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Abstract: In recent years, an exceptional number of record-shattering temperature extremes have
been observed, resulting in significant societal and environmental impacts. The Mediterranean region
is particularly thermally vulnerable, frequently suffering from intense and severe heatwaves. Using
daily temperature observations from 58 weather stations (NOAA Global Historical Climatology
Network daily database) in the Mediterranean area, past heatwave episodes were initially detected.
A daily LST time series was developed using Land Surface Temperature (LST) products from Moder-
ate Resolution Imaging Spectroradiometer (MODIS) (Terra & Aqua satellites) for a 19-year period
(2002–2020) at the station locations. LST anomalies were identified using percentile-based indices. It
was found that remotely sensed-based LST presents the potential for understanding and monitoring
heatwave events, as surface thermal anomalies were generally indicative of heatwaves. Approx-
imately 42% (39%) of heatwave days during daytime (nighttime) coincided with LST anomalies;
conversely, 51% of daytime LST anomalies overlapped with the exact days of a heatwave (38% at
night). Importantly, the degree of association was significantly higher for extremely hot days (up to
an 80% match) and long-lasting heatwaves (up to an 85% match). Rising trends in frequency and
duration were observed for both heatwaves and LST anomalies. The results advance the understand-
ing of surface-atmosphere coupling during extreme temperature days and reflect the suitability of
thermal remote sensing in heatwave preparedness strategies.

Keywords: heatwaves; land surface temperature; MODIS

1. Introduction

A series of historically unprecedented heat extremes have occurred globally in the most
recent decades. These extremes, such as the 2003 European [1], 2010 Russian [2], and 2021
Western North America [3] heatwaves, have broken long-standing observational records by
large margins [4,5]. Observed trends and climate model projections suggest a progressive
intensification and an increasing occurrence of extreme heat events over the course of
the 21st century [6–8]. Heatwaves have severe impacts on a wide range of societal and
economic sectors. For instance, they have been linked to increased mortality rates [9–11],
reduced gross primary production [12], further imposed stress on animal populations and
ecosystems [13], and a higher probability of energy infrastructure failures [14].

The abundance of different heatwave indices and metrics in the literature [8,15–21]
is indicative that a univocal definition of the “heatwave event” does not exist. Notwith-
standing the lack of a common definition, most studies consider a heatwave to be
a prolonged period where conditions are unusually hotter than normal [22]. That is,
a heatwave is typically detected when air temperature (daily maximum, minimum, or
average) exceeds a prescribed threshold (fixed or percentile-based) for a number of
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consecutive days. Perkins & Alexander (2013) [19] took a critical look at a wide range of
heatwave indices and proposed a general and rigorous framework to define and charac-
terize heatwave episodes. This framework enables the use of consistent and universally
applicable heatwave metrics across locations and impact sectors [23].

Heatwave episodes in southern Europe are typically associated with the presence of
an anticyclonic synoptic system at the surface, extending vertically into the atmosphere.
These high-pressure areas (commonly blocking or persistent highs) are connected to the
meandering of the jet stream; warm air is advected to the region and clear skies prevail,
while cooler air from the poleward side cannot mix with the hotter equatorial side [24,25].
Additionally, adiabatic warming by subsidence—entrainment of warm air into the lower
troposphere—has been found crucial in the Mediterranean in determining high near-
surface temperatures [26].

Heatwaves are typically identified using in-situ near-surface air temperature (Tair)
from standard weather station measurements; Tair is measured by a sheltered thermometer
at 1.5–2 m above the ground level [27]. The inequitable global distribution of weather
stations is, however, a drawback regarding ground-based Tair observations. Therefore, to
allow continuous spatial coverage, gridded global datasets (e.g., HadCRUT5) or reanalysis
products (e.g., ERA5) have often been used to analyze heatwave trends or metrics [28–30].

Spaced-based observations of Land Surface Temperature (LST) present several strengths,
e.g., in resolution, coverage, and consistency [27], which can provide important insights into
extreme climatic events [31]. LST—also referred to as directional radiometric temperature or
skin temperature [32,33]—is the temperature of the top few micrometers of the bare ground
or the surface of the vegetation canopy [34]. Satellite-based thermal sensors measure the
emission of radiation in the thermal infrared (TIR) from all source areas in its field of
view; LST is retrieved after correcting TIR measurements for the effects of atmospheric
attenuation and surface emissivity [35,36]. LST is the driving force behind turbulent heat
and water exchanges at the surface-atmosphere interface, providing information on the
physical processes of land cover and energy balance changes [31]. It is a direct measure of
land surface conditions and dynamics, closer than Tair to the biophysical characteristics of
the surface [31,36,37].

LST can capture local-scale and biophysical variations at the surface that directly affect
the overlying air; however, it cannot be used as a surrogate of Tair [34]. That is, while LST
largely exhibits a strong correlation with Tair, they may significantly differ in magnitude
and temporal behavior [38], especially during daytime when LST presents high spatial
variability due to its sensitivity to solar radiation [27,37]. Additionally, LST appears to
become more decoupled from Tair with increasing temperature [38]. Hence, spatial and
temporal inconsistencies between LST and Tair suggest that the association of LST extremes
with (station-based) heatwave events may not be straightforward. Most previous studies,
nevertheless, have directly used LST to assess surface thermal patterns given a specific
heatwave event [39–46].

On the contrary, less attention has been paid to evaluating the correspondence be-
tween LST thermal anomalies and heatwaves, namely, to investigate whether high LST
values could be indicative of heatwave events and vice versa. Mildrexler et al. (2018) [31]
observed close agreement between annual maximum LST anomalies and major heatwave
events. Albright et al. (2011) [47] assessed whether positive LST or Tair anomalies are
correlated more strongly with avian community structure. Cotlier & Jimenez (2022) [40]
examined multi-year LST time series for 28 urban areas in North America and found
that historical maximum LSTs coincide with the 2021 Western North America heatwave.
In all three previous studies, the 8-day average Moderate Resolution Imaging Spectro-
radiometer (MODIS) LST product was used. Therefore, analysis was mostly limited to
long-lasting heatwaves, as shorter-term extreme events were likely muted by the multi-day
composite LST [31].
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This study aims to conduct an extensive assessment of the similarity between LST
thermal anomalies and heatwaves, the latter recognized with the use of ground-based
measurements. The analysis focuses on the Mediterranean basin, where heatwaves are
a frequent and severe phenomenon [48,49], which is projected to increase recurrence,
intensity, and persistence in the coming decades [50,51]. Using long-term daily MODIS
LST time series (2002–2020), it is investigated how well LST exceedances match heatwaves
on a day-to-day and event-based basis. The alignment between detected events is further
explored in climatology and trends; optimal LST-based indices are finally identified.

2. Materials and Methods
2.1. Weather Station Observations

Daily maximum temperature (Tmax) data (years 1981–2020) were obtained from the
Global Historical Climatology Network daily (GHCNd) database, maintained by the Na-
tional Oceanic and Atmospheric Administration (NOAA) [52]. GHCNd contains daily
meteorological measurements from numerous sources (over 80,000 stations worldwide) that
have been merged and subjected to common quality control. A subset of the database was
used, selecting the stations located within the Mediterranean region (30◦N to 45◦N, 10◦W to
40◦E) (red rectangle in Figure 1); the area boundaries used here follow the reference regions
of the Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change
(IPCC). Stations were further filtered depending on their data completeness throughout
the study. Specifically, for the time series of each station, a year was discarded when
more than 10% of daily values were missing during the summer season (June to August).
Subsequently, stations with less than 25 years in the historical base period (1981–2010) or
less than 5 years in the Aqua/MODIS temporal extent period (2002–2020) were excluded
from the analysis. To avoid using MODIS pixels with high water fractions, stations close to
the shoreline were not included (<1.5 km distance). It was also required that stations did
not exhibit major land cover changes during the study period (i.e., from a vegetated type to
urban/bare soil or vice versa). The land cover type of the stations was derived using the
MODIS Land Cover Type Version 6 product (MCD12Q1) which provides global land cover
types at yearly intervals (2001–2020) at a 500-m resolution [53]; the MODIS International
Geosphere-Biosphere Programme (IGBP) scheme was selected. 58 GHCNd stations in the
Mediterranean region satisfied the above criteria and were included in this study. The
spatial distribution of these weather stations can be seen in Figure 1; a full listing of the
stations is given in Appendix A (Table A1). The 20-year modal IGBP land cover value
was assigned to each station. The majority of the stations were classified as urban (40%);
grasslands (17%), croplands (15%), and savannas (12%) were also frequent land cover types
in the study area.

Remote Sens. 2022, 14, 3139 3 of 18 
 

 

This study aims to conduct an extensive assessment of the similarity between LST 

thermal anomalies and heatwaves, the latter recognized with the use of ground-based 

measurements. The analysis focuses on the Mediterranean basin, where heatwaves are a 

frequent and severe phenomenon [48,49], which is projected to increase recurrence, inten-

sity, and persistence in the coming decades [50,51]. Using long-term daily MODIS LST 

time series (2002–2020), it is investigated how well LST exceedances match heatwaves on 

a day-to-day and event-based basis. The alignment between detected events is further ex-

plored in climatology and trends; optimal LST-based indices are finally identified. 

2. Materials and Methods 

2.1. Weather Station Observations 

Daily maximum temperature (Tmax) data (years 1981–2020) were obtained from the 

Global Historical Climatology Network daily (GHCNd) database, maintained by the Na-

tional Oceanic and Atmospheric Administration (NOAA) [52]. GHCNd contains daily 

meteorological measurements from numerous sources (over 80,000 stations worldwide) 

that have been merged and subjected to common quality control. A subset of the database 

was used, selecting the stations located within the Mediterranean region (30°N to 45°N, 

10°W to 40°E) (red rectangle in Figure 1); the area boundaries used here follow the refer-

ence regions of the Sixth Assessment Report (AR6) of the Intergovernmental Panel on Cli-

mate Change (IPCC). Stations were further filtered depending on their data completeness 

throughout the study. Specifically, for the time series of each station, a year was discarded 

when more than 10% of daily values were missing during the summer season (June to 

August). Subsequently, stations with less than 25 years in the historical base period (1981–

2010) or less than 5 years in the Aqua/MODIS temporal extent period (2002–2020) were 

excluded from the analysis. To avoid using MODIS pixels with high water fractions, sta-

tions close to the shoreline were not included (<1.5 km distance). It was also required that 

stations did not exhibit major land cover changes during the study period (i.e., from a 

vegetated type to urban/bare soil or vice versa). The land cover type of the stations was 

derived using the MODIS Land Cover Type Version 6 product (MCD12Q1) which pro-

vides global land cover types at yearly intervals (2001–2020) at a 500-m resolution [53]; the 

MODIS International Geosphere-Biosphere Programme (IGBP) scheme was selected. 58 

GHCNd stations in the Mediterranean region satisfied the above criteria and were in-

cluded in this study. The spatial distribution of these weather stations can be seen in Fig-

ure 1; a full listing of the stations is given in Appendix A (Table A1). The 20-year modal 

IGBP land cover value was assigned to each station. The majority of the stations were 

classified as urban (40%); grasslands (17%), croplands (15%), and savannas (12%) were 

also frequent land cover types in the study area. 

 

Figure 1. Locations of the 58 weather stations (in purple) from the GHCNd dataset were used in this 

study. 

Figure 1. Locations of the 58 weather stations (in purple) from the GHCNd dataset were used in
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Remote Sens. 2022, 14, 3139 4 of 17

2.2. Satellite-Based Measurements

The MODIS Terra/Aqua Land Surface Temperature/Emissivity (LST&E) Daily dataset
was used (MOD11A1 & MYD11A1 Version 6.1 products). It provides daily (daytime
and nighttime) per-pixel LST, which is retrieved using a generalized split-window (GSW)
algorithm for the thermal bands 31 and 32 (at 11 and 12 µm) [54]. The coefficients of the
GSW depend on the viewing zenith angle, air temperature, and atmospheric column water
vapor [55]; detailed retrieval refinements have been introduced for bare soil surfaces since
Collection 6 [56]. Version 6.1 products have been further improved by undergoing various
calibration changes. Emissivity values for bands 31 and 32 are assumed known and are
assigned a priori based on a land cover classification approach [55,57]. Collection 6 MODIS
LST has been extensively validated and is considered to provide consistent and highly
accurate LST estimates [58,59].

Complete MODIS LST time series were extracted at the corresponding pixels matching
the geographic coordinates of the meteorological stations from Section 2.1. Using the quality
assurance band of the products, “good data quality” pixel values with estimated emissivity
error ≤ 0.04 and LST error ≤ 2 K were used. Terra/MODIS dataset was subset temporally
to match the coverage of Aqua/MODIS; i.e., the timespan considered in this study for
remotely sensed data was from 4 July 2002 to 31 August 2020. The Terra satellite’s daytime
overpass time in the Mediterranean region is 09–11 UTC for daytime and 20–22 UTC for
nighttime; Aqua has overpass times at about 11–13 UTC and 00–02 UTC.

2.3. Heatwaves

The CTX90pct and CTN90pct heatwave definitions [19] were employed to detect
Mediterranean heatwaves from 2002–2020. According to CTX90pct, a heatwave is detected
when 3 or more consecutive days are above the climatologic 90th percentile of Tmax;
CTN90pct follows the same approach as CTX90pct using Tmin instead. The 90th percentile
thresholds are defined independently for each calendar day based on a 15-day moving
window (centered on a specific day) of daily Tmax (CTX90pct) and Tmin (CTN90pct) values
over the base period 1981–2010 [30]. Each heatwave episode was described by the start
date, the duration, and the average daily Tmax (Tmin). Additionally, the following annual
heatwave metrics were computed: (i) the annual number of heatwave episodes (HWN),
(ii) the sum of heatwave days per year (HWF), and iii) the length (in days) of the longest
heatwave per year (HWD) [19]. The normalized heatwave magnitude was computed as the
anomaly of the mean Tmax (Tmin) of a given heatwave against the respective summertime
mean Tmax or Tmin [19]. Only heatwave events during the summer season (June-August)
were included in the analysis.

2.4. LST Anomalies

This paper aims to assess the degree of alignment between heatwaves and LST thermal
anomalies. Generally, thermal anomalies reflect a departure of the surface from a baseline
condition [31,47]. Here the focus is not only on single (1 day) threshold anomalies but also
on anomalies that persist for a number of consecutive days. Thus, LST anomaly events
were detected using an approach resembling the heatwave definition in Section 2.3 and
similar frameworks used to analyze marine heatwaves (MHWs) [23] or evapotranspiration
anomalies [60].

MODIS LST retrievals are affected by the varying satellite overpass time over a given
study area—also linked to the sensor viewing angle—; representative examples of this
dependence are given in Figure 2. To account for these day-to-day variations, the daily
LST observations for each station were initially grouped in non-overlapping quarter-hour
intervals (using the corresponding time of the observation band of the products) that were
treated independently in all next steps. Then, daily LST anomalies were computed by
subtracting a 19-year (2002–2020) nth percentile value, estimated using a 15-day moving
window. Several different percentiles (i.e., different LST anomaly indices) were evaluated,
ranging from the 65th to the 95th percentile. Using a percentile-based instead of a standard
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deviation-based threshold has the benefit that no assumption is required regarding the
underlying distribution of anomalies [23]. It was considered both the case of single-day
LST anomalies and the requirement of a minimum number of consecutive days that the
threshold should be exceeded. Given the frequent data gaps in LST time series (e.g., due
to clouds or low-quality pixel values), a joint Terra and Aqua approach was also assessed
where the daily anomaly threshold could be crossed by either platform. For simplicity,
hereafter, we refer to the derived LST anomaly indices simply as LST anomalies.
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Figure 2. Mean daytime MODIS LST (Aqua, MYD11A1) (June–August 2002–2020) as a function of
the local overpass time (in UTC) for the locations of GHCNd stations (a) SP000008410 (Cordoba,
Spain), (b) IT000016239 (Rome, Italy), and (c) TU000017375 (Finike, Turkey).

Finally, the coincidence rate between LST anomalies and heatwave episodes was
derived. Namely, the match percentage between the two datasets was computed, defined
as the percent of heatwaves (both as discrete events and as individual days) that were also
identified as LST anomalies.

3. Results

To reliably assess which definitions of LST anomalies used in this study show a greater
match with heatwave events, they were initially evaluated in terms of their overall system-
atic differences with heatwaves in climatology. Table 1 shows the average annual sum of
heatwave days (HWF) across the area for site-based heatwaves and for the LST anomalies
for which the climatology is best captured (the 10 anomalies with the smallest systematic
biases). For the anomalies presented in this table and throughout the text, the naming
convention followed is: “MxD_Pxx_Dx” where MxD denotes the platform (MOD: Terra;
MYD: Aqua; MXD: joint case), Pxx the percentile used, and Dx the required minimum
duration of a discrete event in days. As can be seen, anomalies using the joint Terra and
Aqua approach (MXD_P85_D3, MXD_P90_D2, and MXD_P95_D1) reproduced with small
discrepancies and more consistently for daytime and nighttime the climatology of extreme
temperature days in the region. LST anomalies that were derived using only Terra or Aqua
did not perform adequately for either daytime or nighttime cases. Interestingly, Aqua,
albeit more temporally coincident with daily maximum LSTs, exhibited a weaker perfor-
mance than Terra. For a few cases, the percentile values for LST anomalies in Table 1 were
lower than the 90th percentile of the heatwave definition, which can be largely attributed to
the different base periods used for LST anomalies (2002–2020) and heatwaves (1981–2010).
Overall, the indices MXD_P85_D3, MXD_P90_D2, and MXD_P95_D1 presented a better
and more consistent alignment with heatwaves for the whole region and were used in the
following sections of the study. One should note that the values of the proposed percentile
thresholds are dependent on the choice of the base period for heatwaves (1981–2010).
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Table 1. Mean annual frequencies (number of days, HWF) of heatwaves (CTX90pct & CTN90pct; in
italic font) and LST anomaly days (the 10 best performing indices are shown).

Daytime Nighttime

Heatwaves 7.2 6.7
MOD_P70_D3 9.1 6.7
MOD_P75_D3 7.1 5.0
MOD_P80_D2 8.3 6.4
MXD_P85_D3 6.1 6.8
MOD_P90_D1 6.9 5.8
MYD_P90_D1 6.2 6.0
MXD_P90_D2 6.0 6.7
MXD_P95_D1 6.2 6.3

The degree that the identified events align in terms of climatology and trends can
further be seen in Figure 3a–d, which presents annual (summer season) metrics (number of
events and days) for heatwaves and LST anomalies (MXD_P85_D3). It is evident that the
derived LST anomalies largely follow the aggregate climatology of the region with a strong
agreement on a year-to-year basis. Notable extremes, such as the 2003 European heatwave,
are also well reproduced. Additionally, the average length of the longest event per year
(Figure 3e,f) shows coherence between LST and Tair, except for a slight overestimation for
MXD_P85_D3 in a few of the years. For both heatwaves and LST anomalies, statistically
significant (p < 0.05) rising heatwave metric trends were observed, indicating that extreme
hot days are becoming more frequent and persistent. For daytime (nighttime), heatwaves
exhibit increasing trends of 1.65 (1.52) days/dec in frequency between 2002 and 2020;
LST anomalies increased at a similar rate, 1.35 days/dec for daytime and 1.64 days/dec
for nighttime. It is worth noting that the rising trends and the alignment between the
two approaches were quite robust regarding the choice of the base period for heatwave
detection. As expected, however, the computed values for trends are shaped by the base
periods; e.g., computing heatwaves using the reference period 2002–2020, a statistically
significant positive trend for HWF of 0.92 (0.75) days/dec for daytime (nighttime) was found.
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Figure 3. Timeseries of HWN (a,b), HWF (c,d), and HWD (e,f) for summer heatwaves (CTX90pct
and CTN90pct) and LST anomalies (MXD_P85_D3) in the Mediterranean region (2002–2020); dashed
lines represent trends.

In Table 2, the match percentage between heatwaves and LST anomalies (using the
three best performing cases of Table 1) is given. The match for events corresponds to the
percent of heatwave events that overlapped with an LST anomaly for each location (only
shown for LST anomalies with the same minimum duration as heatwaves); for the case
of days, the match shows the percent of exact heatwave days that were also identified
as LST anomalies. In summary, ≈40% of heatwave days coincided with LST anomaly
days during daytime and ≈37% during nighttime; small differences were found among
the examined LST anomaly definitions. It was observed that 48% of heatwave episodes
co-occurred with an MXD_P85_D3 surface anomaly for at least a single day. Conversely, as
presented in Table 3, 48% of days with an LST anomaly overlapped with the exact days
of a heatwave during the daytime (38% at night). The similarity of heatwave events that
coincided with an LST anomaly was further assessed concerning the heatwave magnitude
(Figures 4 and 5). In these figures, the lowess (locally weighted scatterplot smoothing)
non-parametric regression [61] was used to determine the best-fitting line. As shown, the
match percentage tends to distinctively increase with increasing intensity; when focusing
on the more extreme episodes, the match for days presented a notable rise, up to 80% for
daytime and 70% for nighttime. Coincidence rates exhibited less variability when examined
by the land cover type of the meteorological stations (Figure 6). It was found that land
cover did not show as large of an association with MXD_P85_D3 performance; moreover,
no systematic bias was observed for the cases of weaker agreement (i.e., open shrublands
during daytime and urban during nighttime). It was observed that the choice of the base
period for the heatwave detection did not generally affect the results of Tables 2 and 3
and Figures 4–6, as repeating the analysis using the 1961–1990 period (and subsequently
different percentiles for the LST anomalies) led to similar findings.

Next, the match percentage of the exact days identified both as heatwaves and LST
anomalies was assessed as a function of the number of days since the start of a given
heatwave episode (Figures 7 and 8). As shown, the first days of a heatwave were found to
broadly have a weaker agreement with LST anomalies. As the heatwave progresses, the
match percentage tends to increase—over 80% and 75% for daytime and nighttime—for
long-lasting heatwaves with a duration of over 10 days. Interestingly, daytime LST was
found to have generally higher values as heatwave events evolved (Figures 9a and 10a).
A much weaker control of the days since the start of an episode on nocturnal LSTs is shown
in Figures 9b and 10b. The general associations for match percentage and LST anomalies
depicted in Figures 7–10 were found to be consistent also for different heatwave base
periods (1961–1990).
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Table 2. Overall match percentage corresponding to the percent of heatwave events and days that
coincide with LST anomalies.

Daytime Nighttime

Events (%) Days (%) Events (%) Days (%)

MXD_P85_D3 47.2 41.6 48.6 39.1
MXD_P90_D2 – 40.9 – 38.6
MXD_P95_D1 – 37.3 – 34.2

Table 3. Overall match percentage corresponding to the percent of LST anomalies events and days
that coincide with heatwaves.

Daytime Nighttime

Events (%) Days (%) Events (%) Days (%)

MXD_P85_D3 55.8 51.0 45.2 38.2
MXD_P90_D2 – 49.4 – 38.3
MXD_P95_D1 – 43.2 – 35.5
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Figure 10. As in Figure 9, for Aqua/MODIS (MYD11A1).

In Figure 11, LST anomalies (MXD_P85_D3) are shown for selected heatwaves in the
Mediterranean. Namely, (a) the 2003 heatwave in Central Europe [1,25] (Figure 11a), (b) the
2006 heatwave in France [62] (Figure 11b), (c) the 2007 heatwave in the Balkans [8,63]
(Figure 11c), and (d) the 2019 heatwave in Central Europe [64] (Figure 11d) were in-
cluded. As can be seen, the LST-based approach of this study presented a strong alignment
with station-based heatwave events of these case studies. The necessity of joint use of
Terra/Aqua due to discontinuities in LST retrievals is also highlighted. It is worth noting
that high LSTs persisted between the two discrete 2007 heatwaves (Figure 11c), poten-
tially influencing the initiation of the second event. Figure 11d shows a representative
case where LST progressively increases as the heatwave evolves, shown on aggregate in
Figures 9a and 10a.
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Figure 11. LST anomalies during selected heatwaves in the Mediterranean. (a) the 2003 heatwave
in Central Europe (FRE00104112; Embrun, France), (b) the 2006 heatwave in France (FRE00104907;
Montélimar, France), (c) the 2007 heatwave in the Balkans (ROE00108893; Craiova, Romania), and
(d) the 2019 heatwave in Central Europe (SPE00120350; Pamplona, Spain). Shaded areas indicate
the dates under a heatwave episode (CTX90pct). The red line corresponds to Terra/MODIS and the
purple line to Aqua/MODIS.
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4. Conclusions

LST has been widely employed in the literature to describe heatwave episodes; how-
ever, relatively little is known about whether anomalously high LST and heatwaves co-occur
spatially and temporally. In this paper, it was demonstrated that using the proposed LST
index (MXD_P85_D3), during the daytime, on average 42% percent of Mediterranean
heatwave days and 47% of heatwave events coincided with LST anomalies (Table 2).
Conversely, 51% of daytime LST anomalies days aligned with a heatwave day (Table 3).
Nighttime agreement was generally slightly weaker. The observed match percentages are
considered relatively high when considering the difference in terms of magnitude, diurnal
fluctuation, and response to atmospheric conditions of LST and Tair [27]. For comparison,
Sheridan et al. (2020) [65] assessed station and reanalysis-based extreme heat events and
found a coincidence rate of 57.5% to 72%, depending on the reanalysis product. Moreover,
a stronger co-occurrence was obtained here for the higher intensity heatwave episodes,
up to an 80% match percentage (Figures 4 and 5). This agrees with the findings of
Mildrexler et al. (2018) [31], where LSTmax anomalies and extreme climatic events were
assessed. In future work, a larger number of examined locations across climate types is
warranted to evaluate further whether the best performing LST anomalies and the observed
coincidence rates are robust. Moreover, while the match percentage was not driven by land
cover in the current work, the association of LST during extreme hot days with land cover
warrants further investigation in more detail and on a global scale. This may lead to the
identification of areas in which heatwave does not severely impact LST; or, conversely, to
use LST as an indicator of the heatwave intensity.

It was also observed that the co-occurrence of heatwaves and LST anomalies tends to
be significantly higher (up to an 80% match) as the heatwave progresses (Figures 7 and 8).
An interpretation of the above relation can be given by considering the physical processes
behind the initiation and the evolution of a heatwave. Typically, prevailing synoptic
patterns are critical for the occurrence of an extreme event [25]. Given the high atmospheric
demand for water during a heatwave, soil desiccation intensifies, surface evaporation
progressively drops, and a larger proportion of incoming solar radiation is used to warm
up the surface [66]. Moreover, land-atmospheric feedbacks increasingly strengthen; the
diurnal convection is intensified, and heat is stored in a deep warm nocturnal residual layer,
whereby accumulated heat re-enters the mixed layer in the following days [25]. This land-
atmospheric coupling during heatwaves has been previously studied using soil moisture
observations [25,66–68]; in this work, this LST-Tair coupling was indicated through the
progressively higher association between LST anomalies and heatwaves. Daytime LST
anomalies tended to increase as the heatwave progresses (Figures 9a and 10a), which
may be dictated by soil desiccation and the multi-day heat storage; nevertheless, further
investigation is warranted as high uncertainty was observed.

While remotely sensed observations provide spatially exhaustive coverage, MODIS
LST spatial resolution may not reflect smaller-scale physical processes that shape the
corresponding ground-based air temperature. That is, MODIS footprints (1 km × 1 km)
cover a non-homogeneous area, potentially including several land-cover types. Finer scale
thermal sensors (e.g., Landsat Thermal Infrared Sensor (TIRS) or ECOSTRESS) cannot
provide the repetitive imaging that heatwave episodes require due to their infrequent
sampling times. Using a thermal sharpening technique [69] to produce spatially and
temporally detailed imagery could improve the alignment between heatwaves and LST
anomalies. It is worth noting that the MODIS LST products (MOD11A1 and MYD11A1)
used in this study retrieve LST using a classification-based emissivity assignment; this is
relatively prone to dynamic errors that may occur after natural surface changes, such as the
depletion of soil moisture during a heatwave. The more recent MOD21A1 and MYD21A1
products use the Temperature Emissivity Separation (TES) algorithm, which dynamically
retrieves LST and emissivity from three thermal bands [70] and subsequently, in theory,
might be better suited for the case of extreme climatic conditions. Nevertheless, it was
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found that these products had time series with significantly larger discontinuities due to
TES convergence issues and hence were not included in the analysis.

In this study, the long-term association between heatwaves and MODIS LST anomalies
was examined in the Mediterranean region. A wide range of LST anomaly definitions were
evaluated; it was found that the joint Terra and Aqua approach resulted in more consistent
indices that can be used both during daytime and nighttime. It was demonstrated that LST
anomalies could reproduce the overall climatology of the region and are significantly indica-
tive of heatwaves, especially those of higher intensity. The observed higher coincidence rate
as heatwave events evolve reflects the physical processes underlying the more persistent
heatwaves (land-atmosphere positive feedback). Overall, results support the case that
satellite monitoring can provide important insights in areas with sparse weather-station
coverage and assist in heat mitigation strategies.
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Appendix A

Table A1. Full list of the 58 weather stations from the GHCNd dataset used in this study.

Code Name Country Lat. Lon. Elevation Land Cover 1

BKM00014654 Sarajevo Bosnia and
Herzegovina 43.868 18.423 630 13

FR000007630 Toulouse-Blagnac France 43.621 1.379 151 10
FR000007747 Perpignan France 42.737 2.873 42 13
FRE00104112 Embrun France 44.566 6.502 871 13
FRE00104116 Tarbes-Ossun France 43.188 0 360 14
FRE00104124 Bastia France 42.541 9.485 10 10
FRE00104907 Montelimar France 44.581 4.733 73 13
FRE00106203 Mont-De-Marsan France 43.909 0.500 59 12
FRE00106205 St-Girons France 43.005 1.107 414 9
FRM00007535 Gourdon France 44.745 1.397 260 9
GR000016716 Hellinikon Greece 37.9 23.75 10 13
HRE00105217 Split Marjan Croatia 43.517 16.433 122 13
IT000016239 Roma Ciampino Italy 41.783 12.583 105 12
IT000016320 Brindisi Italy 40.633 17.933 10 13
IT000162240 Vigna Di Valle Italy 42.083 12.217 266 11
IT000162580 Monte S. Angelo Italy 41.7 15.95 844 10
PO000008535 Lisboa Geofisica Portugal 38.717 −9.15 77 13
RIE00100814 Nis Serbia 43.333 21.9 201 13

https://www.ncei.noaa.gov/data/global-historical-climatology-network-daily/archive/
https://www.ncei.noaa.gov/data/global-historical-climatology-network-daily/archive/
https://appeears.earthdatacloud.nasa.gov/
https://appeears.earthdatacloud.nasa.gov/
https://code.earthengine.google.com/
https://github.com/agathangelidis/heatwaves_lst
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Table A1. Cont.

Code Name Country Lat. Lon. Elevation Land Cover 1

RIE00100818 Belgrade (Observatory) Serbia 44.8 20.467 132 13
ROE00108889 Bucuresti-Baneasa Romania 44.517 26.083 90 13
ROE00108893 Craiova Romania 44.23 23.87 192 12
SP000003195 Madrid-Retiro Spain 40.412 −3.678 667 13
SP000006155 Malaga Aeropuerto Spain 36.667 −4.488 7 13
SP000008027 San Sebastian-Igueldo Spain 43.307 −2.039 251 8
SP000008181 Barcelona/Aeropuerto Spain 41.293 2.0697 4 13
SP000008202 Salamanca Aeropuerto Spain 40.959 −5.498 790 12
SP000008215 Navacerrada Spain 40.781 −4.01 1894 9
SP000008280 Albacete Los Llanos Spain 38.952 −1.863 704 7
SP000008410 Cordoba Aeropuerto Spain 37.844 −4.846 90 9
SP000009434 Zaragoza Aeropuerto Spain 41.662 −1.008 247 7
SP000009981 Tortosa-Observatorio Del Ebr Spain 40.821 0.491 44 9
SP000060338 Melilla Morocco 35.278 −2.955 47 13

SPE00119729 Santiago De
Compostela/Labacol Spain 42.888 −8.411 370 8

SPE00119909 Burgos-Villafria Spain 42.356 −3.632 890 13
SPE00119945 Jerez De La Frontera Spain 36.751 −6.056 27 12
SPE00119990 Santander/Parayas Spain 43.429 −3.831 5 13
SPE00120062 Cuenca Spain 40.067 −2.138 945 13
SPE00120125 Molina De Aragon Spain 40.844 −1.885 1056 7
SPE00120161 Huesca Spain 42.083 0.326 541 10
SPE00120188 Logrono-Agoncillo Spain 42.452 −2.331 353 12
SPE00120224 Leon Virgen Del Camino Spain 42.589 −5.649 916 10
SPE00120233 Ponferrada Spain 42.564 −6.6 534 9
SPE00120278 Madrid/Barajas Spain 40.467 −3.556 609 10
SPE00120287 Madrid/Cuatrovientos Spain 40.378 −3.789 687 13
SPE00120296 Madrid/Getafe Spain 40.3 −3.722 617 13
SPE00120305 Madrid/Torrejon Spain 40.483 −3.450 611 7
SPE00120332 Murcia/Alcantarilla Spain 37.958 −1.229 85 10
SPE00120350 Pamplona (Observatorio) Spain 42.817 −1.636 442 13
SPE00120413 Vigo Peinador Spain 42.239 −8.624 261 9
SPE00120503 Moron De La Frontera Spain 37.158 −5.616 87 12
SPE00120512 Sevilla/San Pablo Spain 37.417 −5.879 34 7
SPE00120521 Soria Spain 41.775 −2.483 1082 10
SPE00120530 Reus/Aeropuerto Spain 41.149 1.179 71 10
SPE00120602 Valladolid (Villanubla) Spain 41.7 −4.85 846 12
SPE00120611 Bilbao Aeropuerto Spain 43.298 −2.906 42 13
SPE00120620 Zamora Spain 41.517 −5.733 656 13
SPE00120629 Daroca Spain 41.114 −1.41 779 10
TU000017375 Finike Turkey 36.316 30.15 2 12

1 7: Open shrublands; 8: Woody savannas; 9: Savannas; 10: Grasslands; 11: Permanent wetlands; 12: Croplands;
13: Urban and built-up; 14: Cropland/natural vegetation mosaic (MODIS IGBP classification scheme).
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