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Abstract: Insect outbreaks affect forests, causing the deaths of trees and high economic loss. In this
study, we explored the detection of European spruce bark beetle (Ips typographus, L.) outbreaks at
the individual tree crown level using multispectral satellite images. Moreover, we explored the
possibility of tracking the progression of the outbreak over time using multitemporal data. Sentinel-2
data acquired during the summer of 2020 over a bark beetle–infested area in the Italian Alps were
used for the mapping and tracking over time, while airborne lidar data were used to automatically
detect the individual tree crowns and to classify tree species. Mapping and tracking of the outbreak
were carried out using a support vector machine classifier with input vegetation indices extracted
from the multispectral data. The results showed that it was possible to detect two stages of the
outbreak (i.e., early, and late) with an overall accuracy of 83.4%. Moreover, we showed how it is
technically possible to track the evolution of the outbreak in an almost bi-weekly period at the level
of the individual tree crowns. The outcomes of this paper are useful from both a management and
ecological perspective: it allows forest managers to map a bark beetle outbreak at different stages
with a high spatial accuracy, and the maps describing the evolution of the outbreak could be used in
further studies related to the behavior of bark beetles.

Keywords: bark beetle; Sentinel-2; multispectral; individual tree crown

1. Introduction

Forests are affected by outbreaks of several different species of insects at the global
level, and such outbreaks usually result in the death of large numbers of trees [1]. In the last
decades, most European forests have shown significant increasing trends in vulnerability
to insect outbreaks [2]. Climate change–related events such as warm and dry weather
anomalies and windthrows may in fact accelerate insect development and impact on forest
populations through a reduction in plant defense mechanisms [2]. The European spruce
bark beetle (Ips typographus, L.) is one of the many species affecting forests and is mainly
found in temperate and boreal regions of Central Europe, North America, Asia Minor
and some parts of Africa [3–5]. In the case of Europe, it mainly affects Norway spruce
(Picea abies (L.) Kast.) forests [1]. This insect alone caused annual losses of 14.5 million
m3 of wood between 2002 and 2010 in Central Europe [6]. The economic loss is mainly
related to the fact that forest managers cannot chose what to cut, but they have to cut the
trees attacked by bark beetles, not trees in optimal condition for wood production (i.e., not
mature trees) [7]. Moreover, a large outbreak could increase timber availability in the
market, thus reducing wood prices [7].

Bark beetles receive their name because they reproduce in the inner bark of the tree,
living on phloem tissues. European spruce bark beetles can spread quickly over large
areas, and this ability is increased/triggered when various environmental factors such as
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windthrows, storms or drought damage kill trees [8]. Once the bark beetles locate a host
and infest it, they could kill it in few weeks, though the first signs of infestation may not be
visible. In the North American literature, bark beetle outbreaks are categorized by three
different stages according to crown colour: (1) green attacks, where no apparent changes
appear in the attacked trees; (2) red attacks, where the foliage of the attacked trees turns
a reddish colour, and; (3) grey attacks, where the needle leaves shed off of the attacked
tree [9,10]. The red- and grey-attacks are usually the easiest to detect due to the clear
changes in the foliage [11]. Finding and eliminating the attacked trees on time is essential
to avoid the spread of the infestation.

One of the most common and reliable ways of detecting the presence of bark beetles
is by performing extensive field visits. This requires a lot of effort and money, implying
several field trips and qualified teams. Additionally, physical trips to the forests are
spatially limited [12–14]. Given the requirement of in situ observations, the probability of
overlooking bark beetle outbreaks is high in large forest areas, and the task itself becomes
challenging. Moreover, the detection of an attack at the early stage is not straightforward
as the only way to determine this is to notice the small holes made by the insect in the
trunk [12]. Therefore, an efficient and remote method is required that allows for easier
and faster observation of large areas, with greater frequency and lower costs [1,10,15].
In this context, remote sensing data could be very effective, especially multispectral and
hyperspectral data that are able to characterize the spectral signature of the trees [12]. The
spectral signature of vegetation, in general, is determined by the different properties of the
plant and the different phenological stages or conditions of vegetation can be monitored by
means of combined spectral information [14,16,17]. Indeed, stressed vegetation is subject to
changes in its biochemical and biophysical properties, meaning changes in photosynthetic
activities and/or phenological behaviour. Such changes are reflected in the reduction
of leaf pigments and a decrease in water content, as expected from plant requirements,
thus changing the natural behaviour of the plant [18]. From a physical perspective, these
changes can lead to modifications in the reflectance information from different spectral
ranges such as the visible, NIR and SWIR, to name a few. This means that healthy and
stressed forest areas could be separated by analysing the changes in different ranges of
the spectrum.

The detection of bark beetle outbreaks by remote sensing differs according to the
attack stage. At the beginning of an attack, infested trees remain green, but internally they
suffer from initial restrictions on the proper handling of water transportation. Given that
there is almost no visual impact on the trees, this stage is difficult to detect, whereas the
opposite happens in later stages, where there are clear changes in the colour and aspect of
the trees. Because of this, most of the research found in the literature has focused attention
on detecting the later stages of the attack, achieving acceptable results ranging from 70–90%
accuracy [19–25] by using a variety of optical remote sensing data. QuickBird data were
used in order to classify mountain pine beetle attacks and the results were validated with
independent field data in British Columbia [26]. In the same study area, EO-1 Hyperion
data (the hyperspectral type) were used by exploiting moisture-based indices to identify
forests attacked by bark beetles [27]. In the same way, several other studies have focused
attention on using vegetation or spectral indices in order to increase the detection accuracy
for infestations [14,21,28,29]. Given that infestation happens at the single-tree level, having
a proper spatial resolution and relevant spectral ranges are of great importance. In fact, most
of the recent studies found in the literature focus their attention on Landsat or Sentinel-2
data [19,23,28,30,31]. More recently, it has been shown that using Sentinel-2-based indices
is more effective (67%) than using Landsat-based indices (36%) [28]. Additionally, using
the temporal variable is of great relevance in increasing the detection accuracy, given that
this helps to properly monitor the outbreak [24,30,32–37].

In order to have proper monitoring of a bark beetle outbreak, both spatial and temporal
resolutions should be considered. It means that we need monitoring as close as possible
to the tree level and temporal resolution of the images that allows tracking the spread of
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the bark beetles quickly. Indeed, with respect to studies done 20 years ago, nowadays
lidar data over the forest areas that allows accurate detection of individual tree crowns are
easily obtained. Moreover, the availability of satellite images at a weekly rate with a high
spatial resolution is improved. Thus, in this paper we propose a study that explores the
possibility of combining individual tree crown (ITCs) analyses using lidar data together
with satellite multispectral Sentinel-2 data to map bark beetle infestations at the single-
tree level. In particular, the focuses of this study are: (1) the detection of different stages
(i.e., healthy, attacked—early stage, attacked—late stage) of the infestation at the ITC level;
(2) the identification of the most useful spectral index to perform bark beetle detection; and
(3) the mapping of the temporal evolution of the outbreak. To accomplish this, ITCs were
automatically delineated on lidar data and then spectral indices extracted from Sentinel-2
images acquired from June to September (of a given year) were used in order to map and
track the evolution of the bark beetle attack.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area and Field Data

The study area is located in Northern Italy in the municipality of Pergine (Trento).
It is represented by a small hill (about 10 ha, altitude range 450–570 m a.s.l.) mainly
dominated by Norway spruce (Picea abies (L.) Karst.). Inside the study area a windthrow
event happened at the end of October 2018 [38], and the dead trees left on the ground
generated an outbreak of European spruce bark beetles. The climate of the area is classified
as temperate oceanic according to the Worldwide Bioclimatic Classification System [39].
Regarding the weather conditions in the months of June, July, August and September 2020
analysed in this study, the mean maximum temperature in that area was 16.2 ◦C, 20.1 ◦C,
18.7 ◦C and 14.3 ◦C, respectively, compared to the mean maximum temperature for the
period 1930–2021, with mean maximum temperatures of 16.2 ◦C, 19.9 ◦C, 19.2 ◦C and
15.1 ◦C, respectively. Concerning precipitation, the monthly precipitation values, in mm,
were 108.0, 77.8, 189.4, and 35.0, respectively, compared to the mean monthly precipitation
values for the period 1921–2021, which were106.5, 94.76, 95.65, and 91.27, respectively [40].

Field data collection was carried out between the last week of October and mid-
November 2020: 565 trees were geolocated using a Lasertech TruePulse 360B (Laser Tech-
nology, Inc., Centennial, CO, USA) starting from multiple base stations point localized with
a precise GPS. Species and health status of each tree were collected in the field. The outbreak
was localized mainly on the south-facing slope of the hill. In Figure 1, a representation
of the trees measured in the field is shown, and in Table 1, a summary of the field data
divided by species and health status is provided. The bark beetle infestation was divided
into three categories: (1) healthy (H), trees with healthy status that did not show any sign
in the trunk and crown of bark beetle infestation; (2) attacked—early stage (A1), trees that
showed signs of attack at early stage, ranging from bark beetle holes in the trunk without
any sign in the crown, to crowns starting to lose needles or with presence of yellow needles;
and (3) attacked—late stage (A2), trees with totally yellow crowns or red or grey crowns.
The species different from Picea abies (L.) Karst. were all aggregated into the class “other
species” (OS).

2.1.2. Remote Sensing Data

For this study, we considered multispectral satellite data acquired by the Sentinel-2
(S2) constellation and airborne lidar data. S2 is a two-satellite constellation (S2-A and
S2-B) managed by the European Space Agency (ESA) under the Copernicus programme,
providing high spatial resolution optical imaging every 5 days. Each S2 multispectral
image is composed of 13 spectral bands at three different spatial resolutions (10 m, 20 m
and 60 m [41]), but only bands at 10 m and 20 m spatial resolution were used. Lidar data
were acquired over the study area in summer 2015 by an Optech ALTM 3100EA (Teledyne
Optech Inc., Vaughan, ON, Canada) sensor with a maximum scan angle of 21 degrees. The
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mean point density was 21.5 points per square meter for the first return. Up to four returns
per pulse were measured. Even though lidar data was acquired 5 years earlier than the
field data, the changes in the area, apart from the windthrow event site, were limited to
natural forest growth. Thus, the data can be used for ITC detection in a reliable manner.
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Figure 1. In panel (A): field data position. Each dot represents a tree measured in the field. The 
grey area on the bottom-right part is an area where a windthrow event happened. The lines are 
the contour lines spaced by 5 m. In panel (B), the location of the study area (red dot) and of the 
Province of Trento (green area) in Italy. 

Table 1. Summary of the trees measured in the field. 

Species Health Status Number of Trees 

Picea abies (L.) Karst. 
H 86 
A1 94 
A2 222 

Betula pendula Roth H 4 
Carpinus betulus L. H 13 

Castanea sativa Mill. H 6 
Larix decidua Mill. H 84 
Pinus sylvestris L. H 23 
Populus tremula L. H 28 

Robinia pseudoacacia L. H 4 
Tilia platyphyllos Scop. H 1 
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Figure 1. In panel (A): field data position. Each dot represents a tree measured in the field. The
grey area on the bottom-right part is an area where a windthrow event happened. The lines are the
contour lines spaced by 5 m. In panel (B), the location of the study area (red dot) and of the Province
of Trento (green area) in Italy.

Table 1. Summary of the trees measured in the field.

Species Health Status Number of Trees

Picea abies (L.) Karst.
H 86
A1 94
A2 222

Betula pendula Roth H 4
Carpinus betulus L. H 13

Castanea sativa Mill. H 6
Larix decidua Mill. H 84
Pinus sylvestris L. H 23
Populus tremula L. H 28

Robinia pseudoacacia L. H 4
Tilia platyphyllos Scop. H 1

All the available S2 cloud-free images between the 1 June 2020 and the 30 September
2020 were downloaded from the ESA portal [42] in the L2A processing level for a total of
32 images. The study area is covered by two S2 orbits, numbers 22 and 65. For the analysis
of this study we selected one image about every two weeks for a total of ten images. The
time distance among the images varied from 10 to 15 days with a mean of 13.3 days.

2.2. Methods

In Figure 2, the architecture of the system used to detect and monitor the bark beetle
attack is presented. In the following sections, each step is detailed.
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2.2.1. Lidar Data Processing

The elevation (Z) value of each lidar point was normalized with a digital terrain model
(DTM) using the function normalize_height of the R package lidR [43]. The company that
acquired the data provided the DTM. A calibration of the intensity value for each lidar
point was performed in order to reduce the effect of the flying altitude and of the scan
angle on it. We used the method of Yu et al. [44]:

IC = I ∗
(

R
Rs

)α

, (1)

where IC is the calibrated intensity, I the raw intensity, R is the sensor-to-target range and
Rs is the reference range or average flying height. Following the suggestions of Korpela
et al. [45], an exponential factor of 2.5 was used. This is performed because environmental
factors can be considered stable and the same acquisition conditions (parameters and
instruments) were maintained during the survey [44].

The normalized lidar point cloud were used to delineate individual tree crowns (ITCs)
by means of Dalponte and Coomes’ [46] algorithm implemented in the itcLiDAR function
of the R library itcSegment. This algorithm is based on an adaptive local maxima filter and a
region-growing method, and it has been successfully used in many previous studies [47–50].
The algorithm follows these steps: (1) generate a raster canopy height model (CHM) of
spatial resolution defined by the user; (2) apply a Gaussian low-pass filter of fixed size of
3 × 3 pixels to the rasterized CHM in order to smooth the surface and to reduce the number
of potential local maxima; (3) apply a moving window of variable size to the smoothed
CHM in order to find a set of potential treetops (local maxima). The size of the window
is an odd number proportional to the pixel value at the centre of the window. The range
of the window size is user defined. The central pixel of the window is labelled as local
maxima if its value is greater than all other values in the window while being greater than
some minimum height above ground (usually fixed at 2 m); (4) iteratively analyse and
add the pixels around each local maxima to the local maxima to create a region. A pixel is
added to a specific region only if its vertical distance from the local maximum is less than a
predefined percentage of the local maximum height and less than a predefined maximum
difference. The process is repeated until no further pixels are added to any region; and
(5) apply a 2D convex hull to the pixel coordinates of each region, resulting in polygons
that represent ITCs. For each delineated ITC, the mean intensity value of the first return
points was computed.

A link between delineated ITCs and the trees measured in the field was created by
means of the method by Zhao et al. [51] that is based on Euclidean distance. As the height of
the field trees was not available, only the X and Y directions were used in the computation
of the distance.
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2.2.2. S2 Image Processing

For each S2 image, only the bands at 10 and 20 m spatial resolution were selected,
and they were all resampled at 10m with nearest neighbour resampling using the resample
function of the R package raster [52]. From each image, a series of vegetation indices (VIs)
were extracted (Table 2). The VIs were chosen based on the current literature. The extraction
was carried out using the function spectralIndices of the R package RStoolbox [53].

Table 2. Vegetation indices extracted from each S2 image.

Index S2 Bands Reference

CLRE—Red-Edge Band Chlorophyll Index 5, 7 [54]
GEMI—Global Environmental Monitoring Index 4, 8 [55]

GNDVI—Green Normalized Difference Vegetation Index 3, 8 [56]
MCARI—Modified Chlorophyll Absorption Ratio Index 3, 4, 5 [57]
MNDWI—Modified Normalized Difference Water Index 3, 11 [58]

MSAVI—Modified Soil-Adjusted Vegetation Index 3, 8 [59]
MSAVI2—Modified Soil-Adjusted Vegetation Index 2 3, 8 [59]

MTCI—MERIS Terrestrial Chlorophyll Index 3, 5, 6 [60]
NBRI—Normalized Burn Ratio Index 8, 12 [61]

NDREI1—Normalized Difference Red Edge Index 1 6, 5 [62]
NDREI2—Normalized Difference Red Edge Index 2 7, 5 [63]

NDRS—Normalized Distance Red and SWIR 4, 12 [33]
NDVI—Normalized Difference Vegetation Index 4, 8 [64]

NDWI—Normalized Difference Water Index 8, 11 [65]
NRVI—Normalized Ratio Vegetation Index 4, 8 [66]

REIP—Red-Edge Inflection Point 4, 5, 6, 7 [67]
SATVI—Soil-Adjusted Total Vegetation Index 3, 11, 12 [68]

SAVI—Soil-Adjusted Vegetation Index 3, 8 [69]
SLAVI—Specific Leaf Area Vegetation Index 3, 8, 11 [70]

TVI—Transformed Vegetation Index 3, 8 [71]

Afterwards the index values were normalized: for each index, the mean value at time t
of that index for the ITCs that were healthy on the 30th September 2020 (Indext

Healthy 09/30)
was subtracted from all the ITCs and the mean value of that index over the same ITCs in
the last image of the time series (30 September 2020) (Index09/30

Healthy 09/30) was added to all
the ITCs:

IndexNormt =
(

Indext − mean
(

Indext
Healthy 09/30

))
+ mean

(
Index09/30

Healthy 09/30

)
, (2)

where t ranges from the first to the last image of the time series. We used the last image
of the time series (30 September 2020) as reference as it was the image closest to the field
data collection. This normalization step was used to remove the effect of the phenology.
This is very important in order to make images at different timings comparable, otherwise
the standard SVM classifier cannot be used. In principle, this can be also be performed by
considering a group of Norway spruce trees that were definitely healthy for the entire time
series analysis outside the area investigated but inside the image.

For each of the delineated ITCs the weighted mean of each VI was extracted. The
weighted mean was performed considering the percentage of cover that each ITC had over
each VIs pixel at 10m resolution. In this way we obtained one value for each index for each
image for each ITC (200 values: 20 indices for 10 images).

2.2.3. Tree Species Classification and Bark Beetle Detection

Tree species classification and bark beetle attack detection were carried out using
a class-weighted support vector machine (wSVM) classifier [49]. SVM is a well-known
classifier that has been widely used in many studies in forestry and ecology [49,72–74].
Here, we chose a class-weighted version as it is more suitable for imbalanced problems
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such as cases where not all the classes have the same number of samples. In particular,
the only difference between a standard SVM and a class-weighted SVM is that a weight,
different for each class, is added inside the optimization problem of the SVM. In particular,
in this study we used a weight defined in this way:

si =

max
k=1,...,Ψ

(Nk)

Ni
, (3)

where Nk is the number of samples that belong to the k-th class.
The feature used to train the wSVM in the tree species classification step was the mean

lidar intensity of the first return points inside each ITC. We chose to use just this feature as
from an initial analysis on the lidar intensity values it appeared that the Norway spruce
trees were easily separable from the others. Since tree species classification is not the core
of this paper, any other input feature could be used for this task.

The features used to train the wSVM for bark beetle attack detection were the veg-
etation indices extracted from the S2 image from the 30 September 2020. Among all the
indices extracted, we considered 22 training configurations: (1) a wSVM trained using
all the available indices, (2) a wSVM trained using a subset of indices selected using a
feature selection method, and (3–22) a wSVM trained using each individual index sepa-
rately. In these last 20 configurations, the SVM was trained with only one input feature. An
SVM with only one input feature could be considered as a sort of thresholding algorithm.
Though this configuration does not exploit the full potential of an SVM, we found it more
important to use the same classification algorithm in all the experiments. Feature selection
was carried out using a wrapper method, using the sequential floating forward selection
(SFFS) [75] method as the search strategy and a separability measure for the accuracy of the
wSVM classifier after a cross-validation on the training set. The SFFS method explores the
possible combinations of features by testing each time the wSVM classification on the pool
of features considered. It starts from one features and it stops when the increase in accuracy
is insignificant. The search strategy is moving both forward and backward, as at each
iteration, the selected features are reconsidered and, if unnecessary, they are discarded. This
procedure was performed using the R library FSinR [76]. We chose this search strategy as it
was successfully used in previous studies in the literature [49,72–74]. The kernel function
used in the wSVM was an RBF kernel. As in every SVM classification, some parameters
needed to be tuned: we tuned the cost parameter C and the RBF kernel parameter sigma.
The tuning was performed using a grid search strategy of 400 combinations of C and
sigma parameters.

2.2.4. Validation of the Classifications

For both the tree species classification and the bark beetle attack detection, the valida-
tion was performed using a three-fold cross-validation procedure. The three folds were
created by overlapping a spatial grid of 40 m × 40 m to the study area. Each square of
the grid was assigned to one of the three folds. Each ITC was assigned only to one square
and all the ITCs inside a square were assigned to a fold. In this way, we ensured a spatial
representation of the study area for each fold, reducing also the spatial correlation among
the ITCs. We used 40 m as it is double the size of the coarser resolution of the S2 bands
considered in order to eliminate the possibility of having ITCs belonging to different folds
overlapping the same S2 pixels.

The classification results over the three folds were presented in terms of confusion
matrix, overall accuracy (OA), balanced accuracy (BA), producer accuracy (PA) and user
accuracy (UA). We also considered the BA as an overall metric defined as the average
of the PAs, as the classification problem is unbalanced and thus analysing only the OA
is not the optimal choice. The final map was validated with a confusion matrix and the
corresponding accuracies computed by matching the ITCs classified into four classes (OS,
H, A1 and A2) with the field dataset.
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2.2.5. Multitemporal Tracking of the Bark Beetle Infestation

Among all the bark beetle attack classification models, we chose the best one and we
applied it to the 10 S2 images from the 2 June 2020 to the 30 September 2020. The wSVM
model used was trained on the S2 image of the 30 September 2020. The rationale for this
step is to track the bark beetle infestation over time and to understand how it spreads in the
forest. These maps were studied at two levels: (1) the differences among two consecutive
maps were analysed in order to detect reasonable and unreasonable changes; and (2) the
time behaviour of the infestation of each Norway spruce ITC was analysed in order to
evaluate whether it was following a reasonable trend or not. Concerning the first one,
the differences between two consecutive maps were analysed on the basis of some rules
according to the type of change/transition that could actually happen between times t1 and
t2 [77,78], with t1 indicating the status of an ITC at time 1 and t2 the status of an ITC at time
2, where time 2 is the time period just after time 1. The changes/transitions considered are
as follows: (1) reasonable change, when the infestation stage remains the same or moves
forward (e.g., from H to A1) and (2) unreasonable change, when the infestation stage moves
backward instead of forward (e.g., from A2 to H). In Table 3, the detailed set of rules and
the types of changes are summarized.

Table 3. Rules used to validate the multitemporal maps tracking the bark beetle infestation, where t1

indicates the status of an ITC at time 1 and t2 the status of an ITC at time 2.

Rule Type of Change

t1 = H AND t2 = H
t1 = A1 AND t2 = A1
t1 = A2 AND t2 = A2
t1 = H AND t2 = A1
t1 = A1 AND t2 = A2
t1 = H AND t2 = A2

Reasonable change

t1 = A1 AND t2 = H
t1 = A2 AND t2 = H
t1 = A2 AND t2 = A1

Unreasonable change

Regarding the time behaviour of each ITC, we considered seven possible reasonable
situations: (1) an ITC is classified as H in all the 10 maps considered; (2) an ITC is classified
as A1 in all the 10 maps considered; (3) an ITC is classified as A2 in all the 10 maps
considered; (4) an ITC is classified for one or more consecutive maps as H, followed by
one or more consecutive maps as A1; (5) an ITC is classified for one or more consecutive
maps as H, followed by one or more consecutive maps as A2; (6) an ITC is classified for
one or more consecutive maps as H, followed by one or more consecutive maps as A1,
followed by one or more consecutive maps as A2; and (7) an ITC is classified for one or
more consecutive maps as A1, followed by one or more consecutive maps as A2.

3. Results
3.1. ITC Detection and Tree Species Classification

Regarding the ITC detection, out of 565 trees measured in the field, 512 were matched
with a delineated ITC, reaching a 90% detection rate. Among the matched ITCs, 368 were
Norway spruce, while the remaining were other species. Concerning the status of the bark
beetle outbreak, among the Norway spruce–matched ITCs we had 76 ITCs in class H, 87 in
class A1, and 205 in class A2.

The tree species classification was obtained with an OA of 87.4% and a BA of 82.8%.
Overall, the results were good, providing PAs and UAs over 70%. The confusion matrix for
the best combination of wSVM parameters over the three folds is shown in Table 4, along
with the PAs and UAs.
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Table 4. Confusion matrix for the best combination of wSVM parameters over the 3-fold cross
validation. Numbers in bold are the diagonal of the matrix.

Norway Spruce Other Species UAs (%)

Norway spruce 91 33 73.4

Other species 32 358 91.8

PAs (%) 74.0 91.6

3.2. Bark Beetle Detection

Balanced accuracies obtained using the wSVM with the threefold cross-validation
for the bark beetle attack classification, from the image from the 30th of September 2020,
are shown in Figure 3. Using the subset of indices obtained using the feature selection
algorithm (FS model), we obtained the highest balanced accuracy (BA = 72.9%; OA = 73.6%).
The feature selection algorithm selected eight indices for the classification: CLRE, GNDVI,
NBRI, NDREI2, NDVI, NRVI, REIP and SLAVI. The second best result in terms of BA was
obtained using the CLRE index (BA = 71.3%; OA = 72.3%), while the model using all the
available indices was the fourth best (BA = 68.5%; OA = 70.1%). Considering the FS model
(the one with the subset of indices), we obtained PAs of 76.3% (H class), 66.7% (A1 class)
and 75.6% (A2 class) and UAs of 65.9% (H class), 53.2% (A1 class) and 90.6% (A2 class).
The confusion matrices for the abovementioned three models (FS, CLRE and all) are shown
in Table 5.
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Table 5. Confusion matrices for the best wSVM model using a selection of the indices performed
with the feature selection (FS), the one using the best individual index (CLRE), and all the available
indices (All) over the 3-fold cross validation. Numbers in bold are the diagonal of the matrix.

FS CLRE All

H A1 A2 UAs
(%) H A1 A2 UAs

(%) H A1 A2 UAs
(%)

H 58 18 12 65.9 53 23 2 67.9 61 35 12 56.5

A1 13 58 38 53.2 20 61 51 46.2 13 42 35 46.7

A2 5 11 155 90.6 3 3 152 96.2 2 10 158 92.9

PAs
(%) 76.3 66.7 75.6 69.7 70.1 74.1 80.3 46.7 92.9

3.3. Mapping Bark Beetle Presence and Tracking it in Time

Using the wSVM model based on the features selected by the feature selection method,
we generated a map of the area for the 30 September 2020 (Figure 4). We chose the model
based on a subset of features (FS model) as it was the one providing the highest BA. This
map was based on four classes (i.e., H, A1, A2, OS) as the map is the combination of both
the tree species classification and the bark beetle classification processes. The OA of the
final map was 79.2% and the balanced accuracy was 77.6%. In Table 6, the confusion matrix
is shown.
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Table 6. Confusion matrix for the map of the 30 September 2020, considering both species and bark
beetle attack classifications. Numbers in bold are the diagonal of the matrix.

H A1 A2 OS UAs (%)

H 57 10 2 13 69.5

A1 5 67 14 5 75.3

A2 1 7 176 18 87.1

OS 13 3 13 89 75.4

PAs (%) 75.0 77.0 85.9 72.4

Using the same model, we classified all the 10 S2 images considered in order to
generate maps that track the evolution of the infestation (Figure 5). As explained in the
methods section, the exploration of the multitemporal maps was performed at two levels.
Concerning the comparisons among two consecutive maps, they were analysed on the
basis of reasonable and unreasonable changes in time. As it can be seen in Table 7, the
reasonable change detection rate is, on average, 88%, with a maximum of 91.3% between
the maps of the 12 and 22 June 2020. Regarding the analysis of the entire time series, 72.1%
of the ITCs showed a behaviour that could be considered reasonable according to the rules
explained in Section 2.2.4, 16.9% of the ITCs showed an unreasonable behaviour, while
11.1% of the ITCs showed an unreasonable behaviour but only because one map (out of
ten) was wrong.
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Table 7. Results of the comparisons of contiguous couples of multitemporal maps.

Maps Compared (t1, t2) Reasonable (%) Unreasonable (%)

2 June, 12 June 89.0 11.0
12 June, 22 June 91.3 8.7
22 June, 7 July 88.2 11.8
7 July, 22 July 86.6 13.4

22 July, 6 August 86.0 14.0
6 August, 19 August 88.9 11.1

19 August, 3 September 89.8 10.2
3 September, 15 September 85.0 15.0

15 September, 30 September 87.2 12.8
Average 88.0 12.0

4. Discussion

Detecting the earliest stages of bark beetle outbreaks is, without doubt, of great rele-
vance since it allows for decision makers to act and stop the propagation of the infestation
on time. In fact, some studies have been carried out in the literature with the goal of detect-
ing early stage attacks from different approaches: classification, index analysis, bi-temporal
data and yearly analysis and early detection [14,28,30,33,79]. Even though these studies
were able to detect early stage attacks, their accuracy varied a lot and was sensor-dependent
in the sense that they required working with a very high spatial resolution (VHR). Obtain-
ing access to VHR data is not free and thus lowers the possibility of actually detecting the
bark beetle outbreak.

In this paper, we explored the possibility of combing lidar and S2 data for the detection
of the different stages of the outbreak (i.e., early and late) as well as for tracking the
evolution of the outbreak in time. Firstly, we showed that by combining S2 data with ITCs
delineated on lidar data, it is possible to have very spatially detailed maps. Such maps are
intended to provide more accurate information for forest management purposes. Secondly,
we evaluated the performance of several spectral indices (among which were the most used
in the literature for bark beetle detection) to detect the early stage of the infestation, and
we identified the best one in terms of balanced accuracy. Lastly, we presented a strategy
to track the infestation over time by introducing a set of rules that allow us to check the
veracity of the detection, even without reference data. From an ecological point of view, this
opens the path to further studies related to the behaviour of bark beetles and the dynamics
of how they spread in a forest.

4.1. Infestation Detection at ITCs Level

Norway spruce trees are the ones mainly affected by bark beetle insects and should
therefore be classified beforehand. For this paper, such classification was performed using
only lidar data, obtaining an OA of 87.4%, BA of 82.8% and a PA for the Norway spruce
trees of 74.0%. The classification for bark beetle detection provided an OA of 73.6% and a
BA of 72.9%, with a PA for the early stage attack (A1) of 66.7%. Combining the Norway
spruce classification with that for the bark beetle, we obtained a map that, with all the
available field data, reached an OA of 79.2%, a BA of 77.6% and a PA for the early stage
attack (A1) of 77.0%. Such a PA value for the early attack stage is relevant for two main
reasons: (1) we are mapping tree information using S2 data, for which the spatial resolution
is larger than actual ITC size; and (2) knowing the location of the early stage attack can help
to remove or reduce the propagation of the infestation in time. The combination of the two
classifications helped to reduce false alarms present in areas where bark beetle infestation
could not happen, thereby improving the final map.

4.2. Identification of the Most Robust Spectral Index

An important part that has been widely addressed in literature is the proper selection
of spectral indices to be used [21,28,29]. Here we selected the indices using a sub-optimal
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search strategy (the SFFS one) that allowed us a good trade off among execution time and
the quality of the selected indices in terms of information provided for class separability.
Nevertheless, we are sure that the selected indices provide accurate information about the
trees’ states due to the spectral bands used to derive them (other than the high accuracy
obtained). Most of them make use of a NIR, SWIR and/or Red Edge band. Such bands
have been found in the literature [18] to be suitable for studying stressed or healthy trees
or forest areas. While indices such as the NDREI2 and the NDRS have been reported as
the best in the literature for detecting the different stages of bark beetle infestation, it was
found that NDREI1 performs nearly equally to the CLRE and NDREI2 indices (see Figure 3
for more details), with a BA of 69.1% vs. 71.3% and 70.5%, respectively. In contrast, NDRS
performed among the five worst indices with a BA of only 55.2%. A further analysis, by
combining several indices, was also performed that allowed us to identify eight indices
as the best ones for performing the detection task, with a balanced accuracy of 72.9%.
Combining all indices in Table 2 offered the fifth best performance with a BA of 68.5%,
allowing us to see how sensor- and location-dependent this analysis can be. It was also
possible to prove the relevance of performing a detailed analysis of the most frequently
used indices according to specific needs.

4.3. Detection of Early Stage Attack

The detection of the early stage attack was performed with a machine learning ap-
proach and by combining both species classification and the bark beetle infestation itself.
While a formal comparison to other state-of-the-art methods is not offered in this paper, it
is important to recall that other studies can be found in the literature that have addressed
early stage–attack detection analysis [14,28,30,33,79], though from different perspectives.
Huo et al. [33] and Bárta et al. [14] have exploited the S2 time series, covering the period
April–October of 2018 and 2019, in order to detect stressed trees (a tree can be stressed for
several reasons and not only because of the presence of bark beetles) that could lead to
the early detection of bark beetle infestations but cannot guarantee the actual detection
of an early stage attack itself. Huo et al. [33] proposed a new vegetation index called the
Normalized Distance Red and SWIR (NDRS) that allowed them to detect stressed trees,
with accuracies ranging from 82 to 86%. Bárta et al. [14] made use of several indices, in
particular the well-known tasseled cap ones, in order to monitor the evolution of healthy
and infected trees during a year and perform early detection of bark beetle infestation with
an accuracy of 78%. These two studies are the most recent ones available in the literature;
yet, multitemporal information is not used as a tool to track or detect infestation evolution
but to detect stressed trees. Observed trees can be stressed for several reasons and not
only due to the presence of bark beetle insects. Therefore, detecting the early stage of the
attack itself is more crucial and can better help to prevent the spread of infestation, without
cutting off actual healthy trees.

4.4. Attack Evolution Monitoring

Looking at the temporal classification maps shown in Figure 5, it is clear how per-
forming an analysis over a more complete and regular time series can allow the tracking
of the bark beetle outbreak’s evolution. Even though there is no field data collected for
each of the different maps, it is clear how, starting from a classification map obtained with
actual field data for the last month and then going back in time, it is possible to actually
track the evolution of the bark beetle infestation. In fact, the image corresponding to the
30th of September already shows a clear and close result to that of the actual field data for
October 2020 (see Figure 1). On the other hand, knowing the location of the windthrow
event (as well as any other possible event happening in the study area) helps to understand
where the infestation originated from or whether there was any accelerating process for
the infestation. By June 2020, the bark beetle attack had already gone out of control since
nearly two years had passed since the windthrow event, showing clear signs of an attack in
the late stage. Such cases, together with the knowledge about the study area/region, allow
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us to qualitatively corroborate the truthfulness of our results. In order to perform a sort of
quantitative analysis without the availability of the ground truth for every single date, the
set of rules in Table 3 was introduced. These rules take inspiration from land cover map
updates, where reliable change rules allow understanding, as compared with knowing
whether those from a new class are possible or not after a certain time [80]. Such is the
case for the H, A1 and A2 stages that can only happen in this same direction and not in the
opposite one. Since we have the ground truth for the last acquisition date, we can track
the evolution of the different stages by checking the defined rules in order to evaluate the
multitemporal accuracy detection. Table 7 summarizes the results for all the cases, where
the reasonable prediction varies from 85.0 to 91.3%. A final check was made by studying
the time behaviour according to seven possible steadiness situations. In this case, it was
found that nearly 72.1% of the ITCs kept a reasonable trend across the studied period,
with only 16.8% of ITCs showing some major errors. Of particular interest are the 11.1%
of ITCs that presented an error only on one of the dates. This means that we are facing
cases of weak false alarms that could be easily corrected by means of this same strategy
(by checking these samples with the established rules and changing the classification value
to a logical one). Nevertheless, we preferred to keep the original data in order to show
the possible readers the high accuracy achieved by the proposed approach. Such results
allow us to further prove the reliability of the proposed approach as well as to show how
it is possible to accurately track the attack’s evolution in time. In this way, it is not only
possible to detect the attack in an early stage in an accurate way but possibly to track it in
images acquired after the field data collection. This last part is concluded from the temporal
distribution of the analysed images. It is important to note that the monitoring analysis
could not be carried out just the day after a windthrow event happens. This is because
it takes some time for bark beetles to start attacking the affected trees and thus spread to
other healthy trees.

4.5. Limitations

While the presented approach is promising and able to produce reliable and useful
results, limitations exist that arise from the spatial resolution itself. Working with Sentinel-2
data means we are working at 10 m × 10 m pixels. Such an area could cover more than a
single tree, especially if considering young trees that are just starting to grow. Indeed, it was
found that 55.4% of the ITCs had VI values not duplicated with other ITCs, whereas 44.6%
of the ITCs had duplicated values. Looking at the sizes of such trees, it is immediately
visible that duplicated ones are generally trees with smaller crowns compared to non-
duplicated ones. This means that our method is able to properly monitor large trees, while
it has problems monitoring smaller ones. Yet, the presented results show that the proposed
method is able to accurately map bark beetle outbreaks at a low cost.

5. Conclusions

In this study we showed that it is possible to accurately detect a bark beetle attack
in early and late stages at the ITCs level using multispectral satellite data by means of a
machine learning classification approach. Furthermore, we also showed that the use of
multitemporal data allows tracking of the evolution of the bark beetle infestation with a
bi-weekly resolution. The possibility of monitoring the outbreak using freely available S2
data is extremely important as it allows an almost real-time mapping (not at an economical
cost) and consequently rapid interventions. Additionally, maps at ITC level (extracted by
lidar data that nowadays are available by public administrations in many countries) allow
a spatially detailed map of the outbreak evolution and a punctual intervention by forest
managers. Indeed, from a management point of view, the possibility to detect the attack at
an early stage is very important as it allows planning the harvesting in order to stop the
attack and minimize economic losses.

As future developments, it would be interesting to make use of sensors with higher
spatial resolution, such as Dove/Planet constellation, in order to perform a more detailed
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ITCs analysis. Even though the oldest generation of Dove/Planet does not come with
a red edge band, which in this study and many others emerged to be quite relevant in
the proper detection of bark beetle attack stages, the newest generation (since 2019) does
come with such information [81]. Thus, working with higher spatial resolution sensors
would allow for further studying the impact of multitemporal information on bark beetle
infestation monitoring.
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19. Fernandez-Carrillo, A.; Patočka, Z.; Dobrovolný, L.; Franco-Nieto, A.; Revilla-Romero, B. Monitoring Bark Beetle Forest Damage
in Central Europe. A Remote Sensing Approach Validated with Field Data. Remote Sens. 2020, 12, 3634. [CrossRef]

20. Franklin, S.E.; Wulder, M.A.; Skakun, R.S.; Carroll, A.L. Mountain Pine Beetle Red-Attack Forest Damage Classification Using
Stratified Landsat TM Data in British Columbia, Canada. Photogramm. Eng. Remote Sens. 2003, 69, 283–288. [CrossRef]
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