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Abstract: The Gaofen-3 (GF-3) satellite can provide digital elevation model (DEM) data from its
interferogram outputs. However, the accuracy of these data cannot be ensured without applying a
surveying and mapping (SAM) calibration process, thus necessitating geometric and interferometric
calibration technologies. In this paper, we propose an independent parameter decomposition (IPD)
method to conduct SAM calibration on GF-3 data and generate high-accuracy DEMs. We resolved the
geometric parameters to improve the location accuracy and resolved the interferometric parameters
to improve the height accuracy. First, we established a geometric calibration model, analyzed
the Range–Doppler (RD) model and resolved the initial imaging time error as well as the initial
slant range error. Then, we established a three-dimensional reconstruction (TDR) model to analyze
the height error sources. Finally, the interferometric phase error and baseline vector error were
precisely estimated to ensure the vertical accuracy of the interferometric results by establishing the
interferometric calibration model. We then used the GF-3 interferometric data derived on the same
orbit in a north–south distribution to conduct the calibration experiment. The results show that the
plane positioning accuracy was 5.09 m following geometric calibration, that the vertical accuracy
of the interferometric results was 4.18 m following interferometric calibration and that the average
absolute elevation accuracy of the derived DEM product was better than 3.09 m when using the GF-3
SAR data, thus confirming the correctness and effectiveness of the proposed GF-3 IPD calibration
method. These results provide a technical basis for SAM calibration using GF-3 interferograms at the
1:50,000 scale in China.

Keywords: InSAR; Gaofen-3; geometric calibration; interferometric calibration; IPD; DEM

1. Introduction

The Gaofen-3 (GF-3) satellite is the first civil C-band multipolarization synthetic aper-
ture radar (SAR) satellite in China. This satellite has 12 imaging modes, including strip,
spotlight and scanning modes. The image resolution ranges from 1 to 500 m, while the
observation width ranges from 10 to 650 km. GF-3 can monitor global ocean and land
information during all types of weather at all times and can expand the range of Earth
observations through left–right attitude maneuvering. The satellite data can be used in
many fields, such asoceanography, disaster reduction, water conservancy and meteorologi-
cal and mapping research, to improve rapid response capabilities. This satellite has also
filled the gap in civil autonomous high-resolution multipolarization SAR remote sensing
data in China [1,2]. Topographic mapping is an important application direction in the field
of remote sensing. Digital elevation model (DEM) data play important roles in national
economic construction and scientific research [3,4]. Precise surveying and mapping (SAM)
calibration technology has become one of the most effective means of global mapping;
by incorporating SAR interferometry (InSAR) to acquire interferometric phase informa-
tion of the land surface, high-precision elevation information is retrieved [5,6]. In 2000,
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the National Aeronautics and Space Administration (NASA), the National Imagery and
Mapping Agency (NIMA) and the German Aerospace Center (DLR) jointly conducted
the Shuttle Radar Topography Mission (SRTM), successfully completing approximately
80% of the proposed terrestrial topographic mapping mission on Earth; in addition, the
absolute elevation accuracy of the DEM obtained by the SRTM was 16 m [7,8]. In 2016, the
DLR acquired global TanDEM-X DEM data with an absolute elevation accuracy of 4 m;
these data were improved over other global DEM data in their accuracy, thus introducing
new opportunities for global topographic mapping [9]. In 2018, the DLR released global
TanDEM-X DEM data at a 90 m grid size [10,11]. Therefore, obtaining global DEM data
constitutes major engineering projects in the field of InSAR topographic mapping [11]. The
abilities of high-precision satellite measurements in this application are important and
depend not only on the design of the satellite platform index but also on the calibration of
the geometric and interferometric parameters [6,12]. Geometric calibration steps improve
the plane positioning accuracy of SAR images by calibrating the geometric parameters,
while interferometric calibration technologies improve the vertical accuracy of the interfero-
metric results by calibrating the acquired interferometric parameters [13,14]; together, these
calibration steps can be used to determine the accuracy level of a global DEM. At present,
many research teams in China and globally have published geometric and interferometric
calibration methods that are applicable for mainstream SAR satellites [9,13,15].

After applying the geometric calibration method to the data obtained by the Japanese
Advanced Land-Observing Satellite-Phased Array L-band SAR (ALSO-PALSAR), the geo-
metric positioning accuracy of the strip mode reached 9.7 m [16]. A 5.74 m plane positioning
accuracy was obtained for the Canada Radarsat-2 satellite after a geometric calibration
method using corner reflectors (CRs) was applied [17]. German TerraSAR-X satellite data
were subjected to high-precision geometric calibration with CRs and achieved a plane posi-
tioning result with an accuracy of 0.3 m [18]. In 2017, the geometric calibration precision of
the GF-3 SAR satellite was studied, and the positioning accuracy was found to be better
than 3 m [14]. In 2017, a multimode hybrid geometric calibration method was proposed for
GF-3 images, and the geometric positioning accuracy was found to be better than 3 m [19].
In 2018, a sparse-control multiplatform geometric calibration method was proposed for
TerraSAR-X/TanDEM-X and GF-3 images. The geometric positioning accuracy of the
TerraSAR-X/TanDEM-X images found using this method was better than 3 m, while that
of the GF-3 images was better than 7.5 m following calibration [15]. In 2020, a wide-area
joint geometric calibration method was proposed for GF-3 SAR images, and the positioning
error of the calibrated SAR images was better than 9 m [20]. Thus, this geometric calibration
method has been successfully applied in engineering and scientific research in the past.

Although interferometric calibration technologies are complex, extensive research
work has been conducted on this topic both in China and across the globe, and many
interferometric calibration methods have been proposed. In 1999, an airborne interfero-
metric calibration method based on a sensitivity equation was deduced using flat-ground
geometric relationships [21]. In 2001, based on this research, an airborne interferometric
calibration method was formulated based on the interferometric sensitivity equation under
squint angle conditions [22]. In 2003, a three-dimensional reconstruction (TDR) model
was introduced to derive the interferometric sensitivity equation, and a CR placement
algorithm was proposed to minimize the condition numbers in sensitivity matrices [23].
In 2010, an airborne interferometric calibration model was proposed to accommodate the
phase offset, baseline length and baseline angle [24]. Then, an airborne dual-antenna SAR
interferometric calibration method based on the three-dimensional information of control
points was proposed [25]. In 2011, a distributed satellite SAR interferometric altimetry
model was proposed based on the TDR model [26]. An interferometric calibration optimiza-
tion method for spaceborne distributed SAR systems was proposed to solve the problem
of coupling the contribution of interferometric parameters to the elevation error [27]. In
2016, the interferometric calibration method derived based on the InSAR TDR model and
sensitivity equation was verified using TanDEM-X data, thus proving the universality
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of this spaceborne SAR interferometric calibration method. However, in this technology
verification, each error was not solved independently [28]. Table 1 further describes the
current status of research on geometric and interferometric calibration methods.

Table 1. Research status of geometric calibration and interferometric calibration methods.

No. Year Authors Description of the Method

1 2017 R. Zhao, G. Zhang,
M. Deng [19]

A multimode hybrid geometric calibration method was proposed for GF-3 images,
and the geometric positioning accuracy was found to be better than 3 m.

2 2018 LÜ Guannan,
Tang Xinming, Ai Bo [15]

A sparse-control multiplatform geometric calibration method was proposed for
Ter-raSAR-X/TanDEM-X and GF-3 images. The geometric positioning accuracy of
the Ter-raSAR-X/TanDEM-X images found using this method was better than 3 m,

while that of the GF-3 images was better than 7.5 m following calibration.

3 2020 DING Liujian,
TAO Qiuxiang, LI Tao [20]

A wide-area joint geometric calibration method was proposed for GF-3 SAR
images, and the positioning error of the calibrated SAR images was better than 9 m.

4 1999 Zink M, Geudtner D [21]

An airborne interferometric calibration method based on a sensitivity equation
was deduced using flat-ground geometric relationships. The system parameters

that were found to affect the interferometric elevation measurements were
summarized, and the interferometric error sensitivity was analyzed.

5 2001 J. J. Mallorqui, M. Bara,
and A. Broquetas [22]

An airborne interferometric calibration method was deduced based on the
interferometric sensitivity equation under squint angle conditions. The simulation
data confirmed that the condition numbers of different sensitivity matrices affect
the interferometric calibration results differently; however, the identified corner

reflector placement problem has not yet been explored.

6 2003 Wang Yanping [23]
A three-dimensional reconstruction (TDR) model was introduced to derive the

interferometric sensitivity equation, and a CR placement algorithm was proposed
to minimize the condition numbers in sensitivity matrices.

7 2010 Jin Guowang, Zhang Wei,
Xiang Maosheng [24]

An airborne interferometric calibration model was proposed to accommodate the
phase offset, baseline length and baseline angle, but the plane information of

ground calibration points (GCPs) was not considered in this model.

8 2010
Zhang Wei,

Xiang Maosheng,
Wu Yirong [25]

An airborne dual-antenna SAR interferometric calibration method based on the
three-dimensional information of control points was proposed, and this method
could verify the plane and elevation accuracies of a DEM following calibration;

however, the correction of each interferometric parameter was not solved
independently in this method.

9 2011 HU Jiwei, Hong Jun [26]
A distributed satellite SAR interferometric altimetry model was proposed based
on the TDR model, and the characteristics of the baseline vector and phase error

were analyzed using simulated data.

10 2011 Zhang Yongjun [27]

An interferometric calibration optimization method for spaceborne distributed
SAR systems was proposed to solve the problem of coupling the contribution of
interferometric parameters to the elevation error. The simulated results showed

that the method was feasible, but the existing research on each error factor has not
been sufficiently deep, and studies analyzing measured supporting data have

been lacking.

11 2016 Wu Danqin [28]

The interferometric calibration method derived based on the InSAR TDR model
and sensitivity equation was verified using TanDEM-X data, thus proving the

universality of this spaceborne SAR interferometric calibration method. However,
in this technology verification, each error was not solved independently.

To date, geometric calibration technologies have gradually matured, and interferomet-
ric calibration technologies have developed from airborne to spaceborne systems. Although
extensive research has been conducted on this topic, most analyzed parameter errors ex-
hibit strong coupling effects during the interference process, and no joint solution has been
accurately distinguished, leading to inaccurate interferometric parameter corrections [28].
To solve this problem, a precise SAM calibration method is proposed herein based on
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independent parameter decomposition (IPD). We established a geometric calibration model
and resolved the initial imaging time error as well as the initial slant range error to improve
the location accuracy. On this basis, the interferometric phase error and baseline vector
error were precisely estimated to ensure the vertical accuracy of the interferometric results
by establishing the interferometric calibration model. The accuracy and reliability of the
proposed method were verified by processing GF-3 SAR data obtained on the same orbit
in six scenes, and high-accuracy DEM products were obtained, thus providing a technical
reference for the global mapping missions of domestic SAR satellites.

2. Geometric Calibration Model

Due to the measurement errors of satellite orbit and imaging parameters, the plane
positioning accuracy of SAR images is always restricted. Geometric calibration technologies
are the key to achieving high-precision SAR image positioning information and are also
the main method by which the generation of high-precision DEMs can be ensured. The
Range–Doppler (R-D) model, the mainstream positioning model used for SAR geometry
processing, is a rigorous model that conforms to the SAR imaging mechanism and describes
the geometric relationships between satellite sensors and object points in the geocentric
coordinate system. The R-D model is a nonlinear system of equations composed of the
slant range equation, Doppler equation and Earth ellipsoid equation; these three equations
can be expressed as follows [15]:

R1 =

∣∣∣∣→S 1 −
→
P
∣∣∣∣ (1)

fdop = − 2
λ

(→
S 1 −

→
P
)
·
(→

v s −
→
v t

)
R1

(2)

X2
t + Y2

t

(Re + Ht)
2 +

Z2
t

R2
p
= 1 (3)

where R1 is the distance between the main satellite sensor and the ground object,
→
S 1 = (Xs, Ys, Zs)

T is the position vector of the satellite sensor,
→
P = (Xt, Yt, Zt)

T is the
position vector of the ground object, fdop is the Doppler frequency, λ is the radar wave-

length,
→
v s =

(
Vx, Vy, Vz

)T is the velocity vector of the satellite sensor and
→
v t is the velocity

vector of the ground object. Because the ground object point is located on the Earth ellip-
soid, the velocity vector of the ground object point in the geocentric coordinate system
is 0; that is,

→
v t = 0. Re and Rp are the major semiaxes and minor semiaxes of the Earth

reference ellipsoid, respectively, and Ht is the elevation of the ground object.
The position and velocity vectors of the satellite sensor can be described as functions

of time using cubic polynomials, as shown in Formula (4).
Xs = a0 + a1t + a2t2 + a3t3

Ys = b0 + b1t + b2t2 + b3t3

Zs = c0 + c1t + c2t2 + c3t3


Vx = a1 + 2a2t + 3a3t2

Vy = b1 + 2b2t + 3b3t2

Vz = c1 + 2c2t + 3c3t2
(4)

According to the R-D positioning model, the variables that are necessary for geometric

positioning include the slant range (R), satellite sensor position vector (
→
S 1 = (Xs, Ys, Zs)

T),
satellite sensor velocity vector (

→
v s =

(
Vx, Vy, Vz

)T), Doppler frequency ( fdop), radar wave-
length (λ) and ellipsoid parameters (Re/Rp). Among them, the radar wavelength is a
known value that can be obtained according to the formula λ = c/ f , where c is the speed
of light and f is the frequency. The ellipsoid parameters can also be obtained after the
ellipsoid model is selected.

The slant range can be obtained by measuring the temporal difference between the
transmission and reception of the radar pulse; the slant range error causes the position of
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the field of view of the target to move along the Doppler line, thus resulting in a positioning
error. In the geometric positioning model, the slant range can be expressed as a linear
function of the image column number as follows:

R1 = r0 + mj · j (5)

where r0 is the initial slant range, mj is the range pixel spacing and j is the range pixel
coordinate. In Equation (5), only the effect of the initial slant range error is considered
when assessing the positioning accuracy in the range direction.

The linear function between the azimuth direction time and image line number can be
expressed as follows:

t = t0 + t1 · i (6)

where t0 is the initial imaging time, t1 is the azimuth time spacing and i is the line number
of the image along the azimuth. Equation (6) considers only the effect of the initial imaging
time error on the positioning accuracy in the azimuth direction.

In summary, we consider only the impacts of the initial slant range and imaging time
on the plane positioning accuracy, so the geometric calibration parameters of interest in
this paper are (r0, t0). Then, the geometric calibration model is established according to the
R-D model, and the geometric calibration parameters are estimated.

First, a conditional equation based on the slant range equation is established as follows:

F1 =

∣∣∣∣→S 1 −
→
P
∣∣∣∣− (r0 + mj · j

)
(7)

Next, a conditional equation based on the Doppler frequency is established as follows:

F2 = − 2
λ
·

(→
S 1 −

→
P
)
·→v

R1
(8)

Then, the geometric calibration parameters are estimated using the nonlinear least
squares method by considering several calibration points derived based on the conditional
equation. The calibration parameter (r0, t0) is used as an unknown observation value,
and the error equation is obtained by linearizing the observation value derivation; these
equations can be expressed as follows: V1 = ∂F1

∂r0
∆r0 +

∂F1
∂t0

∆t0 + (F1)
0 − F1

V2 = ∂F2
∂r0

∆r0 +
∂F2
∂t0

∆t0 + (F2)
0 − F2

(9)

where the true observation value is F1 = F2 = 0. The observation errors (F1)
0 and (F2)

0

can be calculated by substituting approximate values of each undetermined geometric
calibration parameter (r0, t0) into Equations (7) and (8), respectively. The error equation
can be rewritten as a matrix and expressed as follows:

V = BX− L (10)

where V =

[
V1
V2

]
, B =

 ∂F1
∂r0

∂F1
∂t0

∂F2
∂r0

∂F2
∂t0

, X =

[
∆r0
∆t0

]
and L =

[
−(F1)

0

−(F2)
0

]
.



Remote Sens. 2022, 14, 3089 6 of 20

The coefficients in matrix B are derived from the partial derivatives of Equations (7) and (8)
to obtain the geometric calibration parameter (r0, t0), which can be expressed as follows:

∂F1
∂r0

= −1
∂F1
∂t0

= K
R2

(
Q1R− MQ2

R

)
∂F2
∂r0

= 0
∂F2
∂t0

= Q2
R

(11)

where K = −2/λ, M = Xv(Xs − Xt) + Yv(Ys −Yt) + Zv(Zs − Zt), and

Q1 = Xv
(
a1 + 2a2t + 3a3t2)+ (Xs − Xt) · (2a2 + 6a3t) + Yv

(
b1 + 2b2t + 3b3t2)+ (Ys −Yt) · (2b2 + 6b3t)+

Zv
(
c1 + 2c2t + 3c3t2)+ (Zs − Zt) · (2c2 + 6c3t)

Q2 = (Xs − Xt) ·
(
a1 + 2a2t + 3a3t2)+ (Ys −Yt) ·

(
b1 + 2b2t + 3b3t2)+ (Zs − Zt) ·

(
c1 + 2c2t + 3c3t2)

Finally, the normal equation can be established based on the initial value (X0) of the
geometric parameter.

BT BX− BT L = 0 (12)

The geometric correction parameter can then be corrected based on the normal equa-
tion; the result can be written as follows:

∆X =
(

BT B
)−1

BT L (13)

The first geometric calibration parameter estimation can be obtained as follows:

X = X0 + X (14)

The geometric correction parameter solution is obtained in a gradual iterative approach
process. First, the initial values of calibration parameters r0 and t0 are obtained; then, the
error equation is established according to these initial values, and the geometric calibration
parameter is corrected using the normal equation. Next, the first approximate value of the
calibration parameter is obtained, and this value is taken as the initial value in the next
iteration. When the calibration parameter gradually stabilizes after many iterations and the
parameter correction is less than the specified threshold (ε = 10−6), the iteration is said to
have converged. At this time, the cumulative parameter correction result is considered to
be the final error in the geometric calibration parameters.

3. Three-Dimensional Reconstruction Model

The TDR is the basic model applied to spaceborne InSAR. Its basic principle in-
volves obtaining the three-dimensional coordinates of GCPs by combining the slant range
equation and Doppler equation in the R-D positioning model through the interferomet-
ric equation [29].

Herein, we describe the geometric relationship of the InSAR data in geocentric space

rectangular coordinates (O-XYZ), as shown in Figure 1, where S1 and S2 are satellites;
→
R1

and
→
R2 are the position vectors of the satellite to the GCP;

→
P is the position vector of the

GCP; R1 and R2 are the slant ranges of S1 and S2, respectively;
→
v is the velocity vector;

fdop is the Doppler frequency; λ is the radar wavelength; ϕ is the absolute phase; φ is the
wrapped phase; B is the baseline vector; and Q is the antenna receiving mode. The Q
values of 2 and 1 represent the repeated-orbit interferometric mode and the double-antenna
interferometric mode, respectively.
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Figure 1. Geometric relationships of the spaceborne InSAR.

We mainly focus on the cross-track interferometry (XTI) mode of the spaceborne InSAR.
The slant range equation, the Doppler equation in the R-D model and the interferometric
phase equation are combined to establish the TDR model, and the geometric relationships
can be expressed as follows:

R1 =

∣∣∣∣→S 1 −
→
P
∣∣∣∣ (15)

fdop = − 2
λ

(→
S 1 −

→
P
)
·
(→

v s −
→
v t

)
R1

(16)

ϕ = φ+2kπ =
2πQ(R1 − R2)

λ
(17)

According to the geometric relationships of the interferometric SAR, the GCP can be
expressed in O-XYZ coordinates as follows:

→
P =

→
S 1 +

→
R1 =

→
S 1 + R1 · r̂ (18)

where
→
R1 is the look vector and r̂ is the unit look vector. In Equation (18), the look vector

decomposition (LVD) method is generally used to obtain the GCP coordinates. In this
work, we convert the look vector to the unit look vector during the calculation [29], and
the unit look vector needs to be represented in the Madsen moving coordinate (MMC)
system [30]. The MMC system is based on applying the phase center of the main antenna
as the origin of the coordinate system; the velocity vector direction is set to be equal to the
V axis; the velocity and baseline cross product direction are set to be equal to the W axis;
and V, N and W are set to meet the requirements of the right-hand coordinate system. To
more conveniently describe the system, we refer to the MMC system as VNW in this work.
The terms rv, rn and rw are considered components of the unit look vector on the V, N and
W axes, respectively, and r̂ can be written as follows:

r̂ =

 rv
rn
rw

 (19)

In the LVD method, the look vector is converted from VNW coordinates to O-XYZ coor-
dinates to obtain the three-dimensional coordinates of the GCPs, as shown in Equation (20) below:
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→
P =

→
S 1 +

→
R1 =

→
S 1 + R1·T−1

vnw·r̂vnw

=
→
S 1 + R1·

 →v∣∣∣→v ∣∣∣ ,
(
→
v ⊗

→
B
)
⊗→v∣∣∣∣(→v ⊗→B)⊗→v ∣∣∣∣ ,

(
→
v ⊗

→
B
)

∣∣∣∣(→v ⊗→B)∣∣∣∣



λ fdop

2
∣∣∣→v ∣∣∣

R1
2|bpv|

1 +

∣∣∣∣→B ∣∣∣∣2
R2

1
−
(

1− λϕ
2πQR1

)2

− bvrv
|bpv|

±
√

1− r2
v − r2

n


(20)

where T−1
vnw is the transformation matrix, bv is the baseline component in the velocity

direction and bpv is the baseline component in the direction perpendicular to the velocity.
According to the TDR expression, the main factors that affect the precision of interfer-

ometric SAR data are the interferometric phase error and the baseline vector error. Due to
coupling among interferometric parameter error sources, to improve the accuracy of the
interferometric parameter calculations during the calibration process, we adopted the IPD
method, thus allowing us to precisely estimate the interferometric phase error and baseline
vector error, improve the vertical accuracy of interferometric results and ultimately obtain
high-precision DEM products.

4. Interferometric Calibration Model

The method utilized in this paper is based on the transmission characteristics of the
interferometric phase error and baseline vector error to the elevation error; these charac-
teristics are used herein to establish the interferometric calibration model. In spaceborne
InSAR topographic mapping, interferometric phase errors generally consist of random and
systematic errors. The random errors are caused by incoherent sources in the InSAR system,
and the corresponding phases are randomly distributed; these errors are not involved in
the calibration process. The systematic errors consist of phase drift, phase synchronization,
temperature and absolute phase deviation errors [12,27]. Because the phase drift, phase
synchronization and temperature errors are not the main sources of interferometric phase
errors, they are omitted from the calibration process in this work. In a spaceborne InSAR
system, when the interferometric phase is filtered and unwrapped, fixed deviations still
exist among the flat phase, the unwrapped phase and the absolute interferometric phase;
this fixed deviation can be considered the absolute phase deviation [31]. Therefore, the main
component of the interferometric phase error is the absolute phase deviation, calculated as
the interferometric parameter in this paper.

First, the absolute interferometric phase of each point was obtained from the GCPs.
Then, the unwrapped phase and flat phase were subtracted from the absolute phase. Finally,
the fixed deviation of the phase data of the SAR image was compensated based on the
mean estimation method. In this way, the interferometric phase error of each image was
obtained as follows:

ϕo f f = ϕabs − ϕ f la − ϕunw =
2π(R1 − R2)

λ
− ϕ f la − ϕunw (21)

where ϕabs is the absolute interferometric phase, ϕunw is the unwrapped phase, ϕ f la is the
flat phase and ϕo f f is the interferometric phase error.

In spaceborne InSAR topographic mapping, the baseline vector error directly affects
many factors, such as the elevation ambiguity and the transmission coefficient of the eleva-
tion error. The baseline is a three-dimensional vector, and to more conveniently express the
baseline parameters, the track–cross–normal (TCN) coordinate system is generally adopted.
In this system, the master antenna phase center is set as the origin of the coordinates,
and the N axis is derived from the main antenna phase center in the direction pointing
toward the geocenter; the cross-product direction between the N axis and the velocity
vector is considered the positive direction of the C axis, and T, C and N are set to meet
the requirements of the right-hand coordinate system [28]. The baseline vector is then
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decomposed into the initial baseline and time-related baseline rate in the TCN system.
Considering that all calculations are projected to the zero-Doppler plane of the main image
during the XTI process conducted in this paper, the baseline along-track direction is always
zero (Bt = 0) [32]. The baseline vectors are calculated as follows:

Bt = 0
Bc = bc0 + t · bcv
Bn = bn0 + t · bnv

(22)

where Bt, Bc and Bn are the baseline three-dimensional (3D) vectors of the TCN coordinate
system; bc0 and bcv are the initial baseline and baseline rate of baseline Bc in the C direction;
and bn0 and bnv are the initial baseline and baseline rate of baseline Bn in the N direction.

In this paper, when the baseline vector parameters are calibrated, we first start from
the TDR model expression of the InSAR data; then, the sensitivity equation is established.
Finally, we use the adjustment model to correct the interferometric parameters based on the
least-squares criterion. To improve the accuracy of the baseline calculation, we adopt the
iteration method. The root mean square error (RMSE) of the coordinate difference derived
before and after the iteration is defined as the objective function. When the objective
function is less than a specified threshold (ε = 0.05 in this paper), iterative convergence
occurs. Finally, high-precision baseline 3D vectors are obtained to ensure the generation
of high-precision DEM products. The process by which the baseline vectors are precisely
estimated is shown in Figure 2 [13].

Figure 2. Methodological flow of the spaceborne SAR interferometric calibration process.
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First, TDR equations representing the three coordinate axis directions are derived from
the spaceborne InSAR model; these equations can be expressed as follows:Fx

Fy
Fz

 =

Sx
Sy
Sz

−
Px

Py
Pz

+ R1

a11 a12 a13
a21 a22 a23
a31 a32 a33

rv
rn
rw

 (23)

where
[
Sx Sy Sz

] T are the coordinates of the master antenna phase center,
[
Px Py Pz

] T

are the coordinates of the GCP, R1 is the slant range between the phase center of the master

antenna and the GCP and

a11 a12 a13
a21 a22 a23
a31 a32 a33

 is the transformation matrix.

Second, the partial derivative of the baseline vector is calculated based on the TDR
equation, and the interferometric sensitivity equation is established; this equation can be
expressed as follows:

∂Fx
∂X
∂Fy
∂X
∂Fz
∂X

 =


∂Sx
∂X
∂Sy
∂X
∂Sz
∂X

+
∂R1

∂X

a11 a12 a13
a21 a22 a23
a31 a32 a33

rv
rn
rw

+ R1




∂a11
∂X

∂a12
∂X

∂a13
∂X

∂a21
∂X

∂a22
∂X

∂a23
∂X

∂a31
∂X

∂a32
∂X

∂a33
∂X


rv

rn
rw

+

a11 a12 a13
a21 a22 a23
a31 a32 a33




∂rv
∂X
∂rn
∂X
∂rw
∂X


 (24)

The error equation is then established as follows:

VB =



∂Fx1
∂bc0

∂Fx1
∂bcv

∂Fx1
∂bn0

∂Fx1
∂bnv

∂Fy1
∂bc0

∂Fy1
∂bcv

∂Fy1
∂bn0

∂Fx1
∂bnv

∂Fz1
∂bc0

∂Fz1
∂bcv

∂Fz1
∂bn0

∂Fx1
∂bnv

... ... ... ...
∂Fxn
∂bc0

∂Fxn
∂bcv

∂Fxn
∂bn0

∂Fxn
∂bnv

∂Fyn
∂bc0

∂Fyn
∂bcv

∂Fyn
∂bn0

∂Fyn
∂bnv

∂Fzn
∂bc0

∂Fzn
∂bcv

∂Fzn
∂bn0

∂Fzn
∂bnv




∆bc0

∆bcv

∆bn0

∆bnv

+



(Fx1)−(
Fy1
)
−

(Fz1)−
· · ·

(Fxn)−(
Fyn
)
−

(Fzn)−

Fx1

Fy1

Fz1

· · ·
Fxn

Fyn

Fzn


(25)

where ∆bc0 and ∆bcv denote the correction of the initial baseline and the baseline rate in the
C direction, respectively, and ∆bn0 and ∆bnv denote the correction of the initial baseline and
the baseline rate in the N direction, respectively. The observation error can be calculated
as follows: [

(Fx1) · · · (Fzn)
]T

=
[
P0

x1 − Px1 · · · P0
zn − Pzn

]T (26)

where
[

P0
xi P0

yi P0
zi

] T
are the three-dimensional reconstruction coordinates of the targets,[

Pxi Pyi Pzi

] T
are the coordinates of the known GCP, and

[
Fx1 · · · Fzn

] T
= 0 is the

true observed value.
In the interferometric calibration process, the observation accuracy usually varies

due to different observation conditions; thus, the introduced errors are often different.
The coherence coefficient is an important criterion used to evaluate the quality of SAR
images. Therefore, in this work, the coherence coefficients of the GCPs are weighted, and
the objective function is expressed as follows:

Jmin = VTWV (27)
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where W is the diagonal matrix. The diagonal matrix can be written as follows:

W =


w1 0 · · · 0

0 w2
...

...
. . . 0

0 · · · 0 wn

 (28)

where wi is the coherence coefficient of each GCP.
Finally, given the initial values of the baseline vector parameters, the normal equation

can be established as follows:

ATWAX− ATWL = 0 (29)

The baseline vector was corrected based on the normal equation, which could be
denoted as follows:

∆X= (ATWA
)−1

ATWL (30)

The first estimation of the baseline vector was obtained as follows:

X = X0 + ∆X (31)

5. Experiments and Analyses
5.1. Experimental Data

In this work, the research areas are located in southern Nanyang city in Henan Province
and in northern Xiangyang city and western Jingzhou city in Hubei Province. The whole
study area covered approximately 55 km in the east–west direction and 411 km in the
north–south direction. The topographic relief is very small, and the topographic type
is typical flat terrain. The geographical location of the study area is shown in Figure 3.
Fifty-six GCPs were acquired from the differential global positioning system (DGPS) in
the geodetic coordinate system. The plane positioning error was 15 cm, and the elevation
measurement error was 20 cm. The interferometric phase error was less than 1.12◦, allowing
these data to be used for high-precision measurement calibration tasks. Road intersections,
house corners and other feature points were selected as GCPs in this paper [33], and the
detailed GCP distribution is shown by the green triangles in Figure 3b,c. Before using the
Ice, Cloud and Land Elevation Satellite (ICESat) data, it was necessary to filter out some
data with elevation errors of tens or even hundreds of meters due to the presence of clouds,
trees or buildings. In the end, a total of 10,438 points were selected, and the detailed point
distribution is shown using the red dots in Figure 3b,c.

We chose six FS1 GF-3 images obtained in the descending direction to conduct our
interferometric calibration experiment. Table 2 presents the derived statistics on the ex-
perimental image parameters. The images are denoted as A–F from top to bottom. SAR
images A, C and F were acquired on 29 November 2016, while SAR images B, D and E
were acquired on 28 December 2016. In this paper, a total of four pairs of interferometric
regions were formed. The number of interferometric pairs, as well as the initial baseline
and baseline rates in the TCN coordinate system, are listed in Table 2. The polarization
mode was HH, the incident angle was 42.8 degrees, the range resolution was 2248 m and
the azimuth resolution was 2865 m. SRTM data at a 90 m grid size were selected as the
external reference DEM data.
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Figure 3. The study area considered in this paper: (a) the geographical location of the study area,
(b) enlarged views of areas A to D, and (c) enlarged views of areas E to F. In (b,c), the white wireframes
indicate the coverage of the SAR images, the green triangles denote GCPs, and the red points are the
ICESat track.

Table 2. Parameters of experimental images.

ID Initial Baseline in the TCN
Direction (m)

Baseline Rate in the TCN
Direction (m/s)

A–B 0, 1087.691, 419.482 0, 0.596, 0.182
B–C 0, −1090.332, −419.650 0, −0.575, −0.070
C–D 0, 1092.000, 420.847 0, 0.723, 0.065
E–F 0, −1117.443, −423.586 0, −0.506, −0.066

5.2. Results and Analysis
5.2.1. Plane Positioning Accuracy Analysis

The plane positioning accuracies of the SAR images were evaluated using an indirect
positioning algorithm (IPA). First, the image coordinates and geodetic coordinates of the
GCPs were obtained. Then, the geodetic coordinates of the GCPs were transformed into
image coordinates with the IPA. Finally, the RMSEs of the azimuth and range directions of
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all GCPs were obtained, and the RMSEs of the image points were calculated to evaluate the
plane positioning accuracies of the SAR images. The results are shown in Table 3.

Table 3. Plane precisions of the test images before the geometric calibration process.

SAR Image
Number

Number of
GCPs

RMSE

Azimuth (m) Range (m) Plane Precision (m)

A 15 44.789 28.803 53.251
B 15 40.553 28.160 49.371
C 15 21.523 21.293 30.275
D 15 19.574 21.288 28.919
E 15 30.531 17.282 35.082
F 15 24.074 16.763 29.335

Average 30.174 22.264 37.706

Table 3 shows that the average plane positioning accuracy of the six GF-3 images
before the geometric calibration process was 37.706 m. The ∆t and ∆r corrections associated
with the geometric parameter errors of each image were obtained after the six images were
geometrically calibrated, and the initial time and slant range were both compensated for.
The indirect geometric positioning algorithm was used to evaluate the plane positioning
accuracies of the calibrated SAR images, and the results are listed in Table 4.

Table 4. Plane precision results of the test images after the geometric calibration process.

SAR Image
Number

Geometric Parameter
Correction RMSE

∆t (ms) ∆r (m) Azimuth (m) Range (m) Plane Precision (m)

A −3.229 −19.843 3.20 4.00 5.12
B −3.227 −18.168 2.86 3.04 4.17
C −3.229 −15.545 2.97 5.89 6.59
D −2.733 −21.247 2.40 4.30 4.92
E −3.401 −16.430 3.00 3.24 4.41
F −4.632 −15.396 2.20 4.88 5.35

Average 2.77 4.22 5.09

From Table 4, it can be seen that the average plane accuracy of the six GF-3 images after
the geometric calibration process was 5.09 m, the average positioning error of the ranges of
the image points was 4.22 m (approximately 1.87 pixels) and the average positioning error of
the azimuths of the image points was 2.77 m (approximately 0.96 pixels). These results show
that the plane positioning accuracies of the SAR image after geometric calibration can ensure
the vertical accuracy of the interferometric results in the subsequent calibration process.

5.2.2. Vertical Accuracy Analysis

The elevation information of the GCPs was calculated using the spaceborne SAR
interferometric model, and the results were evaluated using the elevations of the known
GCPs to obtain the vertical accuracies of the interferometric results, as shown in Table 5.

Table 5. Vertical accuracies of the interferometric results before the interferometric calibration process.

Interferometric Pair Number of GCPs Vertical Accuracy (m)

A–B 15 396.682
B–C 11 16.950
C–D 15 175.936
E–F 15 75.069

Average 166.159
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Table 5 shows that the average elevation accuracy of the four pairs of GF-3 data was
166.159 m before the interferometric calibration process. We performed an interferometric
calibration experiment on four pairs of GF-3 data. First, the phase error and baseline vector
error were corrected based on IPD. Then, the absolute interferometric phase and baseline
vector were compensated for. Finally, the vertical accuracy of the interferometric results
was evaluated using the spaceborne SAR interferometric model; the evaluation results are
listed in Table 6.

Table 6. Vertical accuracies of the interferometric results after the interferometric calibration process.

Interferometric
Pair

Number
of GCPs

Phase Error (◦) Interferometric Parameter Correction Vertical
Accuracy (m)∆ϕ ∆bc0 ∆bn0 ∆bcv ∆bnv

A–B 15 −137.337 −0.194 0.558 0.0113 −0.120 6.31
B–C 11 −96.657 −0.534 0.412 0.029 −0.010 2.26
C–D 15 −115.966 0.816 −0.592 −0.126 0.0041 4.45
E–F 15 −97.804 −0.127 0.535 0.0918 −0.034 3.70

Average 4.18

As shown in Table 6, the average vertical accuracy of the four pairs of GF-3 data was
4.18 m following the calibration process, and this accuracy meets the requirements for
1:50000-scale topographic mapping in flat areas. The vertical accuracies of the A–B, B–C,
C–D and E–F pairs were 6.31 m, 2.26 m, 4.45 m and 3.70 m, respectively.

5.2.3. Spatiotemporal Analysis

To verify the applicability and stability of the calibration parameters characterizing
the same-orbit images obtained at different imaging times, we conducted calibration
compensation verification experiments. The interferometric calibration results of the A–
B pair were compensated using those of the E–F pair, which had the longest imaging time
difference in the same orbit. Finally, the accuracy of the verification data was evaluated;
the evaluation results are listed in Table 7.

Table 7. Accuracy evaluation results of the verification scene data.

Interferometric Pair Image Type
Interferometric Parameter Correction

Vertical Accuracy (m)
∆ϕ (◦) ∆bc0 (m) ∆bn0 (m) ∆bcv (m/s) ∆bnv (m/s)

E–F Calibration scene −97.804 −0.127 0.535 0.0918 −0.034 3.70
E–F Verification scene −137.337 −0.194 0.558 −0.0113 0.120 4.75

As Table 7 shows, when the calibration parameters were used to compensate for the
verification scenes, the average vertical accuracy of the interferometric results without
control points was 4.75 m; this accuracy meets the standard requirements of 1:50,000-scale
topographic map mapping above grade 3 in flat areas in China (≤6 m) [34].

To analyze the influence of the spatial distribution of GCPs on the interferometric
calibration results, we selected a pair of interferometric data (pair B–C) as an example and
designed four schemes characterizing different spatial distributions of GCPs. In schemes (a),
(b) and (c), six points were selected, while in scheme (d), 11 points were selected. The GCPs
in scheme (a) were distributed along the azimuth, those in scheme (b) were distributed
along the range and those in schemes (c) and (d) were randomly distributed, as shown
in Figure 4. The number of calibration points included in schemes (a) and (b) were the
same, but their spatial distribution modes were differentiated to verify the influence of the
spatial distribution mode of the calibration points on the interferometric calibration results.
Schemes (c) and (d) had the same calibration point distribution modes, characterized by
random distributions, but the numbers of calibration points were differentiated to verify
the influence of the number of calibration points on the interferometric calibration results.
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Figure 4. Four GCP layout schemes considered herein: (a) denotes the distribution of the 6 points
along the azimuth direction, (b) denotes the distribution of the 6 points along the range direction (c)
and (d) denote the distribution of 6 and 11 points along the random direction, respectively. Where
the blue triangles represent the GCPs.

Under the guarantee of the plane positioning accuracy of the utilized SAR images, the
spatial distribution and number of GCPs directly affect the accuracy of the interferometric
calibration results; these effects were explored by establishing four calibration schemes. The
vertical accuracies of the interferometric results derived after calibration were evaluated
according to the spaceborne SAR interferometric model; the results are listed in Table 8.

Table 8. Evaluation results of the interferometric calibration accuracies derived under 4 calibra-
tion schemes.

Scheme ∆ϕ (◦) ∆bc0 (m) ∆bn0 (m) ∆bcv (m/s) ∆bnv (m/s) Elevation Accuracy (m)

(a) −108.232 −0.423 0.333 0.0760 −0.0442 2.513
(b) −116.711 −0.425 0.334 0.0763 −0.0445 2.640
(c) −96.543 −0.246 0.200 0.775 −0.572 5.584
(d) −96.657 −0.534 0.412 0.0294 −0.0106 2.260

As shown in Table 8, when the number of calibration points was consistent, as between
schemes (a) and (b), the elevation accuracy of scheme (a) was found to be better than that
of scheme (b). Thus, the interferometric calibration accuracy was higher when the GCPs
were distributed along the azimuth than along the range. While scheme (c) contained
six GCPs and scheme (d) contained 11 GCPs, the GCPs in both schemes were randomly
distributed in space; we found that the elevation accuracy of scheme (d) was better than
that of scheme (c). Therefore, when GCPs are randomly distributed, the greater the number
of points, the higher the interferometric calibration accuracy.
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5.2.4. DEM Accuracy Analysis

We proposed a precise SAM calibration method based on GF-3 data. We decomposed
the plane and elevation error sources in the spaceborne InSAR system by establishing
IPD models; these factors are also the main sources of DEM product errors. In this paper,
TanDEM-X DEM and ICESat data were used to evaluate the absolute elevation accuracy of
the analyzed DEM after calibration, and the results are listed in Table 9.

Table 9. DEM accuracy evaluation results (unit: m).

Interferometric Pair TanDEM-X DEM ICESat

A–B 2.10 2.63
B–C 2.73 2.78
C–D 2.40 3.09
E–F 1.44 2.55

Focusing on interferometric pair A–B, following the calibration process, the absolute
elevation accuracies of the derived DEM were better than 2.10 m when the TanDEM-X
DEM was used and 2.63 m when ICESat data were used. Regarding interferometric pair
B–C, the post calibration absolute elevation accuracies of the DEMs were better than 2.73 m
when the TanDEM-X DEM was used and 2.78 m when the ICESat DEM was used. For
interferometric pair C–D, the post calibration absolute elevation accuracies were better
than 2.40 m when TanDEM-X DEM was applied and better than 3.09 m when ICESat was
applied. Focusing on interferometric pair E–F, the absolute elevation accuracies of the
calibrated DEM were better than 1.44 m when TanDEM-X DEM was used and better than
2.55 m when ICESat data were used.

To quantitatively analyze the elevation variations in the GF-3-derived DEM following
the calibration process, we drew a transect in the flat area shown in Figure 5a,b according
to the distribution of ICESat points. As shown in Figure 5a, this transect covers pairs A–B,
B–C and C–D from the northwest to the southeast corners of the image, with a length of
approximately 106 km. As shown by the black line (labeled n) in the figure, the section map
corresponds to Figure 6a. The section line shown in Figure 5b spans from the north to the
south regions of the image with a length of approximately 45 km. As shown by the black
line (labeled m) in the figure, the section map corresponds to Figure 6b, and the elevation
data of the GF-3 DEM, ICESat DEM and TanDEM-X DEM are represented by green, red
and blue lines, respectively, in the figure.

Figure 5. DEM products obtained after the calibration process: (a) the DEM results corresponding to
interferometric pairs A–B, B–C and C–D and (b) DEM results corresponding to interferometric pair
E–F. In (a,b), the green triangles show the GCPs and the red points show the ICESat laser points.
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Figure 6. Elevation distribution maps of transects m and n: (a) the elevation change along section
line m in interferometric pairs A–B, B–C and C–D; (b) the elevation change along section line n in
interferometric pair E–F; (c) the coherence distribution maps of interferometric pair B–C; (d) the
coherence distribution results of section line m. Panels (a1–a3) and (b1,b2) contain enlarged images
of regions with abnormal ICEsat points; the labels Pa1–Pb5 represent abnormal ICEsat points.
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It is obvious that the elevation data contained in the GF-3 DEM and TanDEM-X
DEM are basically consistent at interferometric pairs A–B, C–D and E–F. However, the
elevations at some ICESat laser points are abnormal, as shown in Figure 6a1–a3,b1,b2.
The information in the figure shows that the ICESat laser points in these areas are mainly
distributed in building construction areas and vegetation-covered areas, possibly leading
to poor elevation results. Therefore, the accuracy of the monitored GF-3 DEM products
derived by comparison to the TanDEM-X DEM in this area was higher than that of the
ICESat DEM.

Regarding interferometric pair B–C, the elevations of the ICESat DEM and TanDEM-X
DEM were basically consistent. However, compared to the elevations of the ICESat DEM
and TanDEM-X DEM, some of the elevation data in the GF-3 DEM were obviously ab-
normal. For further analysis, the coherence distribution was calculated in this area, as
shown in Figure 6c; the coherence distribution corresponding to transect m is shown in
Figure 6d. According to the statistical results, the coherence of transect m was lower than
0.6, accounting for 26.5%. In other words, 26.5% of the points in this region were located in
incoherent areas, mainly due to the abundant ground feature information, including water
areas, vegetation areas, and residential and urban areas; this ground feature information is
often the main factor leading to incoherence in satellite images. Moreover, large shadows
and overlaps are generated in side-looking radar imaging, which may lead to the poor
accuracy of the elevation data reflected in the GF-3 DEM obtained in these areas.

6. Conclusions

In this paper, we proposed an IPD method to support the application of SAM ap-
proaches using GF-3 SAR data. In the proposed IPD method, geometric and interferometric
calibration models are separately utilized to prevent parameter coupling phenomena from
arising. We decomposed the sources of geometric and interferometric parameter errors
in the GF-3 SAR system by establishing IPD models, and the derived errors could also
be considered the main factors affecting the resulting DEM products. Herein, the plane
positioning accuracies of the SAR images, the vertical accuracies of the interferometric
results and the spatiotemporal distribution characteristics and elevation accuracies of DEM
products were analyzed. The correctness, reliability and practicability of the proposed
method were verified. The results show that the average plane positioning accuracy of the
SAR images was 5.09 m following the geometric calibration process, and the average post-
calibration vertical accuracy of the interferometric results was 4.18 m. The corresponding
average absolute elevation accuracy of the DEM products was better than 3.09 m. These
results confirm that the method proposed herein can improve the elevation accuracies of
Gaofen-3 DEM products, which met the 1:50000-scale topographic map SAM precision, or
even higher precisions, in the flat areas of China. Moreover, there are still some problems
to be further studied in this paper. Due to the lack of high-precision CRs, the method
proposed cannot fully verify the on-orbit calibration of satellites. Follow-up research will
mainly focus on this aspect.

The follow-up satellites to GF-3, i.e., the 1 m C-SAR 01 and 02, were launched on
23 November 2021 and on 7 April 2022. This ocean-monitoring SAR satellite constellation
consists of three satellites. The 1 m C-SAR satellites were designed in consideration of their
interferometric capabilities. An increasing number of interferograms can be provided by
this new satellite constellation, and these novel interferometric data can also be obtained
more easily. We hope that the proposed method will be useful in supporting the usage of
these new satellites.
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