (320 tiles × 4)

Random sampling 12th iteration (160 tiles × 12) 6th iteration (320 tiles × 6)
Reduced number of tiles to be annotated 960 tiles (160 tiles × 6) 640 tiles (320 tiles × 2)

DeeplabV3+
Active learning 8th iteration (160 tiles × 8) 8th iteration (320 tiles × 8)

Random sampling 11th iteration (160 tiles × 11) 10th iteration (320 tiles × 10)
Reduced number of tiles to be annotated 480 tiles (160 tiles × 3) 640 tiles (320 tiles × 2)

3.2. Landscape Features of Selected Image Tiles Based on U-Net and DeeplabV3+

The CNN models were trained on the seed set in the first iteration, and the selection
of image tiles via active learning and random sampling started from the second iteration.

Figure 6 presents the landscape patterns of tiles selected actively and randomly in each
iteration from WHU satellite dataset II. For the tiles selected via active learning strategies,
mean NP, mean PERCENT, mean LSI, and mean ED have been moving downward with the
increasing number of tiles for both U-Net and DeeplabV3+ from the second iteration to the
last iteration. However, the values of landscape metrics remained largely stable throughout
the sample selection process for random sampling. This reveals that the image tiles with
more building patches, larger areas of buildings, longer edges of buildings, and more
dispersed building distribution patterns are more effective for both U-Net and DeeplabV3+
in building footprint mapping.

Figure 6. Landscape patterns of selected tiles in each iteration via three active learning strategies and
random sampling from WHU satellite dataset II. The x-axis indicates the iterations of model training.
The left y-axis indicates the value of mIoU in each iteration. The right y-axis indicates the value of the
landscape metrics computed based on selected image tiles in each iteration.
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Figure 7 presents typical examples of the selected image–label pairs from WHU
satellite dataset II in different iterations, which could provide us with a more figurative
picture of the priority in data selection via active learning. The first iteration was to build
the initial learner by training models on the seed set. Thus, among the 18 iterations in
the experiment based on WHU satellite dataset II, we display the image–label pairs from
the second iteration. To present the difference in landscape patterns more clearly, only
the examples in even-numbered iterations are presented. Clearly, image tiles with more
building patches, larger areas of buildings, longer edges of buildings, and more dispersed
building distribution patterns appeared in the first few iterations. As the number of
iterations increases, image tiles have fewer building patches.

Figure 7. Example of image–label pairs selected by active learning strategies based on U-Net (a),
DeeplabV3+ (b), and WHU satellite dataset II.

We observed similar results based on the experiment based on WHU aerial dataset.
The mean NP, mean PERCENT, mean LSI, and mean ED decreased with the increasing
number of tiles for both U-Net and DeeplabV3+ from the second iteration to the last
iteration, and the values of landscape metrics computed based on randomly selected image
tiles are relatively stable throughout the deep active learning loop (Figure 8). Among
the 19 iterations in the experiment based on WHU aerial dataset, we show the actively
selected image–label pairs in even-numbered iterations from the second iterations (Figure 9),
and similar changes in landscape patterns were observed. It should be noted that WHU
aerial dataset includes many image tiles without buildings, which often appeared in the
last few iterations, (e.g., 18th and 19th iterations), resulting in the low values of landscape
metrics (Figures 8 and 9).
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Figure 8. Landscape patterns of selected tiles in each iteration via three active learning strategies and
random sampling from WHU aerial dataset. The x-axis indicates the iterations of model training.
The left y-axis indicates the value of mIoU in each iteration. The right y-axis indicates the value of the
landscape metrics computed based on selected image tiles in each iteration.

Figure 9. Example of image–label pairs selected by active learning strategies based on U-Net (a),
DeeplabV3+ (b), and WHU aerial dataset.
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4. Discussion

This study proposed an easily interpretable framework incorporating a deep active
learning loop and landscape characterization that could be used for reducing the number
of unlabeled images to be annotated and understanding what kind of labeled image tiles
are advantageous for CNN-based building footprint mapping in real-world applications.
In this study, two SOTA CNN architectures, DeeplabV3+ with MobileNet backbone and U-
Net, were used. Each of them was integrated with three active learning strategies to create
its own deep active learning process. In terms of landscape characterization, four class-level
landscape metrics related to the number, area, edge, and aggregation of building patches
were considered; these metrics provide a more graphic interpretation for “informative”
image tiles chosen by deep active learning that might benefit the manual data annotation
in practice.

Based on the experiments on WHU satellite dataset II and WHU aerial dataset, we
found the tiles with greater values in PERCENT, NP, ED, and LSI were selected with
preference by both U-Net and DeeplabV3+ (Figures 6 and 8). In other words, when selecting
image tiles for data annotation based on visual interpretation, special consideration should
be given to image tiles with more buildings, larger areas of buildings, longer edges between
buildings and other landscape factors, and more dispersed spatial distribution of buildings
(Figures 7 and 9). These tiles might contain more information on the contact between a
building and other landscape factors, such as a building and vegetation or a building and
a road, enabling the model to learn the various information about buildings and other
landscape factors more quickly.

It should be noted that there are many types of landscape metrics, (e.g., area, edge,
shape, core area, contrast, and aggregation) and three levels for landscape metric compu-
tation, (i.e., patch, class, and landscape levels) [34,46,47]. In our study, we subjectively
selected four class-level metrics characterizing the area, number, edge, and aggregation
of building patches that are easily interpretable for data labelers. Moreover, several of
the metrics are correlated with each other. Dimensionality reduction techniques, such
as principal component analysis (PCA), cluster analysis, and the correlation test, should
be used to examine the correlation between certain metrics while many metrics are used
together [37,48,49].

The two representative benchmark building datasets used in this study could explain
to some extent the feasibility of the proposed framework and suggestions for data annota-
tion in CNN-based building footprint mapping. First, WHU satellite dataset II derived from
different data sources covers several cities and diverse landscapes in a large geographic
region in East Asia, (i.e., 860 km2), which is often used to assess the generalization ability of
newly proposed models in practical applications, especially large-scale building footprint
mapping [15,50]. WHU aerial dataset cover 450 km2 in Christchurch, the second-largest city
in New Zealand [15], consisting of different urban LULC types, (e.g., urban and suburban
areas, residential areas, industrial areas, and commercial areas), which is an ideal dataset to
assess the robustness of newly proposed models [50]. Second, the two building datasets
have the close spatial resolution, (i.e., 0.45 m and 0.3 m), and the same size of tiles, (i.e.,
512 × 512 pixels) (Table 1), and the similar data splitting was used for the two experiments,
(i.e., 4% of tiles for the seed set, 4% of titles for the selection per iteration from the training
set, and 25% of titles for the validation set) (Table 2). These facts allow the results of
experiments to be compared and summarized. Thirdly, sufficient image tiles in the training
set, (i.e., 2868 tiles for WHU satellite dataset II and 5822 tiles for WHU aerial dataset) ensure
many iterations, (i.e., 18 iterations and 19 iterations for the two experiments, respectively),
(Table 2). The dynamics in model performance are fully represented in the process of deep
active learning, (i.e., the increase in model performance becomes progressively slower
during the deep active learning loop) (Figure 5).

However, future building footprint mapping via CNN-based VHR image segmen-
tation should apply the results and interpretation obtained in this study with caution.
The modifiable areal unit problem (MAUP), referring to how the pixel size of input data
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and landscape extent affect the values of landscape metrics, make the interpretation of
landscape metrics quite challenging [46,49]. In our study, the results were obtained based
on the datasets with close spatial resolutions, (i.e.,0.45 m and 0.30 m) and a fixed landscape
extent, (i.e., 512 × 512 pixels). However, in real-world applications, despite the use of VHR
satellite images, different spatial resolutions, (e.g., 0.075 m) and different sizes of input
image tiles, (e.g., 128× 128, 256× 256, 650× 650, 1204× 1024) are required to handle build-
ings of varying scales in different study areas [51], and the obtained suggestions for data
annotation might not be suitable. In addition, other open-source benchmark datasets can
be used to query or confirm our proposed framework and results, especially the datasets
containing different cities in different countries, such as SpaceNet 1 and 2 (Table 1).

While this study demonstrates that active learning can reduce the effort of data annota-
tion in CNN-based building footprint mapping and that class-level landscape metrics assist
in understanding the landscape characteristics of the image tiles selected during the deep
active learning process, there are still some limitations. To begin with, this study examined
three widely used active learning algorithms and discovered that there is no statistically
significant difference between them in terms of minimizing data annotation costs and
selecting landscape features. Other query tactics, such as diversity-based strategies [42] and
hybrid active learning [52], could be incorporated into the proposed framework, potentially
providing new insight into the models’ preference for landscape characterization. Second,
while the existing procedure can assist us in determining the type of image tiles to label,
the iterative framework requires additional time spent reviewing data and training models.
In real-world applications, one-shot active learning may be more practical than iterative
learning [53]. Thirdly, our results may enhance CNN-based building footprint mapping on
VHR datasets with similar building characteristics. Experiments based on other datasets
with different building styles, (e.g., residential, educational, industrial, and business), sizes,
(e.g., small, medium, and large), and shapes, (e.g., round, rectangle, and irregular) should
be performed to explore more general conclusion.

5. Conclusions

This study conducted preliminary tests on deep active learning and landscape charac-
terization to quantify the performance of active learning strategies in reducing the effort
of data annotation and to better understand the landscape features prioritized by deep
learning models in CNN-based building footprint mapping. The study findings suggest
that deep active learning can be integrated into building footprint mapping, with image
tiles containing more buildings, larger building areas, and disaggregated buildings being
prioritized during the deep active learning process. Our findings suggest that it is possible
to reduce the efforts of data annotation in future CNN-based building footprint mapping
using a simple manner, the preliminary visual screening of unlabeled image tiles based on
our findings. It also inspires us to explore the landscape features preferred by models in
other CNN-based thematic mappings, especially the large-scale thematic land use mapping.
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