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Abstract: The mapping of field boundaries can provide important information for increasing food
production and security in agricultural systems across the globe. Remote sensing can provide a viable
way to map field boundaries across large geographic extents, yet few studies have used satellite
imagery to map boundaries in systems where field sizes are small, heterogeneous, and irregularly
shaped. Here we used very-high-resolution WorldView-3 satellite imagery (0.5 m) and a mask
region-based convolutional neural network (Mask R-CNN) to delineate smallholder field boundaries
in Northeast India. We found that our models had overall moderate accuracy, with average precision
values greater than 0.67 and F1 Scores greater than 0.72. We also found that our model performed
equally well when applied to another site in India for which no data were used in the calibration
step, suggesting that Mask R-CNN may be a generalizable way to map field boundaries at scale. Our
results highlight the ability of Mask R-CNN and very-high-resolution imagery to accurately map
field boundaries in smallholder systems.

Keywords: field boundary delineation; Mask R-CNN; WorldView-3; smallholder farms; India

1. Introduction

Identifying field boundaries can provide important information for increasing food
production and security in agricultural systems across the globe. This is because knowing
field boundaries is fundamental for many analytical applications, including generating
crop statistics, quantifying the extent and drivers of yield gaps, and identifying potential
solutions to increase production [1–4]. It is particularly important to obtain such informa-
tion in smallholder farming systems, where yield gaps are large [5] and which produce
approximately 56% of global agricultural production [6,7]. Remote sensing can offer a way
to efficiently and cost-effectively map field boundaries across large spatial and temporal
scales. Current methods advancing field boundary mapping using satellite data have
primarily focused on large-scale farming systems, such as those in the Americas, Europe,
and Australia [4,8–10]. To date, little remote sensing work has been undertaken to map field
boundaries in smallholder systems, such as those found across Asia and Africa, where very
small field sizes (<0.64 ha) are prevalent [11]. This is largely because most previous studies
that have mapped field boundaries using satellite data have used moderate-resolution
imagery, such as Landsat (30 m) and Sentinel-2 (10 m) data, which are too coarse in spatial
resolution to map individual smallholder fields [12]. Very-high-resolution imagery, such as
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WorldView-3 data (0.31 to 2 m), can likely overcome these limitations and provide a viable
way to map individual smallholder field boundaries at scale.

Previous studies on mapping field boundaries have mostly used edge-based or region-
based methods [13,14]. Edge-based methods, such as the Canny detector, focus on identify-
ing discontinuities in images to select candidate pixels to represent field boundaries [15,16].
Region-based methods, such as multi-resolution segmentation, focus on grouping pix-
els into objects based on some homogeneity criterion [17,18]. Although both methods
have shown promise in mapping field boundaries, they also have limitations. Edge-based
methods are sensitive to noise, which can lead to false edge or boundary detection results.
Region-based methods often generate segmentation errors in the boundaries between
regions [19]. To overcome these limitations, researchers have developed hybrid methods,
such as combining contour detectors and hierarchical image segmentation, which have been
shown to improve cadastral boundary detection accuracy values [20]. Although these meth-
ods have shown promise, they are unsupervised and have been created to detect generic
boundaries that include any edge in an image. These methods are likely less effective
compared to supervised methods that are trained to specifically detect semantic contours,
which separate different categories of interest, such as agricultural field boundaries [10].

Recent studies have shown that deep learning models are highly effective in learn-
ing contour features using satellite data. These supervised methods have the advan-
tage of learning higher-level features, such as shapes and colors, instead of solely rely-
ing on manually created features. In particular, deep convolutional networks, such as
U-Net, ResU-Net, and SegNet, have been used in the previous literature to map field
boundaries [10,21–23]. However, their effectiveness is limited because the delineated field
boundaries are usually segmented and require subsequent post-processing to connect the
fragmented contours and generate individual fields. In contrast, instance segmentation
could be used to achieve the detection and segmentation of each field separately. Framing
field boundary delineation as an instance segmentation problem can be an alternative
method of directly generating complete closed-field polygons. For example, the use of a
mask region-based convolutional neural network (Mask R-CNN) is one simple and highly
effective method that can be used for instance segmentation, in which each field can be
distinguished as an individual instance with its class, bounding box, and mask [24]. One
previous study using high-resolution satellite imagery from Google Maps compared the
accuracy of Mask R-CNN and U-Net in segmenting agricultural fields and found that Mask
R-CNN achieved higher average precision across fields in several countries [25]. However,
it remains unclear how well Mask R-CNN may work to map individual field boundaries
in regions with very small field sizes (<0.64 ha). Our study is one of the first to use Mask
R-CNN to map individual field boundaries in regions with very small field sizes.

Deep learning methods require sufficient annotated data to train end-to-end models,
especially for sophisticated deep learning architectures such as Mask R-CNN. In the context
of mapping agricultural fields or parcels, public datasets are useful, such as the Land Parcel
Identification System [8] and available cadastral data [4]. These datasets, however, are
usually not available in smallholder farming systems. To overcome this limitation, other
studies have used manual annotation of field boundaries based on the visual interpretation
of imagery or ground surveys, but both methods are time- and cost-intensive, resulting in
datasets that are typically limited to a relatively small region. Some studies have relied on
crowdsourcing methods to digitize field boundaries [26]; however, error may be introduced
due to high variation in experience and skill in interpreting satellite imagery [27]. One
possible way to reduce such challenges is to develop an iterative approach that combines the
digitization of field boundaries with the ability of deep learning methods to automatically
learn features. Such an approach may allow for the development of accurate models
using fewer manually collected field boundaries. Furthermore, it is possible that such
deep learning methods are generalizable across regions, reducing the amount of training
data needed to map field boundaries at large spatio-temporal scales [28]. We assessed the
ability of an iterative approach to improve model accuracy while reducing model training
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time, and also examined the generalizability of our model to new regions where it had not
been trained.

Finally, it is unclear what is the most effective way to process high-resolution imagery
to improve field boundary delineation accuracy, particularly for smallholder fields where
there is significant across- and within-field heterogeneity [12,29]. Panchromatic imagery
may lead to the highest accuracies as it provides texture pattern information that captures
the transitions between two fields [21,30]. On the other hand, spectral information from
multispectral imagery might have advantages over panchromatic imagery in handling
cases where the texture pattern across fields is not distinctive. Finally, edge-enhanced
images, which are processed to remove noise and increase the contrast at visible edges
in the imagery, could lead to better classification accuracy than unprocessed images. In
this study, we examine how the efficacy of our Mask R-CNN model varied based on these
different types of imagery.

In this work, we applied Mask R-CNN to the mapping of smallholder field boundaries
in Northeastern India using high-resolution WorldView-3 (WV-3) imagery. We had three
main objectives with this study.

(1) To compare the efficacy in the detection and delineation of several different im-
agery types in mapping smallholder field boundaries, including panchromatic, pan-
sharpened multi-spectral, and edge-enhanced imagery (all with a spatial resolution
of 0.5 m).

(2) To develop an iterative approach to efficiently collect training data, which relied on
annotating incorrectly predicted field boundaries from an initial Mask-RCNN model,
and assessing how much our model accuracy improved relative to the amount of
additional work needed to add additional training data using our iterative approach.

(3) To test the generalizability of our model by applying a model that we trained in Bihar,
India, to a site in Uttar Pradesh, India, a neighboring state where we did not use any
data for calibrating our model.

2. Study Area

We conducted our study in Northeast India, in the states of Bihar and Uttar Pradesh
in the eastern Indo-Gangetic Plains (IGP). This region is highly agrarian, with over 80%
of the population in Bihar and over 60% of the population in Uttar Pradesh employed in
agriculture [31,32]. Agriculture covers over 80% and 68% of the land area in Bihar and Uttar
Pradesh, respectively. Both states are dominated by smallholder farms, with an average
farm size in Bihar of 0.39 ha and an average farm size in eastern Uttar Pradesh of 0.64 ha.
There are two main growing seasons in this region, the monsoon season (kharif) and the
winter (rabi) season. The monsoon growing season starts in June and lasts until October,
and most farmers plant rice during this season. The winter season spans from November
to April, with most farmers planting wheat during this season [12,33]. The main region
for training/validating/testing our method was a 20 by 65 km2 region in Bihar where
five WV-3 scenes were available (Figure 1c). The secondary study area for assessing the
generalizability of our model was a 15 by 63 km2 region in eastern Uttar Pradesh, where
four WV-3 scenes were available (Figure 1b).
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location of satellite image scenes across five districts in Bihar. District boundaries are shown in 
black. Map source: Esri Topo World. 
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we (1) acquired and preprocessed the WV-3 satellite imagery; (2) created masks of field 
boundary annotation based on WV-3; (3) implemented segmentation; and (4) conducted 
performance evaluations. In Part 2 (Figure 2), we (1) ran the trained model based on un-
annotated images; (2) identified incorrectly delineated field polygons from Part 1; and (3) 
manually corrected field boundaries using visual interpretation of imagery. We then in-
cluded these corrected field boundary data as additional training data in subsequent 
model predictions. We refer to the annotated dataset from Part 1 as ‘the original dataset’, 
the iteratively annotated dataset from Part 2 as ‘the iterative dataset’, and data from both 
Parts 1 and 2 as the ‘final dataset’. To study the generalizability of our field boundary 
delineation model, we applied the Mask R-CNN models that we trained in Bihar to the 
second study site, Uttar Pradesh, where we used no data for model calibration. 

Figure 1. Panel (a) shows our study areas located in Bihar and Uttar Pradesh, India. Panel (b) shows
the location of the satellite image scenes across two districts in Uttar Pradesh. Panel (c) shows the
location of satellite image scenes across five districts in Bihar. District boundaries are shown in black.
Map source: Esri Topo World.

3. Methods
3.1. General Workflow

We conducted two broad steps, termed Part 1 and Part 2 (Figure 2), to use Mask
R-CNN to delineate smallholder field boundaries using WV-3 imagery. In Part 1 (Figure 2),
we (1) acquired and preprocessed the WV-3 satellite imagery; (2) created masks of field
boundary annotation based on WV-3; (3) implemented segmentation; and (4) conducted
performance evaluations. In Part 2 (Figure 2), we (1) ran the trained model based on
unannotated images; (2) identified incorrectly delineated field polygons from Part 1; and
(3) manually corrected field boundaries using visual interpretation of imagery. We then
included these corrected field boundary data as additional training data in subsequent
model predictions. We refer to the annotated dataset from Part 1 as ‘the original dataset’,
the iteratively annotated dataset from Part 2 as ‘the iterative dataset’, and data from both
Parts 1 and 2 as the ‘final dataset’. To study the generalizability of our field boundary
delineation model, we applied the Mask R-CNN models that we trained in Bihar to the
second study site, Uttar Pradesh, where we used no data for model calibration.
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Figure 2. Workflow of building the Mask R-CNN models using WV-3 in Bihar.

3.2. Satellite Image Acquisition and Preprocessing

For Bihar, a total of five WV-3 (Maxar Technologies, Inc., Westminster, CO, USA)
low-cloud (<5%) satellite image tiles were acquired for 29 October 2017. We acquired both
panchromatic imagery (465–800 nm, 0.5 m spatial resolution) and multispectral imagery
(2 m spatial resolution) for the same extent. The images were Level 2A radiometrically
corrected images and we did not perform further atmospheric correction. For Uttar Pradesh,
four WV-3 satellite image tiles were acquired for 23 February 2018. The scenes were cloud-
free, radiometrically corrected, and sensor-corrected Level 1B products. Given that these
were Level 1B products, several additional preprocessing steps were conducted prior to use
in our Mask R-CNN model. To geometrically correct and geolocate the image scenes, we
used vendor-provided image support data (ISD), including spacecraft telemetry (attitude
and ephemeris data) and geometric calibration files in ArcGIS Pro 2.7 (ESRI, Redlands,
CA, USA). To normalize for topographic relief and to improve geolocation accuracy, the
CGIAR Shuttle Radar Topography Mission (SRTM) 90 m digital elevation model (DEM) was
applied as a coarse DEM for each scene, which contained a rational polynomial coefficient
(RPC) sensor model [34–36]. The geometrically corrected images were then projected to
WGS-84 UTM Zone 44N with cubic convolution at a 0.5 m resolution for panchromatic
imagery, and at a 2.0 m resolution for multispectral imagery.

The near infrared 1 (770–895 nm), red (630–690 nm), and green bands (510–580 nm)
were pan-sharpened to a 0.5 m spatial resolution with the panchromatic band using the
gdal_pansharpen.py function from the GDAL library [37] with bilinear resampling to
create a false color composite image. Given that each WV-3 tile was large (more than 36,000
by 33,000 pixels) and computationally intensive to process, we cropped our WV-3 tiles
into smaller tiles that were 1024 by 1024 pixels in size. To obtain field boundary data to
train, validate, and test our Mask R-CNN models, we randomly selected 45 tiles from
the Bihar site and 9 tiles from the Uttar Pradesh site and annotated field polygons based
on visual interpretation of the imagery (Section 3.3). We then scaled each image tile to
0–255 (8 bits) using the 0.2 and 0.98 percentile values to improve the visual clarity of the
image. Finally, to assess whether edge enhancement and noise removal improved field
boundary detection accuracy, we applied edge enhancement to both the panchromatic
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and pan-sharpened multispectral data. Specifically, we applied the unsharp masking
algorithm [38] by following Equation (1) as follows:

Edge Enhanced Image = Original Image + (Original Image – Blurred Image) × Weighting Factor. (1)

In the equation, the term (Original Image – Blurred Image)× Weighting Factor refers
to the sharpening component. By multiplying a weighting factor larger than 1, the equation
can increase the high-frequency components (e.g., edges) in the images, while reducing
the noise level. We used a Gaussian standard deviation of 10 for the Gaussian filter
and a weighting factor of 2 for Equation (1) based on the visual results. All the image
preprocessing steps were implemented using the OpenCV [39], GDAL [37], and Pillow
libraries [40] in Python.

3.3. Field Boundary Annotation and Mask Creation

We manually digitized field boundaries as vector polygons using visual interpretation
of both the panchromatic and the color composite imagery using QGIS software [41]
(Figure 3). Some boundaries were difficult to identify using only one type of imagery. For
example, previous studies have shown that panchromatic images are better for identifying
textural transitions related with field boundaries, and multispectral images are better for
distinguishing different crop types [21]. Therefore, we examined both WV-3 panchromatic
and WV-3 multispectral imagery when annotating field boundaries, and in the cases where
field boundaries were ambiguous in both datasets, we examined high-resolution satellite
imagery from base maps (Maxar Technologies, Inc., Westminster, CO, USA) in the Google
Earth Engine (GEE) [42]. Although we acknowledge that the acquisition date of the imagery
in GEE is different than that of our WV-3 imagery, based on local knowledge of the area,
we believe that field boundaries did not change drastically from year to year or season
to season. To limit potential errors caused by the use of GEE data, we constrained its use
to fewer than 5% of all polygons and only in situations where boundaries in the WV-3
imagery were extremely unclear.
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Figure 3. (a) Example of panchromatic imagery, (b) multispectral imagery, and (c) digitized field
polygons for one 1024 × 1024 pixel tile.

We digitized 12,298 polygons across 45 cropped tiles in Bihar and 2266 polygons across
9 cropped tiles in Uttar Pradesh, using a set of consistent rules (Table S1 and Figure S1).
Since instance segmentation models require ground truth masks where each field polygon
represents a unique separated object, we rasterized the shapefile into a ground truth mask.
Because we used the snapping tool during the digitization process to minimize gaps and
overlap errors, rasterization resulted in stitched field polygons. To represent the real-world
boundary width and ensure that adjacent field polygons remained separated, we then
applied a buffer of −1 m to all polygons. All analyses were conducted using the GDAL [37]
and scikit-image [43] libraries in Python.
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3.4. Instance Segmentation and Model Implementation

Mask R-CNN is one of the state-of-art frameworks for instance segmentation with
high simplicity and effectiveness. It combines semantic segmentation and object detection
tasks together by generating bounding boxes and a segmentation mask. It is an intuitive
extension of the Faster R-CNN method and has two stages. At a high level, Mask R-CNN
consists of several modules: (1) a backbone structure that serves as a feature extractor and a
feature pyramid network to better present features at different scales; (2) a region proposal
network for generating a region of interest (RoI); (3) an RoI classifier for class prediction of
each RoI and a bounding box regressor for refining the RoI; and (4) an FCN with RoIAlign
and bilinear interpolation for predicting a pixel-accurate mask [24]. The total loss of the
training process is a multi-task loss, calculated by adding mask loss, class loss, and box
regression loss.

We used the Mask R-CNN implementation from GitHub (https://github.com/m
atterport/Mask_RCNN, accessed on 1 June 2020) [44], which is built on Keras [45] and
TensorFlow [46], for object detection and segmentation. Following a transfer learning
paradigm, we fine-tuned the pre-trained weights of the ResNet 101 model, which reduces
the model training time. Specifically, this model had been previously trained using the
Microsoft Common Objects in Context (COCO) dataset, which enabled the ResNet to
start with good models of many features, including but not limited to low-level ones
(e.g., edges, corners, and gradients), to segment fields as a new object class. Due to
the slow computational speed when running the models on 1024 × 1024 pixel tiles, we
further cropped our 45 annotated tiles (1024 × 1024 pixels) into 180 tiles (512 × 512 pixels).
To avoid overfitting, a common challenge in image segmentation using deep learning
methods, we split the original 180 annotated tiles into training/validation/testing datasets
using the ratio 80%/10%/10%. The validation dataset was used to identify the most
generalizable Mask-RCNN model based on the validation loss curves. We chose the model
weights where the validation loss reached its lowest value to minimize the chance of
overfitting our data (Figure S3). To introduce variety into our training data, we applied
data augmentation, a useful technique to artificially generate image samples through a
series of image transformations to existing images [47]. We randomly selected zero to two
types of the following operations: horizontal flips, vertical flips, 90◦/180◦/270◦ rotation,
80–150% brightness changes, and Gaussian blurs. Geometric transformations such as
flips were applied identically to both the input and label images. We only applied this
data augmentation to the training dataset to ensure that we minimized the chance of
overfitting our data. Our training model was trained using stochastic gradient descent
with a batch size of two images. The learning rate was set to 0.001 based on previous
studies that applied Mask R-CNN to high-resolution remote sensing imagery to map
features [48–50]. A learning momentum of 0.9 and a weight decay of 0.0001 were used,
similarly to the original Mask R-CNN paper [24]. We built our Mask R-CNN model on the
backbone of ResNet-101 and trained the ResNet-101 Stage 3 and up for 100 epochs, ResNet
101 Stage 4 and up for 60 epochs, and ResNet 101 layers for 40 epochs. Each epoch took
approximately 350 s to finish. All experiments were conducted on Amazon Web Services
(AWS) and utilized a p2.xlarge instance, for which we used an NVIDIA Tesla K80 GPU and
61 GB RAM.

3.5. Performance Evaluation

We evaluated model performance considering both detection accuracy and delineation
accuracy. Detection accuracy verified how well our model could correctly detect a small-
holder field, whereas delineation accuracy verified how well our model determined which
pixels were included in the field. The detection accuracy was evaluated based on the bound-
ing boxes and the delineation accuracy was evaluated based on the masks. We assessed
the precision, recall, the F1 Score, and the average precision (AP) metrics (Table S2) of the
bounding boxes and masks detected in Mask R-CNN for detection and delineation accuracy,
respectively. We defined a correctly detected or delineated field based on the intersection

https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN
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over union (IoU) (Figure S2) threshold of 0.50. A correctly detected or delineated field, or
true positive (TP), occurred when an IoU value greater than 0.5 was achieved considering
the amount of overlap between the predicted and ground truth field. In contrast, a false
positive (FP) occurred when a detected or delineated field had an IoU value less than 0.5
between the predicted and ground truth field or when duplicate detections or delineation
existed. A false negative (FN) occurred when the ground truth field had an IoU value
less than 0.5 when compared to a detected or delineated field. Although an IoU of 0.75 is
typically also used in natural image instance segmentation studies [24], we found that this
threshold was too high for our task, similarly to other studies that have attempted to map
objects using noisy satellite image data [50,51].

In addition to the above metrics, we assessed the mean IoU of all correctly delineated
fields (TP), which was calculated by comparing each correctly delineated field mask with
the corresponding ground truth mask [50]. We also reported the mean area of all correctly
delineated field masks with the corresponding field masks (in both square meters and the
number of pixels) and the mean area of all delineated field masks with the mean area of all
ground truth field masks (in both square meters and the number of pixels). In this way, we
could measure if our model overestimated or underestimated the field polygon area.

3.6. Postprocessing and Iterative Data Collection

We used results from our trained model (Section 3.4) to detect and delineate field
polygons. We then visually inspected the predicted fields and (1) manually corrected incor-
rectly annotated fields and (2) manually digitized missing field boundaries using visual
interpretation of the WV-3 panchromatic, WV-3 multispectral, or GEE imagery as detailed
in Section 3.3. Before manually adjusting field boundaries, we (1) added geographical
location information, (2) applied convex hull smoothing to reduce boundary irregulari-
ties, and (3) merged four neighboring 512 × 512 pixel tiles into one 1024 × 1024 pixel tile
to ensure a consistent spatial extent, as was used in the training data annotation steps
(Section 3.3). We performed this iterative polygon delineation method on 160 tiles, which
resulted in 11,278 additional polygons. We did not apply a −1 m buffer to this iterative
dataset since our model inherently delineated fields with this buffer. We added this itera-
tive dataset (n = 11,278 polygons) to the original dataset (n = 12,298 polygons) to produce
a final dataset of 23,576 polygons. We split all annotated tiles in the final dataset into
training/validation/testing datasets using the ratio 80%/10%/10% as we performed in
Section 3.4, resulting in 18,920, 2276, and 2380 polygons in the training/validation/testing
datasets, respectively (Table 1). We then reran the instance segmentation and conducted
accuracy assessments using this final dataset for training, testing, and validation.

Table 1. Description of training/validation/testing datasets that were used for building and evaluat-
ing the models in Bihar.

Dataset
The Number
of 512 × 512
Image Tiles

The Number
of Field

Polygons
Location Source Imagery

and Date

Original
Dataset of

First Test Site

Training 144 9664

Bihar Worldview-3
29 October 2017

Validation 18 1233

Testing 18 1401

Final Dataset
of First Test

Site

Training 272 18,920

Validation 34 2276

Testing 34 2380
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3.7. Applying Mask R-CNN Model to Second Test Site

To assess the model’s generalizability, we applied the model trained in Bihar to our
second test site in Uttar Pradesh, where no calibration data were used to train the model.
We used the model weights trained using the ‘final dataset’ from the Bihar site for each
respective image type; for example, we applied the model trained using the panchromatic
image in Bihar to the panchromatic image in Uttar Pradesh. The model performances
were evaluated using 2266 polygons across 36 WV-3 tiles that were 512 × 512 pixels in size
(Section 3.2), as described in Table 2. We ensured that the number of test polygons used in
Uttar Pradesh (n = 2266) was similar to the number of test polygons used in Bihar (n = 2380
polygons), which ensured consistency when evaluating performance. The same evaluation
metrics for detection and delineation were used as in the Bihar site (Section 3.5).

Table 2. Description of testing datasets that were used for evaluating the generalizability of models
in Uttar Pradesh.

Dataset
The Number
of 512 × 512
Image Tiles

The Number
of Field

Polygons
Location Source Imagery

and Date

Dataset of
Second Test

Site
Testing 36 2266 Uttar

Pradesh
Worldview-3 23
February 2018

4. Results
4.1. Accuracy of Using WV-3 in Bihar

Table 3 shows the detection accuracy assessment results for the first model, trained us-
ing the original dataset, and the second model, trained using the final dataset
(Figure 2). These results were obtained for our site in Bihar where the model was cal-
ibrated. Table 3 also shows the difference in detection accuracy for each of the four image
types—panchromatic, pan-sharpened multispectral, edge-enhanced panchromatic, and
edge-enhanced pan-sharpened multispectral imagery. The F1 Scores and the AP values
were similar across the four image types, with the models using edge-enhanced imagery
achieving slightly higher accuracies in the second model. With the original dataset, the
number of detected fields was smaller than the number of ground truth fields, as indicated
by the number of false positives (FP) and false negatives (FN); there were 27–28% false
positives and 30–36% false negatives across all models. In contrast, the number of detected
fields from the final dataset was larger than the number of ground truth fields; there were
27–30% false positives and 22–25% false negatives across all models. The second model,
which included the iteratively trained dataset, outperformed the first model across all
image types in terms of the F1 scores and AP values.

Table 4 shows the delineation accuracy assessment results for the first model, trained
using the original dataset, and the second model, trained using the final dataset. We also
present the results for each of the four image types. The F1 Scores and AP values were
similar for all four types of data, with the model that used enhanced multispectral imagery
performing slightly better than the models that used other image types. In addition, the
second model, which included the iteratively trained dataset, outperformed the first model,
based on the F1 Scores and AP values. Similarly to the detection accuracy results, the
number of delineated fields from the original dataset was smaller than the number of fields
from the ground truth dataset, and the number of delineated fields from the final dataset
was larger than the number of fields from the ground truth dataset.
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Table 3. Detection accuracy of mapping smallholder field boundaries in Bihar from models trained
using WV-3 data in Bihar. The accuracy metrics from the model with the best F1 score and AP values
are highlighted in bold.

TP FP FN Precision Recall F1 Score AP

First Model
(Original
Dataset)

Panchromatic 986 391 415 0.72 0.70 0.71 0.63

Enhanced
Panchromatic 897 348 504 0.72 0.64 0.68 0.57

Multispectral 953 367 448 0.72 0.68 0.70 0.59

Enhanced
Multispectral 942 354 459 0.73 0.67 0.70 0.60

Second Model
(Final Dataset)

Panchromatic 1861 903 519 0.67 0.78 0.72 0.68

Enhanced
Panchromatic 1796 656 584 0.73 0.75 0.74 0.68

Multispectral 1829 769 551 0.70 0.77 0.73 0.66

Enhanced
Multispectral 1831 723 549 0.72 0.77 0.74 0.68

Table 4. Delineation accuracy of mapping smallholder field boundaries in Bihar from models trained
using WV-3 data in Bihar. The accuracy metrics from the model with the best F1 score and AP values
are highlighted in bold.

TP FP FN Precision Recall F1 Score AP

First Model
(Original
Dataset)

Panchromatic 980 398 421 0.71 0.70 0.70 0.62

Enhanced
Panchromatic 906 368 495 0.71 0.65 0.68 0.57

Multispectral 939 370 462 0.71 0.67 0.69 0.58

Enhanced
Multispectral 933 355 468 0.72 0.67 0.69 0.59

Second Model
(Final Dataset)

Panchromatic 1844 921 536 0.67 0.77 0.72 0.68

Enhanced
Panchromatic 1782 670 598 0.73 0.75 0.74 0.67

Multispectral 1832 760 548 0.71 0.77 0.74 0.67

Enhanced
Multispectral 1827 727 553 0.72 0.77 0.74 0.68

Table 5 shows the mean IoU values, the mean ground truth area, and the mean de-
lineated area for all of the correctly delineated fields. Table S3 shows the mean area of
all ground truth field masks and the mean area of all delineated field masks. Across all
models, the delineated mask areas were smaller than the ground truth areas
(Tables 5 and S3). Unsurprisingly, plots comparing ground truth and correctly delin-
eated field polygons indicated improved delineation when additional training data were
used. The initial models resulted in mean IoU values of 0.80, slopes that ranged from 0.77
to 0.85, and R-squared values that ranged from 0.84 to 0.87 (Figure 4) for all of the four
image types. In comparison, the model trained using the final dataset performed better,
with IoU values ranging from 0.83 to 0.84, slopes ranging from 0.78 to 0.85, and R-squared
values ranging from 0.89 to 0.90 (Figure 4). Among the four types of imagery used, the
model using enhanced panchromatic imagery showed the best performance.
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Table 5. Mean IoU, mean ground truth area, and mean delineated field area in Bihar from models
trained using WV-3 data in Bihar. Only correctly delineated field masks were included to generate
this table. The areas are reported in terms of both the number of pixels and square meters (rounded
to the nearest integer). The metrics from the model with the best IoU are shown in bold.

Mean IoU
Mean Ground Truth

Area
Mean Delineated

Area

(Pixel) (m2) Pixel (m2)

First Model
(Original
Dataset)

Panchromatic 0.80 2348 587 2220 555

Enhanced
Panchromatic 0.80 2415 604 2359 590

Multispectral 0.80 2342 586 2241 560

Enhanced
Multispectral 0.80 2320 580 2207 552

Second Model
(Final Dataset)

Panchromatic 0.83 2457 614 2260 565

Enhanced
Panchromatic 0.84 2589 647 2479 620

Multispectral 0.83 2687 672 2368 592

Enhanced
Multispectral 0.83 2747 687 2395 599

1 
 

 
Figure 4. Scatterplots of ground truth mask area (in pixels) on the x-axis versus delineated mask area
(in pixels) on the y-axis. Only correctly delineated field masks are included. Plots (a–d) represent
results for the original model across WV-3 image types in Bihar, and plots (e–h) represent results
for the final model across WV-3 image types in Bihar. Blue lines with shading represent the linear
regression line with 95% confidence intervals, and red lines represent the one-to-one line.

Overall, there were several common delineation issues in our results
(Figures 5, 6, S4 and S5. A common delineation error of under-segmentation occurred when
several fields were classified as one field due to obscured or marginally visible boundaries
(Figures 6I and S5I). There were also cases of over-segmentation, where one field was
detected and delineated as two or more fields (Figure 6II, columns b and c). In cases of high
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within-field crop variation, the model mistakenly identified this variation as a boundary
edge when using multispectral imagery (Figure 6III, columns e and f), whereas the models
using the other three imagery types were better able to delineate the field boundaries
(Figures 6III and S5III). Occlusion also influenced results. For example, trees at field edges
often caused boundary delineation issues (Figures 6IV and S5IV). In addition, the model
sometimes could not detect fields accurately at the edge of image tiles (Figures 6V and S5V;
upper and right edges are the image edges). Finally, all models failed to detect narrow and
long fields when the image tiles consisted primarily of such fields (Figures 6VI and S5VI)
and produced false positives in unplanted fields, where it was difficult to visually observe
boundaries (Figures 6VII and S5VII).
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Figure 5. One example of a 512 × 512 pixels WV-3 unenhanced tile in Bihar. Panel (a) shows the
original panchromatic image, (b) shows the panchromatic image with ground truth, (c) shows the
panchromatic image with delineated field boundaries, (d) shows the original multispectral image,
(e) shows the multispectral image with ground truth, and (f) shows the multispectral image with delin-
eated field boundaries. Results are shown for the final model, which included the iteratively collected
data. Green lines represent ground truth boundaries and yellow lines represent predicted boundaries.
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(a–f)) from Bihar. Green lines represent ground truth boundaries, and yellow lines represent predicted
boundaries for panchromatic and multispectral imagery, respectively.

4.2. Generalizability of Models in Uttar Pradesh

To test the generalizability of the Mask R-CNN models built using WV-3 imagery in
Bihar, we used the second model weights from Section 4.1 to detect and delineate field
polygons in a new site in Uttar Pradesh. We used no data from Uttar Pradesh to calibrate
our models, and thus the performance evaluation in this site represents how well our
models may be generalized to other smallholder sites.

Table 6 shows the detection accuracy results. Multispectral imagery obtained the
highest accuracy across all image types, with an F1 score of 0.78 and an AP of 0.69. We found
that the F1 score and AP values of the models applied in Uttar Pradesh reached similar
accuracies as when applied in Bihar (Table 3), where the model was trained. There were
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some small differences in terms of which image type performed best; in Bihar, the enhanced
multispectral imagery performed the best, whereas in Uttar Pradesh, the multispectral
imagery performed the best. Furthermore, precision was generally higher in Uttar Pradesh
compared to Bihar, whereas the recall was generally lower in Uttar Pradesh compared
to Bihar.

Table 6. Detection accuracy of mapping smallholder field boundaries in Uttar Pradesh with models
trained using WV-3 data in Bihar. The accuracy metrics from the model with the best F1 score and AP
values are highlighted in bold.

TP FP FN Precision Recall F1 Score AP

Second Model
(Trained with Final

WV-3 Dataset in
Bihar)

Panchromatic 1927 758 739 0.72 0.72 0.72 0.64

Enhanced
Panchromatic 1889 495 777 0.79 0.71 0.75 0.64

Multispectral 2005 485 661 0.81 0.75 0.78 0.69

Enhanced
Multispectral 1964 538 702 0.78 0.74 0.76 0.67

Table 7 shows the delineation accuracy results of the models applied in Uttar Pradesh.
The F1 scores and the AP values were similar across the four different image types, with
multispectral imagery achieving slightly higher accuracy than the other image types. We
found that the F1 scores and AP values of the models applied in Uttar Pradesh were similar
to those of the models applied in Bihar. The main difference was that the model that used
the enhanced multispectral image performed the best in Bihar, whereas the model that
used multispectral imagery performed the best in Uttar Pradesh.

Table 7. Delineation accuracy of mapping smallholder field boundaries in Uttar Pradesh with models
trained using WV-3 data in Bihar. The accuracy metrics from the model with the best F1 score and AP
values are highlighted in bold.

TP FP FN Precision Recall F1 Score AP

Second Model
(Trained with Final

Dataset in Bihar)

Panchromatic 1920 765 746 0.72 0.72 0.72 0.64

Enhanced
Panchromatic 1896 488 770 0.80 0.71 0.75 0.64

Multispectral 1982 508 684 0.80 0.74 0.77 0.68

Enhanced
Multispectral 1922 523 744 0.79 0.72 0.75 0.65

Table 8 shows the mean IoU values, the mean ground truth area, and the mean
delineated area measured in pixels for all the correctly delineated fields in Uttar Pradesh.
Table S4 shows the mean area of all ground truth field masks and the mean area of all
delineated field masks in Uttar Pradesh. Across all models, we found that the delineated
polygon areas were smaller than the ground truth areas, except when using the enhanced
panchromatic imagery and considering all delineated fields (Table S4). The models resulted
in mean IoU values that ranged from 0.83 to 0.85 (Table 8), slopes that ranged from 0.81
to 0.86, and R-squared values that ranged from 0.89 to 0.91 (Figure 7) for all four image
types. These values were generally higher than the values obtained from models in Bihar
(Tables 5 and 8).
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Table 8. Mean IoU, mean ground truth area, and mean delineated field area in Uttar Pradesh from
models trained using WV-3 data in Bihar. Only correctly delineated field masks were included in
the generation of this table. The areas are reported in terms of both the number of pixels and square
meters (rounded to the nearest integer). The metrics from the model with the best IoU are shown
in bold.

Mean IoU
Mean Ground Truth Area Mean Delineated Area

(Pixel) (m2) (Pixel) (m2)

Second Model
(Trained with
Final Dataset

in Bihar)

Panchromatic 0.83 2236 559 2033 508

Enhanced
Panchromatic 0.84 2417 604 2298 575

Multispectral 0.85 2352 588 2218 555

Enhanced
Multispectral 0.83 2342 586 2164 541
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Figure 7. Scatterplots of ground truth mask area (in pixels) on the x-axis versus delineated mask area
(in pixels) on the y-axis. Only correctly delineated field masks are included. Plots (a–d) represent
results for each image type for the models applied in Uttar Pradesh. Blue lines with shading represent
the linear regression line with 95% confidence intervals, and red lines represent the one-to-one line.

Overall, there were several common delineation issues in the models applied to the
site in Uttar Pradesh (Figures 8, 9, S6 and S7). The first common delineation error was
under-segmentation (Figures 9I and S7I, columns b and c; Figure 9III, columns e and f).
There were also cases of over-segmentation (Figures 9II and S7II, columns b and c) in cases
where there was high within-field crop variation. When the field boundaries were not
distinct and within-field variations were comparatively high, the models always failed
to detect any polygons (Figures 9III,IV and S7III,IV) or generated irregular boundaries
(Figures 9V and S7V). Unlike our models in Bihar, we did not encounter problems with
long or unplanted fields as they were not prevalent in the image tiles that we used for
testing in Uttar Pradesh.
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the original panchromatic image, (b) shows the panchromatic image with ground truth, (c) shows 
the enhanced panchromatic image with delineated field boundaries, (d) shows the original multi-
spectral image, (e) shows the multispectral image with ground truth, and (f) shows the enhanced 
multispectral image with delineated field boundaries. Results are shown for the final model, which 
included the iteratively collected data. Green lines represent ground truth field boundaries, and 
yellow lines represent predicted field boundaries. 

 
Figure 9. Examples of common issues (I–V, detailed in text) across the different model results (pan-
els (a–f)) in Uttar Pradesh. Green lines represent ground truth field boundaries, and yellow lines 
represent predicted boundaries for panchromatic and multispectral imagery, respectively. 

Figure 8. One example of a 512 × 512-pixels WV-3 unenhanced tile in Uttar Pradesh. Panel (a) shows
the original panchromatic image, (b) shows the panchromatic image with ground truth, (c) shows the
enhanced panchromatic image with delineated field boundaries, (d) shows the original multispectral
image, (e) shows the multispectral image with ground truth, and (f) shows the enhanced multispectral
image with delineated field boundaries. Results are shown for the final model, which included the
iteratively collected data. Green lines represent ground truth field boundaries, and yellow lines
represent predicted field boundaries.
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5. Discussion

Our work demonstrates the potential of Mask R-CNN to map smallholder field poly-
gons, even in systems with very small fields. We found that our models using WV-3
imagery performed very well, with F1 Scores > 0.72 and AP values > 0.66 for detection and
delineation. In general, our models correctly delineated within-field pixels (Tables 3 and 4,
Figures 5 and S4), but underestimated field polygon size (Figure 4, Tables 5 and S3). This
was largely due to imprecise boundary predictions (Figures 5 and S5), which may be
caused by fully convolutional networks that ignore object boundaries that are difficult to
classify [52]. We found that the model generalized well, with similar accuracies achieved
for the test site where no data were used for model training. This suggests that Mask
R-CNN may be effective in mapping smallholder field boundaries at scale, even in regions
with limited or no training data.

Although our overall accuracies were moderate, there were several consistent issues
that led to reduced prediction accuracies across our models. Specifically, Mask R-CNN was
challenged when there were indistinct field boundaries visible in the image, boundaries
were occluded by trees or shadows, fields had high within-field crop variation, or fields
were irregularly shaped (Figures 6, 9, S5 and S7). Considering each of these points, it
is not surprising that the model performed poorly when boundaries were indistinct, as
field boundaries were not clearly visible even to the human eye. Trees and shadows led
to color variation in the imagery, and this variation resulted in either failure to detect
fields or the delineation of curved boundaries. The convex hull approach we used during
postprocessing was able to reduce some of these errors by generating smoother closed
boundaries. Mask R-CNN also led to over-segmented fields or incorrectly curved bound-
aries when fields had very high within-field variation, though the presence of such fields
was rare. Considering irregularly-shaped, long and narrow fields, we believe Mask R-CNN
performed poorly because the boundaries for these fields were often indistinct. These fields
were also relatively rare in the landscape, limiting their presence in the training data. These
four issues were not very prevalent across the landscape, leading to moderate delineation
and detection accuracies despite these consistent issues.

Considering image input type, our results indicate that our models performed similarly
well regardless of which image type was used, though there was a small advantage when
using multispectral and enhanced multispectral images (an improvement of 1–4% in
AP). Though overall accuracies were similar, our visual interpretation of predicted field
boundaries suggests that each image type resulted in models with different types of mis-
delineations (Figures 6, 9, S5 and S7). For example, the model using panchromatic imagery
was more likely to over-segment fields compared to models that were developed using
other image types (Figure 6). In addition, the model using multispectral imagery was better
able to delineate fields with boundaries occluded by trees compared to models using other
image types (Figure 6IV). Given that each input image type was associated with different
types of mis-delineations, it is possible that an ensemble approach that considers the results
from multiple models that use each image type may lead to improved overall delineation
accuracy [53].

We found that our Mask R-CNN models were generalizable, given that the models
trained in Bihar showed similar performance when applied to Uttar Pradesh, where no
data were used for model training (Tables 3, 4, 6 and 7). Interestingly, the similarity in
the results obtained from Bihar and Uttar Pradesh suggests that the image date had little
influence on our results. This is because the acquisition date for images from Bihar was
at the end of the monsoon growing season when crops were being harvested, and the
acquisition date for images from Uttar Pradesh was in the middle of the winter growing
season, when crops were reaching peak biomass, and from a different year. Although our
results suggest that our model is generalizable to systems other than where it was trained,
it is important to note that our sites in Bihar and Uttar Pradesh are similar in several ways;
they are geographically close (~250 km), with similar crop types (rice-wheat rotations), and
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have similar field sizes (mostly < 0.3 ha). Future work should assess how generalizable our
model is to other more distant areas in India and to other nations with smallholder farms.

We found that our iterative approach for collecting ground truth data led to improved
delineation accuracies, while collecting training data more efficiently. Considering the time
needed to collect ground truth data, the iterative approach took half the amount of time to
annotate one 1024 × 1024 pixel tile compared to the original annotation method. Interest-
ingly, model improvements were not large (an improvement of 0.04 in mean IoU, 0.04–0.05
in F1 Score, and 0.08–0.09 in AP for detection and delineation for the best performing
models), even though we doubled the number of training data by adding 9256 polygons.
Based on our results, it is unclear whether the improved accuracy when using the itera-
tively collected data was due to simply having a larger training sample size, or whether
it is also because the second set of training data were collected from poorly performing
areas. Furthermore, given that the improvement in accuracy using the iteratively collected
training data was modest, it is possible that we could have achieved similar model accuracy
with reduced effort if we had used a smaller original training dataset and collected a larger
iterative sample. Future work should examine the most effective way to use the iterative
annotation approach to achieve high model accuracy with reduced effort.

Although our results suggest that Mask R-CNN can successfully map smallholder
field boundaries, there are several important avenues for future work. First, though we
found that our model was generalizable to another study site where no data were used
to train the model, future work should examine how generalizable the model is to more
disparate smallholder systems. Our model resulted in higher accuracies than a previous
study that used Mask R-CNN to map field boundaries in regions with larger field sizes [25],
and this may be because we evaluated our models in a relatively similar region (all sites
were part of the rice-wheat cropping system in northeast India). Second, we focused on
using only one image date for delineation, but it is possible that including multiple images
that account for phenological differences could improve boundary detection performance,
as found in previous works [54,55]. Third, future work should assess model accuracy when
using field boundary information collected on the ground. Although field boundaries were
largely visible when we examined multiple sources of imagery, there were a handful of
cases where we were unable to digitize fields accurately due to unclear field boundaries.
Finally, though our model performed well using very-high-resolution WV-3 imagery, these
data are not readily available, and future work should assess the ability of our algorithm
to use other sources of high-resolution imagery that are more readily available, such as
PlanetScope imagery.

6. Conclusions

In conclusion, Mask R-CNN applied to very-high-resolution WorldView-3 imagery
was able to accurately map smallholder field boundaries, even in regions such as Northeast
India where field sizes are very small. Our results suggest that image type does not largely
influence the results, though consistent biases in detection and delineation existed with
each image type, suggesting that an ensemble approach may lead to higher overall accuracy
values. Our results also suggest that Mask R-CNN models are generalizable, given that our
models achieved similar accuracies when applied to a new test site where no data were
used for model calibration and where imagery were collected during a different season and
year. Finally, we developed an iterative approach to collect training data, which may reduce
the overall effort required to obtain the data necessary to run such deep learning models.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14133046/s1, Table S1: Digitization rules; Table S2: Detection
and delineation accuracy metrics; Table S3: Mean area of all ground truth field masks and mean
area of all delineated field masks in Bihar from models trained using WV-3 in Bihar; Table S4: Mean
area of all ground truth field masks and mean area of all delineated field masks in Uttar Pradesh
from models trained using WV-3 in Bihar; Figure S1: Example images that highlight several of our
annotation rules; Figure S2: Intersection over union of bounding boxes and masks; Figure S3: The
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training and validation loss curves of the first and the second model for different types of imagery;
Figure S4: One example of a 512 × 512 pixels WV-3 enhanced tile in Bihar; Figure S5: Examples of
common issues (I to VlI, detailed in text) across different model results (columns a through f) from
Bihar; Figure S6: One example of a 512 × 512 pixels WV-3 enhanced tile in Uttar Pradesh; Figure S7:
Examples of common issues (I to VlI, detailed in text) across different model results (columns a
through f) from Uttar Pradesh.
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