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Abstract

:

The mapping of field boundaries can provide important information for increasing food production and security in agricultural systems across the globe. Remote sensing can provide a viable way to map field boundaries across large geographic extents, yet few studies have used satellite imagery to map boundaries in systems where field sizes are small, heterogeneous, and irregularly shaped. Here we used very-high-resolution WorldView-3 satellite imagery (0.5 m) and a mask region-based convolutional neural network (Mask R-CNN) to delineate smallholder field boundaries in Northeast India. We found that our models had overall moderate accuracy, with average precision values greater than 0.67 and F1 Scores greater than 0.72. We also found that our model performed equally well when applied to another site in India for which no data were used in the calibration step, suggesting that Mask R-CNN may be a generalizable way to map field boundaries at scale. Our results highlight the ability of Mask R-CNN and very-high-resolution imagery to accurately map field boundaries in smallholder systems.
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1. Introduction


Identifying field boundaries can provide important information for increasing food production and security in agricultural systems across the globe. This is because knowing field boundaries is fundamental for many analytical applications, including generating crop statistics, quantifying the extent and drivers of yield gaps, and identifying potential solutions to increase production [1,2,3,4]. It is particularly important to obtain such information in smallholder farming systems, where yield gaps are large [5] and which produce approximately 56% of global agricultural production [6,7]. Remote sensing can offer a way to efficiently and cost-effectively map field boundaries across large spatial and temporal scales. Current methods advancing field boundary mapping using satellite data have primarily focused on large-scale farming systems, such as those in the Americas, Europe, and Australia [4,8,9,10]. To date, little remote sensing work has been undertaken to map field boundaries in smallholder systems, such as those found across Asia and Africa, where very small field sizes (<0.64 ha) are prevalent [11]. This is largely because most previous studies that have mapped field boundaries using satellite data have used moderate-resolution imagery, such as Landsat (30 m) and Sentinel-2 (10 m) data, which are too coarse in spatial resolution to map individual smallholder fields [12]. Very-high-resolution imagery, such as WorldView-3 data (0.31 to 2 m), can likely overcome these limitations and provide a viable way to map individual smallholder field boundaries at scale.



Previous studies on mapping field boundaries have mostly used edge-based or region-based methods [13,14]. Edge-based methods, such as the Canny detector, focus on identifying discontinuities in images to select candidate pixels to represent field boundaries [15,16]. Region-based methods, such as multi-resolution segmentation, focus on grouping pixels into objects based on some homogeneity criterion [17,18]. Although both methods have shown promise in mapping field boundaries, they also have limitations. Edge-based methods are sensitive to noise, which can lead to false edge or boundary detection results. Region-based methods often generate segmentation errors in the boundaries between regions [19]. To overcome these limitations, researchers have developed hybrid methods, such as combining contour detectors and hierarchical image segmentation, which have been shown to improve cadastral boundary detection accuracy values [20]. Although these methods have shown promise, they are unsupervised and have been created to detect generic boundaries that include any edge in an image. These methods are likely less effective compared to supervised methods that are trained to specifically detect semantic contours, which separate different categories of interest, such as agricultural field boundaries [10].



Recent studies have shown that deep learning models are highly effective in learning contour features using satellite data. These supervised methods have the advantage of learning higher-level features, such as shapes and colors, instead of solely relying on manually created features. In particular, deep convolutional networks, such as U-Net, ResU-Net, and SegNet, have been used in the previous literature to map field boundaries [10,21,22,23]. However, their effectiveness is limited because the delineated field boundaries are usually segmented and require subsequent post-processing to connect the fragmented contours and generate individual fields. In contrast, instance segmentation could be used to achieve the detection and segmentation of each field separately. Framing field boundary delineation as an instance segmentation problem can be an alternative method of directly generating complete closed-field polygons. For example, the use of a mask region-based convolutional neural network (Mask R-CNN) is one simple and highly effective method that can be used for instance segmentation, in which each field can be distinguished as an individual instance with its class, bounding box, and mask [24]. One previous study using high-resolution satellite imagery from Google Maps compared the accuracy of Mask R-CNN and U-Net in segmenting agricultural fields and found that Mask R-CNN achieved higher average precision across fields in several countries [25]. However, it remains unclear how well Mask R-CNN may work to map individual field boundaries in regions with very small field sizes (<0.64 ha). Our study is one of the first to use Mask R-CNN to map individual field boundaries in regions with very small field sizes.



Deep learning methods require sufficient annotated data to train end-to-end models, especially for sophisticated deep learning architectures such as Mask R-CNN. In the context of mapping agricultural fields or parcels, public datasets are useful, such as the Land Parcel Identification System [8] and available cadastral data [4]. These datasets, however, are usually not available in smallholder farming systems. To overcome this limitation, other studies have used manual annotation of field boundaries based on the visual interpretation of imagery or ground surveys, but both methods are time- and cost-intensive, resulting in datasets that are typically limited to a relatively small region. Some studies have relied on crowdsourcing methods to digitize field boundaries [26]; however, error may be introduced due to high variation in experience and skill in interpreting satellite imagery [27]. One possible way to reduce such challenges is to develop an iterative approach that combines the digitization of field boundaries with the ability of deep learning methods to automatically learn features. Such an approach may allow for the development of accurate models using fewer manually collected field boundaries. Furthermore, it is possible that such deep learning methods are generalizable across regions, reducing the amount of training data needed to map field boundaries at large spatio-temporal scales [28]. We assessed the ability of an iterative approach to improve model accuracy while reducing model training time, and also examined the generalizability of our model to new regions where it had not been trained.



Finally, it is unclear what is the most effective way to process high-resolution imagery to improve field boundary delineation accuracy, particularly for smallholder fields where there is significant across- and within-field heterogeneity [12,29]. Panchromatic imagery may lead to the highest accuracies as it provides texture pattern information that captures the transitions between two fields [21,30]. On the other hand, spectral information from multispectral imagery might have advantages over panchromatic imagery in handling cases where the texture pattern across fields is not distinctive. Finally, edge-enhanced images, which are processed to remove noise and increase the contrast at visible edges in the imagery, could lead to better classification accuracy than unprocessed images. In this study, we examine how the efficacy of our Mask R-CNN model varied based on these different types of imagery.



In this work, we applied Mask R-CNN to the mapping of smallholder field boundaries in Northeastern India using high-resolution WorldView-3 (WV-3) imagery. We had three main objectives with this study.



	(1)

	
To compare the efficacy in the detection and delineation of several different imagery types in mapping smallholder field boundaries, including panchromatic, pan-sharpened multi-spectral, and edge-enhanced imagery (all with a spatial resolution of 0.5 m).




	(2)

	
To develop an iterative approach to efficiently collect training data, which relied on annotating incorrectly predicted field boundaries from an initial Mask-RCNN model, and assessing how much our model accuracy improved relative to the amount of additional work needed to add additional training data using our iterative approach.




	(3)

	
To test the generalizability of our model by applying a model that we trained in Bihar, India, to a site in Uttar Pradesh, India, a neighboring state where we did not use any data for calibrating our model.








2. Study Area


We conducted our study in Northeast India, in the states of Bihar and Uttar Pradesh in the eastern Indo-Gangetic Plains (IGP). This region is highly agrarian, with over 80% of the population in Bihar and over 60% of the population in Uttar Pradesh employed in agriculture [31,32]. Agriculture covers over 80% and 68% of the land area in Bihar and Uttar Pradesh, respectively. Both states are dominated by smallholder farms, with an average farm size in Bihar of 0.39 ha and an average farm size in eastern Uttar Pradesh of 0.64 ha. There are two main growing seasons in this region, the monsoon season (kharif) and the winter (rabi) season. The monsoon growing season starts in June and lasts until October, and most farmers plant rice during this season. The winter season spans from November to April, with most farmers planting wheat during this season [12,33]. The main region for training/validating/testing our method was a 20 by 65 km2 region in Bihar where five WV-3 scenes were available (Figure 1c). The secondary study area for assessing the generalizability of our model was a 15 by 63 km2 region in eastern Uttar Pradesh, where four WV-3 scenes were available (Figure 1b).




3. Methods


3.1. General Workflow


We conducted two broad steps, termed Part 1 and Part 2 (Figure 2), to use Mask R-CNN to delineate smallholder field boundaries using WV-3 imagery. In Part 1 (Figure 2), we (1) acquired and preprocessed the WV-3 satellite imagery; (2) created masks of field boundary annotation based on WV-3; (3) implemented segmentation; and (4) conducted performance evaluations. In Part 2 (Figure 2), we (1) ran the trained model based on unannotated images; (2) identified incorrectly delineated field polygons from Part 1; and (3) manually corrected field boundaries using visual interpretation of imagery. We then included these corrected field boundary data as additional training data in subsequent model predictions. We refer to the annotated dataset from Part 1 as ‘the original dataset’, the iteratively annotated dataset from Part 2 as ‘the iterative dataset’, and data from both Parts 1 and 2 as the ‘final dataset’. To study the generalizability of our field boundary delineation model, we applied the Mask R-CNN models that we trained in Bihar to the second study site, Uttar Pradesh, where we used no data for model calibration.




3.2. Satellite Image Acquisition and Preprocessing


For Bihar, a total of five WV-3 (Maxar Technologies, Inc., Westminster, CO, USA) low-cloud (<5%) satellite image tiles were acquired for 29 October 2017. We acquired both panchromatic imagery (465–800 nm, 0.5 m spatial resolution) and multispectral imagery (2 m spatial resolution) for the same extent. The images were Level 2A radiometrically corrected images and we did not perform further atmospheric correction. For Uttar Pradesh, four WV-3 satellite image tiles were acquired for 23 February 2018. The scenes were cloud-free, radiometrically corrected, and sensor-corrected Level 1B products. Given that these were Level 1B products, several additional preprocessing steps were conducted prior to use in our Mask R-CNN model. To geometrically correct and geolocate the image scenes, we used vendor-provided image support data (ISD), including spacecraft telemetry (attitude and ephemeris data) and geometric calibration files in ArcGIS Pro 2.7 (ESRI, Redlands, CA, USA). To normalize for topographic relief and to improve geolocation accuracy, the CGIAR Shuttle Radar Topography Mission (SRTM) 90 m digital elevation model (DEM) was applied as a coarse DEM for each scene, which contained a rational polynomial coefficient (RPC) sensor model [34,35,36]. The geometrically corrected images were then projected to WGS-84 UTM Zone 44N with cubic convolution at a 0.5 m resolution for panchromatic imagery, and at a 2.0 m resolution for multispectral imagery.



The near infrared 1 (770–895 nm), red (630–690 nm), and green bands (510–580 nm) were pan-sharpened to a 0.5 m spatial resolution with the panchromatic band using the gdal_pansharpen.py function from the GDAL library [37] with bilinear resampling to create a false color composite image. Given that each WV-3 tile was large (more than 36,000 by 33,000 pixels) and computationally intensive to process, we cropped our WV-3 tiles into smaller tiles that were 1024 by 1024 pixels in size. To obtain field boundary data to train, validate, and test our Mask R-CNN models, we randomly selected 45 tiles from the Bihar site and 9 tiles from the Uttar Pradesh site and annotated field polygons based on visual interpretation of the imagery (Section 3.3). We then scaled each image tile to 0–255 (8 bits) using the 0.2 and 0.98 percentile values to improve the visual clarity of the image. Finally, to assess whether edge enhancement and noise removal improved field boundary detection accuracy, we applied edge enhancement to both the panchromatic and pan-sharpened multispectral data. Specifically, we applied the unsharp masking algorithm [38] by following Equation (1) as follows:


   Edge   Enhanced   Image    =    Original   Image    +  (   Original   Image    –    Blurred   Image   )     ×   Weighting   Factor  .  



(1)







In the equation, the term    (   Original   Image    –    Blurred   Image   )  ×    Weighting   Factor    refers to the sharpening component. By multiplying a weighting factor larger than 1, the equation can increase the high-frequency components (e.g., edges) in the images, while reducing the noise level. We used a Gaussian standard deviation of 10 for the Gaussian filter and a weighting factor of 2 for Equation (1) based on the visual results. All the image preprocessing steps were implemented using the OpenCV [39], GDAL [37], and Pillow libraries [40] in Python.




3.3. Field Boundary Annotation and Mask Creation


We manually digitized field boundaries as vector polygons using visual interpretation of both the panchromatic and the color composite imagery using QGIS software [41] (Figure 3). Some boundaries were difficult to identify using only one type of imagery. For example, previous studies have shown that panchromatic images are better for identifying textural transitions related with field boundaries, and multispectral images are better for distinguishing different crop types [21]. Therefore, we examined both WV-3 panchromatic and WV-3 multispectral imagery when annotating field boundaries, and in the cases where field boundaries were ambiguous in both datasets, we examined high-resolution satellite imagery from base maps (Maxar Technologies, Inc., Westminster, CO, USA) in the Google Earth Engine (GEE) [42]. Although we acknowledge that the acquisition date of the imagery in GEE is different than that of our WV-3 imagery, based on local knowledge of the area, we believe that field boundaries did not change drastically from year to year or season to season. To limit potential errors caused by the use of GEE data, we constrained its use to fewer than 5% of all polygons and only in situations where boundaries in the WV-3 imagery were extremely unclear.



We digitized 12,298 polygons across 45 cropped tiles in Bihar and 2266 polygons across 9 cropped tiles in Uttar Pradesh, using a set of consistent rules (Table S1 and Figure S1). Since instance segmentation models require ground truth masks where each field polygon represents a unique separated object, we rasterized the shapefile into a ground truth mask. Because we used the snapping tool during the digitization process to minimize gaps and overlap errors, rasterization resulted in stitched field polygons. To represent the real-world boundary width and ensure that adjacent field polygons remained separated, we then applied a buffer of −1 m to all polygons. All analyses were conducted using the GDAL [37] and scikit-image [43] libraries in Python.




3.4. Instance Segmentation and Model Implementation


Mask R-CNN is one of the state-of-art frameworks for instance segmentation with high simplicity and effectiveness. It combines semantic segmentation and object detection tasks together by generating bounding boxes and a segmentation mask. It is an intuitive extension of the Faster R-CNN method and has two stages. At a high level, Mask R-CNN consists of several modules: (1) a backbone structure that serves as a feature extractor and a feature pyramid network to better present features at different scales; (2) a region proposal network for generating a region of interest (RoI); (3) an RoI classifier for class prediction of each RoI and a bounding box regressor for refining the RoI; and (4) an FCN with RoIAlign and bilinear interpolation for predicting a pixel-accurate mask [24]. The total loss of the training process is a multi-task loss, calculated by adding mask loss, class loss, and box regression loss.



We used the Mask R-CNN implementation from GitHub (https://github.com/matterport/Mask_RCNN, accessed on 1 June 2020) [44], which is built on Keras [45] and TensorFlow [46], for object detection and segmentation. Following a transfer learning paradigm, we fine-tuned the pre-trained weights of the ResNet 101 model, which reduces the model training time. Specifically, this model had been previously trained using the Microsoft Common Objects in Context (COCO) dataset, which enabled the ResNet to start with good models of many features, including but not limited to low-level ones (e.g., edges, corners, and gradients), to segment fields as a new object class. Due to the slow computational speed when running the models on 1024 × 1024 pixel tiles, we further cropped our 45 annotated tiles (1024 × 1024 pixels) into 180 tiles (512 × 512 pixels). To avoid overfitting, a common challenge in image segmentation using deep learning methods, we split the original 180 annotated tiles into training/validation/testing datasets using the ratio 80%/10%/10%. The validation dataset was used to identify the most generalizable Mask-RCNN model based on the validation loss curves. We chose the model weights where the validation loss reached its lowest value to minimize the chance of overfitting our data (Figure S3). To introduce variety into our training data, we applied data augmentation, a useful technique to artificially generate image samples through a series of image transformations to existing images [47]. We randomly selected zero to two types of the following operations: horizontal flips, vertical flips, 90°/180°/270° rotation, 80–150% brightness changes, and Gaussian blurs. Geometric transformations such as flips were applied identically to both the input and label images. We only applied this data augmentation to the training dataset to ensure that we minimized the chance of overfitting our data. Our training model was trained using stochastic gradient descent with a batch size of two images. The learning rate was set to 0.001 based on previous studies that applied Mask R-CNN to high-resolution remote sensing imagery to map features [48,49,50]. A learning momentum of 0.9 and a weight decay of 0.0001 were used, similarly to the original Mask R-CNN paper [24]. We built our Mask R-CNN model on the backbone of ResNet-101 and trained the ResNet-101 Stage 3 and up for 100 epochs, ResNet 101 Stage 4 and up for 60 epochs, and ResNet 101 layers for 40 epochs. Each epoch took approximately 350 s to finish. All experiments were conducted on Amazon Web Services (AWS) and utilized a p2.xlarge instance, for which we used an NVIDIA Tesla K80 GPU and 61 GB RAM.




3.5. Performance Evaluation


We evaluated model performance considering both detection accuracy and delineation accuracy. Detection accuracy verified how well our model could correctly detect a smallholder field, whereas delineation accuracy verified how well our model determined which pixels were included in the field. The detection accuracy was evaluated based on the bounding boxes and the delineation accuracy was evaluated based on the masks. We assessed the precision, recall, the F1 Score, and the average precision (AP) metrics (Table S2) of the bounding boxes and masks detected in Mask R-CNN for detection and delineation accuracy, respectively. We defined a correctly detected or delineated field based on the intersection over union (IoU) (Figure S2) threshold of 0.50. A correctly detected or delineated field, or true positive (TP), occurred when an IoU value greater than 0.5 was achieved considering the amount of overlap between the predicted and ground truth field. In contrast, a false positive (FP) occurred when a detected or delineated field had an IoU value less than 0.5 between the predicted and ground truth field or when duplicate detections or delineation existed. A false negative (FN) occurred when the ground truth field had an IoU value less than 0.5 when compared to a detected or delineated field. Although an IoU of 0.75 is typically also used in natural image instance segmentation studies [24], we found that this threshold was too high for our task, similarly to other studies that have attempted to map objects using noisy satellite image data [50,51].



In addition to the above metrics, we assessed the mean IoU of all correctly delineated fields (TP), which was calculated by comparing each correctly delineated field mask with the corresponding ground truth mask [50]. We also reported the mean area of all correctly delineated field masks with the corresponding field masks (in both square meters and the number of pixels) and the mean area of all delineated field masks with the mean area of all ground truth field masks (in both square meters and the number of pixels). In this way, we could measure if our model overestimated or underestimated the field polygon area.




3.6. Postprocessing and Iterative Data Collection


We used results from our trained model (Section 3.4) to detect and delineate field polygons. We then visually inspected the predicted fields and (1) manually corrected incorrectly annotated fields and (2) manually digitized missing field boundaries using visual interpretation of the WV-3 panchromatic, WV-3 multispectral, or GEE imagery as detailed in Section 3.3. Before manually adjusting field boundaries, we (1) added geographical location information, (2) applied convex hull smoothing to reduce boundary irregularities, and (3) merged four neighboring 512 × 512 pixel tiles into one 1024 × 1024 pixel tile to ensure a consistent spatial extent, as was used in the training data annotation steps (Section 3.3). We performed this iterative polygon delineation method on 160 tiles, which resulted in 11,278 additional polygons. We did not apply a −1 m buffer to this iterative dataset since our model inherently delineated fields with this buffer. We added this iterative dataset (n = 11,278 polygons) to the original dataset (n = 12,298 polygons) to produce a final dataset of 23,576 polygons. We split all annotated tiles in the final dataset into training/validation/testing datasets using the ratio 80%/10%/10% as we performed in Section 3.4, resulting in 18,920, 2276, and 2380 polygons in the training/validation/testing datasets, respectively (Table 1). We then reran the instance segmentation and conducted accuracy assessments using this final dataset for training, testing, and validation.




3.7. Applying Mask R-CNN Model to Second Test Site


To assess the model’s generalizability, we applied the model trained in Bihar to our second test site in Uttar Pradesh, where no calibration data were used to train the model. We used the model weights trained using the ‘final dataset’ from the Bihar site for each respective image type; for example, we applied the model trained using the panchromatic image in Bihar to the panchromatic image in Uttar Pradesh. The model performances were evaluated using 2266 polygons across 36 WV-3 tiles that were 512 × 512 pixels in size (Section 3.2), as described in Table 2. We ensured that the number of test polygons used in Uttar Pradesh (n = 2266) was similar to the number of test polygons used in Bihar (n = 2380 polygons), which ensured consistency when evaluating performance. The same evaluation metrics for detection and delineation were used as in the Bihar site (Section 3.5).





4. Results


4.1. Accuracy of Using WV-3 in Bihar


Table 3 shows the detection accuracy assessment results for the first model, trained using the original dataset, and the second model, trained using the final dataset (Figure 2). These results were obtained for our site in Bihar where the model was calibrated. Table 3 also shows the difference in detection accuracy for each of the four image types—panchromatic, pan-sharpened multispectral, edge-enhanced panchromatic, and edge-enhanced pan-sharpened multispectral imagery. The F1 Scores and the AP values were similar across the four image types, with the models using edge-enhanced imagery achieving slightly higher accuracies in the second model. With the original dataset, the number of detected fields was smaller than the number of ground truth fields, as indicated by the number of false positives (FP) and false negatives (FN); there were 27–28% false positives and 30–36% false negatives across all models. In contrast, the number of detected fields from the final dataset was larger than the number of ground truth fields; there were 27–30% false positives and 22–25% false negatives across all models. The second model, which included the iteratively trained dataset, outperformed the first model across all image types in terms of the F1 scores and AP values.



Table 4 shows the delineation accuracy assessment results for the first model, trained using the original dataset, and the second model, trained using the final dataset. We also present the results for each of the four image types. The F1 Scores and AP values were similar for all four types of data, with the model that used enhanced multispectral imagery performing slightly better than the models that used other image types. In addition, the second model, which included the iteratively trained dataset, outperformed the first model, based on the F1 Scores and AP values. Similarly to the detection accuracy results, the number of delineated fields from the original dataset was smaller than the number of fields from the ground truth dataset, and the number of delineated fields from the final dataset was larger than the number of fields from the ground truth dataset.



Table 5 shows the mean IoU values, the mean ground truth area, and the mean delineated area for all of the correctly delineated fields. Table S3 shows the mean area of all ground truth field masks and the mean area of all delineated field masks. Across all models, the delineated mask areas were smaller than the ground truth areas (Table 5 and Table S3). Unsurprisingly, plots comparing ground truth and correctly delineated field polygons indicated improved delineation when additional training data were used. The initial models resulted in mean IoU values of 0.80, slopes that ranged from 0.77 to 0.85, and R-squared values that ranged from 0.84 to 0.87 (Figure 4) for all of the four image types. In comparison, the model trained using the final dataset performed better, with IoU values ranging from 0.83 to 0.84, slopes ranging from 0.78 to 0.85, and R-squared values ranging from 0.89 to 0.90 (Figure 4). Among the four types of imagery used, the model using enhanced panchromatic imagery showed the best performance.



Overall, there were several common delineation issues in our results (Figure 5, Figure 6 and Figures S4 and S5). A common delineation error of under-segmentation occurred when several fields were classified as one field due to obscured or marginally visible boundaries (Figure 6I and Figure S5I). There were also cases of over-segmentation, where one field was detected and delineated as two or more fields (Figure 6II, columns b and c). In cases of high within-field crop variation, the model mistakenly identified this variation as a boundary edge when using multispectral imagery (Figure 6III, columns e and f), whereas the models using the other three imagery types were better able to delineate the field boundaries (Figure 6III and Figure S5III). Occlusion also influenced results. For example, trees at field edges often caused boundary delineation issues (Figure 6IV and Figure S5IV). In addition, the model sometimes could not detect fields accurately at the edge of image tiles (Figure 6V and Figure S5V; upper and right edges are the image edges). Finally, all models failed to detect narrow and long fields when the image tiles consisted primarily of such fields (Figure 6VI and Figure S5VI) and produced false positives in unplanted fields, where it was difficult to visually observe boundaries (Figure 6VII and Figure S5VII).




4.2. Generalizability of Models in Uttar Pradesh


To test the generalizability of the Mask R-CNN models built using WV-3 imagery in Bihar, we used the second model weights from Section 4.1 to detect and delineate field polygons in a new site in Uttar Pradesh. We used no data from Uttar Pradesh to calibrate our models, and thus the performance evaluation in this site represents how well our models may be generalized to other smallholder sites.



Table 6 shows the detection accuracy results. Multispectral imagery obtained the highest accuracy across all image types, with an F1 score of 0.78 and an AP of 0.69. We found that the F1 score and AP values of the models applied in Uttar Pradesh reached similar accuracies as when applied in Bihar (Table 3), where the model was trained. There were some small differences in terms of which image type performed best; in Bihar, the enhanced multispectral imagery performed the best, whereas in Uttar Pradesh, the multispectral imagery performed the best. Furthermore, precision was generally higher in Uttar Pradesh compared to Bihar, whereas the recall was generally lower in Uttar Pradesh compared to Bihar.



Table 7 shows the delineation accuracy results of the models applied in Uttar Pradesh. The F1 scores and the AP values were similar across the four different image types, with multispectral imagery achieving slightly higher accuracy than the other image types. We found that the F1 scores and AP values of the models applied in Uttar Pradesh were similar to those of the models applied in Bihar. The main difference was that the model that used the enhanced multispectral image performed the best in Bihar, whereas the model that used multispectral imagery performed the best in Uttar Pradesh.



Table 8 shows the mean IoU values, the mean ground truth area, and the mean delineated area measured in pixels for all the correctly delineated fields in Uttar Pradesh. Table S4 shows the mean area of all ground truth field masks and the mean area of all delineated field masks in Uttar Pradesh. Across all models, we found that the delineated polygon areas were smaller than the ground truth areas, except when using the enhanced panchromatic imagery and considering all delineated fields (Table S4). The models resulted in mean IoU values that ranged from 0.83 to 0.85 (Table 8), slopes that ranged from 0.81 to 0.86, and R-squared values that ranged from 0.89 to 0.91 (Figure 7) for all four image types. These values were generally higher than the values obtained from models in Bihar (Table 5 and Table 8).



Overall, there were several common delineation issues in the models applied to the site in Uttar Pradesh (Figure 8, Figure 9 and Figures S6 and S7). The first common delineation error was under-segmentation (Figure 9I and Figure S7I, columns b and c; Figure 9III, columns e and f). There were also cases of over-segmentation (Figure 9II and Figure S7II, columns b and c) in cases where there was high within-field crop variation. When the field boundaries were not distinct and within-field variations were comparatively high, the models always failed to detect any polygons (Figure 9III,IV, Figure S7III,IV) or generated irregular boundaries (Figure 9V and Figure S7V). Unlike our models in Bihar, we did not encounter problems with long or unplanted fields as they were not prevalent in the image tiles that we used for testing in Uttar Pradesh.





5. Discussion


Our work demonstrates the potential of Mask R-CNN to map smallholder field polygons, even in systems with very small fields. We found that our models using WV-3 imagery performed very well, with F1 Scores > 0.72 and AP values > 0.66 for detection and delineation. In general, our models correctly delineated within-field pixels (Table 3 and Table 4, Figure 5 and Figure S4), but underestimated field polygon size (Figure 4, Table 5 and Table S3). This was largely due to imprecise boundary predictions (Figure 6 and Figure S5), which may be caused by fully convolutional networks that ignore object boundaries that are difficult to classify [52]. We found that the model generalized well, with similar accuracies achieved for the test site where no data were used for model training. This suggests that Mask R-CNN may be effective in mapping smallholder field boundaries at scale, even in regions with limited or no training data.



Although our overall accuracies were moderate, there were several consistent issues that led to reduced prediction accuracies across our models. Specifically, Mask R-CNN was challenged when there were indistinct field boundaries visible in the image, boundaries were occluded by trees or shadows, fields had high within-field crop variation, or fields were irregularly shaped (Figure 6, Figure 9 and Figures S5 and S7). Considering each of these points, it is not surprising that the model performed poorly when boundaries were indistinct, as field boundaries were not clearly visible even to the human eye. Trees and shadows led to color variation in the imagery, and this variation resulted in either failure to detect fields or the delineation of curved boundaries. The convex hull approach we used during postprocessing was able to reduce some of these errors by generating smoother closed boundaries. Mask R-CNN also led to over-segmented fields or incorrectly curved boundaries when fields had very high within-field variation, though the presence of such fields was rare. Considering irregularly-shaped, long and narrow fields, we believe Mask R-CNN performed poorly because the boundaries for these fields were often indistinct. These fields were also relatively rare in the landscape, limiting their presence in the training data. These four issues were not very prevalent across the landscape, leading to moderate delineation and detection accuracies despite these consistent issues.



Considering image input type, our results indicate that our models performed similarly well regardless of which image type was used, though there was a small advantage when using multispectral and enhanced multispectral images (an improvement of 1–4% in AP). Though overall accuracies were similar, our visual interpretation of predicted field boundaries suggests that each image type resulted in models with different types of mis-delineations (Figure 6, Figure 9 and Figures S5 and S7). For example, the model using panchromatic imagery was more likely to over-segment fields compared to models that were developed using other image types (Figure 6). In addition, the model using multispectral imagery was better able to delineate fields with boundaries occluded by trees compared to models using other image types (Figure 6IV). Given that each input image type was associated with different types of mis-delineations, it is possible that an ensemble approach that considers the results from multiple models that use each image type may lead to improved overall delineation accuracy [53].



We found that our Mask R-CNN models were generalizable, given that the models trained in Bihar showed similar performance when applied to Uttar Pradesh, where no data were used for model training (Table 3, Table 4, Table 6 and Table 7). Interestingly, the similarity in the results obtained from Bihar and Uttar Pradesh suggests that the image date had little influence on our results. This is because the acquisition date for images from Bihar was at the end of the monsoon growing season when crops were being harvested, and the acquisition date for images from Uttar Pradesh was in the middle of the winter growing season, when crops were reaching peak biomass, and from a different year. Although our results suggest that our model is generalizable to systems other than where it was trained, it is important to note that our sites in Bihar and Uttar Pradesh are similar in several ways; they are geographically close (~250 km), with similar crop types (rice-wheat rotations), and have similar field sizes (mostly < 0.3 ha). Future work should assess how generalizable our model is to other more distant areas in India and to other nations with smallholder farms.



We found that our iterative approach for collecting ground truth data led to improved delineation accuracies, while collecting training data more efficiently. Considering the time needed to collect ground truth data, the iterative approach took half the amount of time to annotate one 1024 × 1024 pixel tile compared to the original annotation method. Interestingly, model improvements were not large (an improvement of 0.04 in mean IoU, 0.04–0.05 in F1 Score, and 0.08–0.09 in AP for detection and delineation for the best performing models), even though we doubled the number of training data by adding 9256 polygons. Based on our results, it is unclear whether the improved accuracy when using the iteratively collected data was due to simply having a larger training sample size, or whether it is also because the second set of training data were collected from poorly performing areas. Furthermore, given that the improvement in accuracy using the iteratively collected training data was modest, it is possible that we could have achieved similar model accuracy with reduced effort if we had used a smaller original training dataset and collected a larger iterative sample. Future work should examine the most effective way to use the iterative annotation approach to achieve high model accuracy with reduced effort.



Although our results suggest that Mask R-CNN can successfully map smallholder field boundaries, there are several important avenues for future work. First, though we found that our model was generalizable to another study site where no data were used to train the model, future work should examine how generalizable the model is to more disparate smallholder systems. Our model resulted in higher accuracies than a previous study that used Mask R-CNN to map field boundaries in regions with larger field sizes [25], and this may be because we evaluated our models in a relatively similar region (all sites were part of the rice-wheat cropping system in northeast India). Second, we focused on using only one image date for delineation, but it is possible that including multiple images that account for phenological differences could improve boundary detection performance, as found in previous works [54,55]. Third, future work should assess model accuracy when using field boundary information collected on the ground. Although field boundaries were largely visible when we examined multiple sources of imagery, there were a handful of cases where we were unable to digitize fields accurately due to unclear field boundaries. Finally, though our model performed well using very-high-resolution WV-3 imagery, these data are not readily available, and future work should assess the ability of our algorithm to use other sources of high-resolution imagery that are more readily available, such as PlanetScope imagery.




6. Conclusions


In conclusion, Mask R-CNN applied to very-high-resolution WorldView-3 imagery was able to accurately map smallholder field boundaries, even in regions such as Northeast India where field sizes are very small. Our results suggest that image type does not largely influence the results, though consistent biases in detection and delineation existed with each image type, suggesting that an ensemble approach may lead to higher overall accuracy values. Our results also suggest that Mask R-CNN models are generalizable, given that our models achieved similar accuracies when applied to a new test site where no data were used for model calibration and where imagery were collected during a different season and year. Finally, we developed an iterative approach to collect training data, which may reduce the overall effort required to obtain the data necessary to run such deep learning models.
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Figure 1. Panel (a) shows our study areas located in Bihar and Uttar Pradesh, India. Panel (b) shows the location of the satellite image scenes across two districts in Uttar Pradesh. Panel (c) shows the location of satellite image scenes across five districts in Bihar. District boundaries are shown in black. Map source: Esri Topo World. 
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Figure 2. Workflow of building the Mask R-CNN models using WV-3 in Bihar. 
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Figure 3. (a) Example of panchromatic imagery, (b) multispectral imagery, and (c) digitized field polygons for one 1024 × 1024 pixel tile. 
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Figure 4. Scatterplots of ground truth mask area (in pixels) on the x-axis versus delineated mask area (in pixels) on the y-axis. Only correctly delineated field masks are included. Plots (a–d) represent results for the original model across WV-3 image types in Bihar, and plots (e–h) represent results for the final model across WV-3 image types in Bihar. Blue lines with shading represent the linear regression line with 95% confidence intervals, and red lines represent the one-to-one line. 
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Figure 5. One example of a 512 × 512 pixels WV-3 unenhanced tile in Bihar. Panel (a) shows the original panchromatic image, (b) shows the panchromatic image with ground truth, (c) shows the panchromatic image with delineated field boundaries, (d) shows the original multispectral image, (e) shows the multispectral image with ground truth, and (f) shows the multispectral image with delineated field boundaries. Results are shown for the final model, which included the iteratively collected data. Green lines represent ground truth boundaries and yellow lines represent predicted boundaries. 
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Figure 6. Examples of common issues (I–VII, detailed in text) across different model results (columns (a–f)) from Bihar. Green lines represent ground truth boundaries, and yellow lines represent predicted boundaries for panchromatic and multispectral imagery, respectively. 
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Figure 7. Scatterplots of ground truth mask area (in pixels) on the x-axis versus delineated mask area (in pixels) on the y-axis. Only correctly delineated field masks are included. Plots (a–d) represent results for each image type for the models applied in Uttar Pradesh. Blue lines with shading represent the linear regression line with 95% confidence intervals, and red lines represent the one-to-one line. 
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Figure 8. One example of a 512 × 512-pixels WV-3 unenhanced tile in Uttar Pradesh. Panel (a) shows the original panchromatic image, (b) shows the panchromatic image with ground truth, (c) shows the enhanced panchromatic image with delineated field boundaries, (d) shows the original multispectral image, (e) shows the multispectral image with ground truth, and (f) shows the enhanced multispectral image with delineated field boundaries. Results are shown for the final model, which included the iteratively collected data. Green lines represent ground truth field boundaries, and yellow lines represent predicted field boundaries. 
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Figure 9. Examples of common issues (I–V, detailed in text) across the different model results (panels (a–f)) in Uttar Pradesh. Green lines represent ground truth field boundaries, and yellow lines represent predicted boundaries for panchromatic and multispectral imagery, respectively. 
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Table 1. Description of training/validation/testing datasets that were used for building and evaluating the models in Bihar.
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Dataset

	
The Number of 512 × 512 Image Tiles

	
The Number of Field Polygons

	
Location

	
Source Imagery and Date






	
Original Dataset of First Test Site

	
Training

	
144

	
9664

	
Bihar

	
Worldview-3

29 October 2017




	
Validation

	
18

	
1233




	
Testing

	
18

	
1401




	
Final Dataset of First Test Site

	
Training

	
272

	
18,920




	
Validation

	
34

	
2276




	
Testing

	
34

	
2380
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Table 2. Description of testing datasets that were used for evaluating the generalizability of models in Uttar Pradesh.
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	Dataset
	The Number of 512 × 512 Image Tiles
	The Number of Field Polygons
	Location
	Source Imagery and Date





	Dataset of Second Test Site
	Testing
	36
	2266
	Uttar Pradesh
	Worldview-3 23 February 2018
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Table 3. Detection accuracy of mapping smallholder field boundaries in Bihar from models trained using WV-3 data in Bihar. The accuracy metrics from the model with the best F1 score and AP values are highlighted in bold.
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TP

	
FP

	
FN

	
Precision

	
Recall

	
F1 Score

	
AP






	
First Model (Original Dataset)

	
Panchromatic

	
986

	
391

	
415

	
0.72

	
0.70

	
0.71

	
0.63




	
Enhanced Panchromatic

	
897

	
348

	
504

	
0.72

	
0.64

	
0.68

	
0.57




	
Multispectral

	
953

	
367

	
448

	
0.72

	
0.68

	
0.70

	
0.59




	
Enhanced Multispectral

	
942

	
354

	
459

	
0.73

	
0.67

	
0.70

	
0.60




	
Second Model (Final Dataset)

	
Panchromatic

	
1861

	
903

	
519

	
0.67

	
0.78

	
0.72

	
0.68




	
Enhanced Panchromatic

	
1796

	
656

	
584

	
0.73

	
0.75

	
0.74

	
0.68




	
Multispectral

	
1829

	
769

	
551

	
0.70

	
0.77

	
0.73

	
0.66




	
Enhanced Multispectral

	
1831

	
723

	
549

	
0.72

	
0.77

	
0.74

	
0.68
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Table 4. Delineation accuracy of mapping smallholder field boundaries in Bihar from models trained using WV-3 data in Bihar. The accuracy metrics from the model with the best F1 score and AP values are highlighted in bold.






Table 4. Delineation accuracy of mapping smallholder field boundaries in Bihar from models trained using WV-3 data in Bihar. The accuracy metrics from the model with the best F1 score and AP values are highlighted in bold.





	

	

	
TP

	
FP

	
FN

	
Precision

	
Recall

	
F1 Score

	
AP






	
First Model (Original Dataset)

	
Panchromatic

	
980

	
398

	
421

	
0.71

	
0.70

	
0.70

	
0.62




	
Enhanced Panchromatic

	
906

	
368

	
495

	
0.71

	
0.65

	
0.68

	
0.57




	
Multispectral

	
939

	
370

	
462

	
0.71

	
0.67

	
0.69

	
0.58




	
Enhanced Multispectral

	
933

	
355

	
468

	
0.72

	
0.67

	
0.69

	
0.59




	
Second Model (Final Dataset)

	
Panchromatic

	
1844

	
921

	
536

	
0.67

	
0.77

	
0.72

	
0.68




	
Enhanced Panchromatic

	
1782

	
670

	
598

	
0.73

	
0.75

	
0.74

	
0.67




	
Multispectral

	
1832

	
760

	
548

	
0.71

	
0.77

	
0.74

	
0.67




	
Enhanced Multispectral

	
1827

	
727

	
553

	
0.72

	
0.77

	
0.74

	
0.68
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Table 5. Mean IoU, mean ground truth area, and mean delineated field area in Bihar from models trained using WV-3 data in Bihar. Only correctly delineated field masks were included to generate this table. The areas are reported in terms of both the number of pixels and square meters (rounded to the nearest integer). The metrics from the model with the best IoU are shown in bold.






Table 5. Mean IoU, mean ground truth area, and mean delineated field area in Bihar from models trained using WV-3 data in Bihar. Only correctly delineated field masks were included to generate this table. The areas are reported in terms of both the number of pixels and square meters (rounded to the nearest integer). The metrics from the model with the best IoU are shown in bold.





	

	

	
Mean IoU

	
Mean Ground Truth Area

	
Mean Delineated

Area




	
(Pixel)

	
(m2)

	
Pixel

	
(m2)






	
First Model (Original Dataset)

	
Panchromatic

	
0.80

	
2348

	
587

	
2220

	
555




	
Enhanced Panchromatic

	
0.80

	
2415

	
604

	
2359

	
590




	
Multispectral

	
0.80

	
2342

	
586

	
2241

	
560




	
Enhanced Multispectral

	
0.80

	
2320

	
580

	
2207

	
552




	
Second Model (Final Dataset)

	
Panchromatic

	
0.83

	
2457

	
614

	
2260

	
565




	
Enhanced Panchromatic

	
0.84

	
2589

	
647

	
2479

	
620




	
Multispectral

	
0.83

	
2687

	
672

	
2368

	
592




	
Enhanced Multispectral

	
0.83

	
2747

	
687

	
2395

	
599
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Table 6. Detection accuracy of mapping smallholder field boundaries in Uttar Pradesh with models trained using WV-3 data in Bihar. The accuracy metrics from the model with the best F1 score and AP values are highlighted in bold.
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TP

	
FP

	
FN

	
Precision

	
Recall

	
F1 Score

	
AP






	
Second Model (Trained with Final WV-3 Dataset in Bihar)

	
Panchromatic

	
1927

	
758

	
739

	
0.72

	
0.72

	
0.72

	
0.64




	
Enhanced Panchromatic

	
1889

	
495

	
777

	
0.79

	
0.71

	
0.75

	
0.64




	
Multispectral

	
2005

	
485

	
661

	
0.81

	
0.75

	
0.78

	
0.69




	
Enhanced Multispectral

	
1964

	
538

	
702

	
0.78

	
0.74

	
0.76

	
0.67











[image: Table] 





Table 7. Delineation accuracy of mapping smallholder field boundaries in Uttar Pradesh with models trained using WV-3 data in Bihar. The accuracy metrics from the model with the best F1 score and AP values are highlighted in bold.






Table 7. Delineation accuracy of mapping smallholder field boundaries in Uttar Pradesh with models trained using WV-3 data in Bihar. The accuracy metrics from the model with the best F1 score and AP values are highlighted in bold.





	

	

	
TP

	
FP

	
FN

	
Precision

	
Recall

	
F1 Score

	
AP






	
Second Model (Trained with Final Dataset in Bihar)

	
Panchromatic

	
1920

	
765

	
746

	
0.72

	
0.72

	
0.72

	
0.64




	
Enhanced Panchromatic

	
1896

	
488

	
770

	
0.80

	
0.71

	
0.75

	
0.64




	
Multispectral

	
1982

	
508

	
684

	
0.80

	
0.74

	
0.77

	
0.68




	
Enhanced Multispectral

	
1922

	
523

	
744

	
0.79

	
0.72

	
0.75

	
0.65
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Table 8. Mean IoU, mean ground truth area, and mean delineated field area in Uttar Pradesh from models trained using WV-3 data in Bihar. Only correctly delineated field masks were included in the generation of this table. The areas are reported in terms of both the number of pixels and square meters (rounded to the nearest integer). The metrics from the model with the best IoU are shown in bold.






Table 8. Mean IoU, mean ground truth area, and mean delineated field area in Uttar Pradesh from models trained using WV-3 data in Bihar. Only correctly delineated field masks were included in the generation of this table. The areas are reported in terms of both the number of pixels and square meters (rounded to the nearest integer). The metrics from the model with the best IoU are shown in bold.





	

	
Mean IoU

	
Mean Ground Truth Area

	
Mean Delineated Area




	
(Pixel)

	
(m2)

	
(Pixel)

	
(m2)






	
Second Model

(Trained with Final Dataset in Bihar)

	
Panchromatic

	
0.83

	
2236

	
559

	
2033

	
508




	
Enhanced Panchromatic

	
0.84

	
2417

	
604

	
2298

	
575




	
Multispectral

	
0.85

	
2352

	
588

	
2218

	
555




	
Enhanced Multispectral

	
0.83

	
2342

	
586

	
2164

	
541
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