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Supplementary Material S1 
 

Selection of most relevant terrain parameters used as predictors to estimate soil moisture at 1 

km spatial resolution over the conterminous United States 
 

Input topographic information was obtanied from a conus-wide 1-km digital elevation model 

(DEM) (Becker et al., 2009). Then, a set of 15 terrain parameters (Table S1.1) were generated using the terrain 

analysis module in RSAGA (Brenning et al., 2008), which is the implementation of SAGA GIS (Conrad et 

al., 2015) in R statistical platform (R Core Team, 2020). 

 
Table S1.1. Terrain paramaters derived from a 1-km conus-wide digital elevation model. 

Terrain Parameter Minimun Value Maximum Value Mean Value 

Analytical Hilldahsing 0.234 1.29 0.786 

Aspect 0 6.283 3.037 

Channel Network Base Level -4.345 3013.547 672.99 

Vertical Distance to Channel Network 0 3570.978 120.32 

Flow Accumulation 6.10x10-05 1176.699 32.835 

Convergence Index -100 100 -0.015 

Elevation -85.102 4148.538 521.893 

Length-Slope Factor 88.051 0.599 1.227 

Longitudinal Curvature -2.40x10-04 2.35x10-04  7.00x10-07 

Cross Sectional Curvature -2.22x10-04 2.14x10-04 -7.00x10-07 

Relative Slope Position 0 1 0.247 

Slope 0.612 0.0288 0.0448 

Topographic Wetness Index 6.7 0.2961 1.26 

Catchment Area 1.00 x10+06 3.06 x10+12 1.18 x10+09 

Valley Depth 2674.01 370.578 345.271 

 

 Different sets of training files were created based on the combination of different sets of the 

previously generated terrain parameters and latitude and longitude values for every pixel in the CONUS 

domain. The training files consisted of a matrix describing annual mean soil moisture values in 2010 

derived from ESA-CCI soil moisture daily estimates at 0.25 degrees of spatial resolution, and coordinates 

values of each 1-km pixel along with the values of terrain parameters at the centroid of the ESA-CCI 0.25 

degrees pixels. In total, 12,763 training points (ESA-CCI pixels centroids) were used as main input for the 

initial soil moisture predictions at 1-km spatial resolution. The different sets of training files that 

incorporated soil moisture values, different terrain parameters, and coordinates as predictors, are described 

in Table S1.2. 

Similarly, a set of the combinations of terrain parameters and coordinates (Table S1.2) were generated based 

on all the 1-km pixels available in our conus domain (8,003,235 evaluation points), these files, so-called 

evaluation matrices (with no soil moisture values), were used to predict soil moisture at 1-km, based on 

models previously defined based on the training matrices. 



Table S1.2. Combinations of parameters used as soil moisture predictors, derived from terrain parameters and 

coordinates. 

 Latitude 

values 

Longitude 

Values 

15 Terrain 

parameters 

Aspect Elevation Slope Topographic 

Wetness 

Index 

Catchment 

Area 

1         

2         

3         

4         

5         

6         

7         

8         

9         

10         

11         

 

To define the best prediction parameters among the 15 terrain parameters generated and to avoid 

redundancy of information not directly related to soil moisture spatial distribution, we predicted soil 

moisture at 1-km over the conterminous United States (based on a 2010 ESA-CCI soil moisture mean annual 

layer), and a cross-validation analysis was performed. Different combinations of terrain parameters and 

the inclusion of coordinates as predictors were tested using kernel-weighted k-nearest neighbors (KKNN). 

KKNN in its traditional form is a regression technique that builds many simple models from local 

data (Johnston et al., 2016). It is based on decision rules that classify a sampled point based on the values 

of the closest set of previously classified points or reference values in the sample space (Cover & Hart, 

1967). This method assumes a different level of influence in the prediction space, where the k points closest 

to the target location have the most relevant influence, while the influence on the construction of the 

prediction model decreases with distance (Rorabaugh et al., 2019). To assign distance-related relevance for 

predicting soil moisture in this case, a weighted average of the closest soil moisture k ratios is calculated. 

This variant is based on the definition of kernel functions (that is, triangular, Epanechnikov, Gaussian, 

optimal) that serve to find the number of neighbors (k) that will be used in the prediction. The number of 

neighbors and the optimal kernel function are automatically selected through a 10-fold cross-validation, 

offering correlation and root mean square error (RMSE) values that help in evaluating the performance of 

each prediction (Guevara & Vargas, 2019; Rorabaugh et al., 2019).  

Soil moisture predictions at 1-km over conus were obtained by ‘kknn’ package (Hechenbichler & 

Schliep, 2004) developed on the R-statistical platform (R Core Team, 2020). All prediction processes were 

performed using the University of Delaware High Performance Computing (HPC) cluster “Caviness”  

(UDIT Research CyberInfrastructure, 2021), a distributed-memory Linux cluster with 126 compute nodes 

(4,536 cores with 24.6 TiB of RAM and  200 TB of storage). 

Cross validation results of soil moisture predictions using the different predefined combinations 

of terrain parameters and coordinates (predictors) are shown in Table S1.3 and Figure S1.1. 

 

 

 

 

 

 



Table S1.3. KKNN cross-validation results derived from soil moisture predictions over conus at 1-km, based on 

different combination of terrain parameters and coordinates. Prediction combination number refers to predictors 

shown in Table S1.2; Number of points describes the number of samples in the training matrices use to construct the 

modes; the Kernel describes the shape found to be the one with the most effective prediction performance when 

defining location of k-neighbors; K number describes the optimal number of neighbors used in each sample location 

to construct the prediction model. 

Predictors 

combination 

Correaltion RMSE Number of 

points 

Kernel K 

Number 

1  0.845 0.031 12,763 triangular 23 

2 0.453 1.323 12,763 triangular 39 

3 0.876 0.028 12,763 triangular 19 

4 0.77 464.887 12,763 gaussian 49 

5 0.846 0.031 12,763 triangular 25 

6 0.795 0.027 12,763 epanechnikov 50 

7 0.927 0.022 12,763 gaussian 10 

8 0.859 0.03 12,763 triangular 22 

9 0.259 0.043 12,763  rectangular 50 

10 0.867 0.029 12,763 triangular 19 

11 0.769 465.402 12,763 gaussian 47 

 

Based on the analyses and results, geographic coordinates and 4 terrain parameters (elevation, 

aspect, slope and topographic wetness index) were selected as predictors for our study.  

Although the highest correlation and lowest root mean square error (RMSE) between predicted 

and observed values in the cross-validation was obtained using only geographic coordinates as predictors, 

a visual analysis of the prediction output showed that rather than soil moisture predictions, the outputs 

show the replication of spatial patterns driven by location. The highest soil moisture values occur generally 

in the Northeast of CONUS, while lower values tend to occur in the Southwest. The second highest 

correlation and second lowest RMSE in the cross-validation analysis were obtained using geographic 

coordinates, elevation, aspect, and slope. However, to avoid overrepresentation of topography in the 

prediction outputs, we included the topographic wetness index as an additional predictor, as this index is 

based on topography but also describes the distribution of soil water content as is related to overland flow 

patterns. This last combination of prediction factors (geographic coordinates, elevation, aspect, slope and 

topographic wetness index) showed the third highest correlation and the third lowest RMSE, this 

parameters selection complies with the assumption of topography is an important factor affecting water 

distribution in soils since it directly affects overland flow and solar radiation rates (Hallema et al., 2016). 

 



 
Figure S1.1. Correlation values derived from cross-validation analysis. Numbers in the X-axis refer to parameters 

combinations described in Table S1.3 

References 
Becker, J.J.; Sandwell, D.T.; Smith, W.H.F.; Braud, J.; Binder, B.; Depner, J.; Fabre, D.; Factor, J.; Ingalls, S.; Kim, S.-H.; 

et al. Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS. Mar. Geod. 2009, 32, 

355–371. https://doi.org/10.1080/01490410903297766. 

Brenning, A.; Bangs, D.; Becker, M. RSAGA: SAGA Geoprocessing and Terrain Analysis in R (1.3.0). 2008. Available 

online: https://github.com/r-spatial/RSAGA (accessed on 23 July 2021). 

Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for 

Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. 

https://doi.org/10.5194/gmd-8-1991-2015. 

Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. 

https://doi.org/10.1109/TIT.1967.1053964. 

Guevara, M.; Vargas, R. Downscaling satellite soil moisture using geomorphometry and machine learning. PLoS ONE 

2019, 14, e0219639. https://doi.org/10.1371/journal.pone.0219639. 

Hallema, D.W.; Moussa, R.; Sun, G.; Mcnulty, S.G. Surface storm flow prediction on hillslopes based on topography 

and hydrologic connectivity. Ecol. Process. 2016, 5, 13. https://doi.org/10.1186/s13717-016-0057-1. 

Hechenbichler, K.; Schliep, K. Weighted k-Nearest-Neighbor Techniques and Ordinal Classification; Collaborative Research 

Center 386, Discussion Paper 399; Ludwig-Maximilians-Universität München: Munich, Germany, 2004. 

https://doi.org/10.5282/ubm/epub.1769. 

Johnston, T.; Zanin, C.; Taufer, M. HYPPO: A Hybrid, Piecewise Polynomial Modeling Technique for Non-Smooth 

Surfaces. In Proceedings of the 2016 28th International Symposium on Computer Architecture and High 

Performance Computing (SBAC-PAD), Los Angeles, CA, USA, 26–28 October 2016; pp. 26–33. 

https://doi.org/10.1109/SBAC-PAD.2016.12. 

R Core Team. R: A Language and Environment for Statistical Computing (4.0.3); R Foundation for Statistical Computing: 

Vienna, Austria, 2020. Available online: https://www.r-project.org/ (accessed on 27 August 2021). 

Rorabaugh, D.; Guevara, M.; Llamas, R.; Kitson, J.; Vargas, R.; Taufer, M. SOMOSPIE: A Modular SOil MOisture SPatial 

Inference Engine Based on Data-Driven Decisions. In Proceedings of the 2019 15th International Conference on 

eScience (eScience), IEEE, San Diego, CA, USA, 24–27 September 2019; pp. 1–10. 

https://doi.org/10.1109/eScience.2019.00008. 

UDIT Research CyberInfrastructure CAVINESS, Supporting Researchers at University Of Delaware. Available online: 

https://sites.udel.edu/it-rci/compute/community-cluster-program/caviness/ (accessed on 23 August 2021). 

 


