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Abstract: During the past decades, convolutional neural network (CNN)-based models have achieved
notable success in remote sensing image classification due to their powerful feature representation
ability. However, the lack of explainability during the decision-making process is a common criticism
of these high-capacity networks. Local explanation methods that provide visual saliency maps have
attracted increasing attention as a means to surmount the barrier of explainability. However, the
vast majority of research is conducted on the last convolutional layer, where the salient regions are
unintelligible for partial remote sensing images, especially scenes that contain plentiful small targets
or are similar to the texture image. To address these issues, we propose a novel framework called
Prob-POS, which consists of the class-activation map based on the probe network (Prob-CAM) and
the weighted probability of occlusion (wPO) selection strategy. The proposed probe network is a
simple but effective architecture to generate elaborate explanation maps and can be applied to any
layer of CNNs. The wPO is a quantified metric to evaluate the explanation effectiveness of each layer
for different categories to automatically pick out the optimal explanation layer. Variational weights
are taken into account to highlight the high-scoring regions in the explanation map. Experimental
results on two publicly available datasets and three prevalent networks demonstrate that Prob-POS
improves the faithfulness and explainability of CNNs on remote sensing images.

Keywords: convolutional neural networks (CNNs); visual explanation; remote sensing image

1. Introduction

Remote sensing image scene classification has various applications in a wide range
of scenarios, including environment monitoring, urban planning, spatial-temporal data
analysis and smart cities. Owing to the development of image equipment for earth obser-
vation [1–3], remote sensing images with different resolutions are increasing daily, which
boosts the demand for intelligent interpretation of land use and land cover scenes.

Remote sensing image scene classification is a popular research field in satellite im-
age analysis. During the past decades, numerous effective methods have emerged to
achieve continuous improvement. Earlier methods, such as bag-of-visual words (BoVW) [4],
HOG [5] and SIFT [6], generally require rigorous design from experts to extract valuable
features, which imposes certain limitations on feature extraction. More recently, algo-
rithms based on deep learning have achieved satisfactory results in many application fields
owing to their strong feature representation power and powerful graphical processing
units. Among the deep learning methods, convolutional neural networks (CNNs) have
been successfully applied in remote sensing image scene classification [7–14]. Compared
with traditional unsupervised feature learning methods, feature representations with more
complex patterns can be learned via deep architecture neural networks. Some extensively
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used pre-trained networks, such as AlexNet [15] and VGG-VD [16], have been proved to
achieve excellent performance on remote sensing image scene classification [17].

However, CNNs are considered as a black-box operation mechanism, which means
humans cannot easily understand the decision-making process. Therefore, the explain-
ability of the model, which is considered as a barrier to developing artificial intelligence,
has attracted increasing attention. When exploiting a machine learning model, consider-
ing the interpretability of the system can lead to the correction of model deficiencies and
also improve implementability. For example, the improvement of explainability can help
ensures overall impartiality in many applications involving ethics. To address this issue,
many attempts have been made from various aspects [18–27]. A deep generator network
(DGN), which generates the most representative image for a given output neuron, was
proposed in [18]. The authors in [20] used a different approach called network dissection
to quantify the interpretability of the latent representations of CNNs. In the field of re-
mote sensing, long short-term memory (LSTM) recurrent neural networks were used by
the authors in [26] to discover the interpretability of crop yield estimation. A synthetic
aperture radar (SAR) specific deep learning framework called Deep SAR-Net that considers
complex-valued SAR images to learn both spatial texture information and backscattering
patterns of objects, was proposed in [27].

Compared with the aforementioned explainability techniques, local explanation meth-
ods which provide a visual saliency map for each specific decision are more widely studied.
The saliency map, where the relevance score of each spatial position indicates its contri-
bution to the prediction, is generally presented as a heat map. Consequently, it is more
intuitive and comprehensible. One of the seminal works in this category was [19]. The
authors of [19] utilized a global average pooling layer to modify and substitute the fully-
connected layers. A class activation map (CAM) that highlights the image regions that are
relatively important for a specific object class was achieved by projecting back the weights
of the output layer on the convolutional feature maps. However, the CAM alters models’
architectures, making it difficult to apply to a wide variety of CNN model families. Later, au-
thors [28] proposed a gradient-weighted class activation mapping (Grad-CAM), which uses
the gradients of any target concept, flowing into the final convolutional layer, to produce a
coarse localization map. This approach avoids modifying the models’ architectures.

Existing visual explanation methods, such as those mentioned above, have the identi-
cal feature that they almost solely pay attention to the saliency map of the final convolu-
tional layer of CNNs. Some of these algorithms cannot visualize middle or shallow layers
owing to the change of the original model, such as CAM. The feature maps of the final
layer draw more attention, mainly because the receptive field of the high layer is larger
than that of the shallow layer, which means the saliency map obtained by the high layer
may contain more whole objects or object parts and may be more visually comprehensive.
Besides, most visual explanation research is carried out based on natural images, in which
the size of the salient object is relatively large. In contrast, the scales of discriminative
objects in remote sensing image vary greatly from class to class, and some of them are very
small, for instance, the cars in a parking lot and the mobile homes in a mobile home park.
Beyond that, there are certain scenes that do not contain distinct objects and are more like
texture images in visual research, such as the agricultural area, chaparral and forest. For
illustration, in the three examples are shown in Figure 1, it can be seen that the salient
regions generated by CAM and Grad-CAM irregularly emerge in the above scenes. The
jumbled highlighted areas are still hard to understand, so the client may wonder why these
parts are crucial for decision-making but not other similar parts.
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Figure 1. CAM and Grad-CAM on several scenes of remote sensing image.

With the aforementioned considerations, this paper aims to search for an acceptable
visual explanation algorithm for remote sensing image classification. For this to occur,
the CAM based on the probe network and weighted probability of occlusion selection
(Prob-POS) framework is proposed. Essentially, visual explanation algorithms based on
CAM aim to find optimal combinations of feature maps. The proposed probe network
can elaborately discriminate between feature maps with different classes in any layer of a
pending CNNs. Consequently, the weight of a particular class in the probe layer precisely
locates the distinct target. The generated CAM based on probe network (Prob-CAM)
possesses a more understandable explanation in a specific layer, especially a shallow layer.
Subsequently, a metric called weighted probability of occlusion (wPO) is presented to
automatically select the most suitable layer to be explained for different categories. As
mentioned above, visualizing the explanation map on the last convolutional layer is not
satisfactory for every remote sensing scene category, especially scenes that contain plentiful
small targets or are similar to texture images. The explanation maps of middle or shallow
layers are more likely to locate small targets or realistically describe texture information in
visual research. In light of the above, we put forward wPO to quantitatively evaluate the
explanation effectiveness of each convolutional layer for different categories to find out the
optimal target layer.

The main contributions of this paper are as follows.

1. We propose a fundamental framework called Prob-POS to visualize the decision
regions from CNNs for remote sensing image classification. Prob-POS provides
accessible visual explanation patterns for remote sensing scene images, especially
scenes that contain plentiful small targets or scene similar to the texture image.

2. A probe network is proposed to generate Prob-CAM. The weight of a particular
class in the probe layer precisely locates the distinct target; therefore, the achieved
explanation map extracts discriminative objects for classifying a specific scene category
in any layer.

3. We develop a metric called wPO to quantitatively evaluate the explanation effective-
ness of each layer for different categories. For a specific class, the most suitable layer
to be explained can be automatically picked.

2. Related Work

Within remote sensing images, the class activation map (CAM) [19] has been utilized to
accomplish various tasks. The authors in [29] proposed a unified feature fusion framework
by applying Gradient-weighted Class Activation Mapping (Grad-CAM) algorithm which
pushes networks to focus on the most salient parts of the image. The CAM was used to
extract segmentation predictions from an intermediate CNNs layer in the segmentation of
remote sensing images [30]. A weakly supervised deep learning method based on CAM
for multiclass geo-spatial object detection was proposed in [31]. The CAM was modified



Remote Sens. 2022, 14, 3042 4 of 20

to extract the discriminative parts of aircrafts of different categories in [32]. While the
CAM has achieved some applications in various tasks of remote sensing images, most of
these methods only used or slightly modified CAM to complete the extraction of the target
area, and they also focused only on the explanation effect of the last convolutional layer.
For the characteristics of remote sensing images rich in low-level semantic information,
the mechanism of CAM needs to be further improved if better visual explanation is to
be achieved. In the following subsection, we briefly review the related methods of CAM
and Grad-CAM.

2.1. Class Activation Map

The authors in [19] found that the global average pooling (GAP) [33] layer can not
only be used as regularizing training but also locate deep representation that exposes the
implicit attention of CNNs on an image. The CAM for a particular category was proposed
by combining convolutional feature maps to indicate the discriminative image regions.
Given a network architecture, the layers after last conv-layer are removed. A GAP layer is
added after the convolutional feature maps and the spatial average of feature map of each
unit is output to compute regression or other losses. Similarly, the weighted sum of the last
convolutional feature maps is calculated to obtain class activation maps.

Specifically, for a given image of class c, let fk(x, y) indicate the activation of the k-th
unit in the last convolutional layer at location (x, y). The feature map after global average
pooling Fk is ∑x,y fk(x, y). Thus, the input to the softmax Sc is calculated as

Sc = ∑k wc
kFk = ∑

x,y
∑
k

wc
k fk(x, y) (1)

where wc
k denotes the weight corresponding to class c for k-th unit. To a certain degree, wc

k
is considered as the importance of Fk for class c, so the class activation map Mc of each
pixel for class c is given by

Mc(x, y) = ∑
k

wc
k fk(x, y) (2)

It should be noted that Mc actually describes the importance of the activation at
location (x, y) leading to the classification of the specific image to class c. Finally, the
saliency map that reveals the most relevant regions to a particular category is obtained by
upsampling the class activation map to the size of the input image.

2.2. Gradient-Weighted Class Activation Mapping

The CAM approach has an obvious drawback that it could only visualize the last
convolutional layer, thus CAM is restricted to particular kind of CNN architectures per-
forming global average pooling over convolutional maps immediately prior to prediction.
Moreover, the change in architectures may cause damage to the network performance. An
advanced approach called gradient-weighted class activation map (Grad-CAM), which
is applicable to any CNN-based model, was proposed in [28]. For those kinds of fully
convolutional architectures, Grad-CAM can be reduced to CAM.

For a given image of class c, let Ak and Yc represent the feature map of the k-th unit
and the final score before softmax respectively. First, the neuron importance weights wc

k in
Grad-CAM is redefined by computing the gradient of score for class c as:

wc
k =

1
Z ∑

i
∑

j

∂Yc

∂Ak
ij

(3)

where Z is the total number of pixels in the activation map. This weight wc
k represents

a partial linearization of the deep network downstream from A, and also indicates the
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importance of Ak for class c. Next, each spatial location in the specific class saliency map is
calculated as:

Lc
Grad−CAM = ReLU

(
∑
k

wc
k Ak

ij

)
(4)

Specifically, a Relu operation is applied to the linear combination of maps because
features with a positive influence on a specific class are of interest. To obtain fine-grained
pixel-scale saliency maps, Lc

Grad−CAM is similarly upsampled to the size of the input image.
We illustrate the flow chart of applying CAM and Grad-CAM in visualizing the

explanation map of a storage tank image in Figure 2.

Figure 2. The flow chart of the class activation map (CAM) and gradient-weighted class activation
map (Grad-CAM).

3. Proposed Method
3.1. Probe Network

In accordance with the characters mentioned above, let A represent the feature map
of an input image with class c. Specifically, Alk ∈ RM×N denotes the feature map after the
k-th unit in l-th convolutional layer, where M× N indicates the size of the feature map.

When studying the visual explanations of l-th convolutional layer, as shown in Figure 3,
a probe network composed of a probe layer,a ReLU layer and a softmax layer following
behind are built and trained. The feature maps of l-th convolutional layer are employed as
input data and the output of the probe network is also the category number. The proposed
probe layer is a conventional 2d-convolution. For this to occur, the size of kernel matrix F
of the probe layer should be set as M× N × K× C, where K and C denote the depth of l-th
convolutional layer and the total number of categories, respectively. The score input to the
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softmax Sc = ∑k Alk ⊗F c
k , where ⊗ denotes the convolution operation. Thus, the output

of the softmax for class c is Pc =
exp(Sc)

∑c exp(Sc)
.

Figure 3. The flow chart of Prob-CAM.

To some extent, the concept of probe layer is similar to the global average pooling
layer. It not only plays a role as regularizing training but also keeps the spatial location of
the potential salient target. Furthermore, the probe network is more lightweight owing to
the lack of a need for another fully-connected layer for final score. The weights of class c in
probe layer imply the importance of the input feature map Alk for the current class. The
weight is computed as the average value of the k-th unit for class c.

αc
k =

1
MN

M

∑
m=1

N

∑
n=1
F c

k (5)

Subsequently, the salient region map for each spatial location of class c is performed
as a weighted combination of feature maps after l-th convolutional layer

Lc
Prob−CAM =

K

∑
k=1

αc
k Alk

i,j (6)

The size of the achieved saliency map is the same as that of a feature map with M× N,
but each unit is supposed to be activated within its receptive field. The Lc

Prob−CAM at
different spatial locations forms a heat map of the current convolutional layer, so enlarging
the heat map to the original image size can help obtain more details of the target, making
it more intuitive and comprehensive for humans. Finally, the visual explanation image is
obtained by simply upsampling the heat map.

3.2. Weighted Probability of Occlusion

The visual saliency maps of particular layers can be acquired by the proposed probe
network, afterwards the next task is picking out the most appropriate layer in which the
saliency map with a reasonably favourable explainable results. The concept of faithfulness is
used for reference to address this problem. For visual explanation, faithfulness is generally
quantified by computing the difference of predictions between the saliency map and
original image, where the saliency map is usually occluded or blurred to mask out high-
energy regions. In the remote sensing image classification task, there are kinds of scene
categories similar to texture images. Blurring leads will lead to the prediction of the blurred
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image; in particular, largely blurred images tend to fall into several specific categories.
Consequently, occlusion is implemented on saliency maps in this paper.

Figure 4. Illustration of the weighted probability of occlusion (wPO).

The weighted probability of occlusion (wPO) is proposed to evaluate the explanation
effectiveness of each convolutional layer for different categories. The procedure of wPO is
illustrated in Figure 4; here, we take one specific layer for example. For each image I, the
pixels sorted by the score in the saliency heat map are equally divided into δ portions. The
original image is first all occluded, and then we compute the probabilities by recovering
the high-score clean pixels portion by portion. It is noted that the probabilities here are
computed by the original whole network. Thus, the probability of the t times operation is

Pt = N (Φt(I, t/δ)) t = 1, 2, . . . δ (7)

where N denotes the network inference, and Φ is the occluded image recovered by adding
t/δ clean pixels.

There is another factor that cannot be neglected: the high-scoring regions of the
saliency map that embody the effect of visual explanation. Namely, these highlighted image
regions imply the explainability of the algorithm. Therefore, the probabilities of occluded
images with fewer high-score clean pixels should be given larger weights to enhance their
impact. The weight for probability of t time is defined as 2(δ + 1− t)

/
(δ + 1)δ. Finally, the

wPO is computed as a linear combination of weighted probabilities

wPO =
1
‖I‖0

∑
I

∑
t

2(δ + 1− t)
(δ + 1)δ

Pt (8)

where I denotes the images of a particular class. Besides, ∑t 2(δ + 1− t)
/
(δ + 1)δ = 1.

At this point, the weighted probability of occlusion that corresponds to every class
at each convolutional layer is available, and let wPOc

l represent it. l denotes the layer
number of networks. A larger value means a better explanation result. For class c, the most
favourable explanation layer l̂ = arg max wPOc

l , l = 1, 2, ...L.

4. Experimental Results

In this section, we evaluate the proposed method on two datasets designed for remote
sensing image classification and three widely adopted CNNs. We first demonstrate the
experimental setup in Section 4.1, including introductions to datasets, implementation
details, evaluation criteria, etc. In Section 4.2, we first report the quantitative results of
our algorithm on two datasets in detail. Then, we show the evaluation on faithfulness
in Section 4.3. Next, in Section 4.4, the explainability is evaluated from two aspects, the
intuitive visual presentation of results and the verification of localization capability. Finally,
we separately show the explainability of shallow layers on the scene categories that are
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similar to the texture image in Section 4.5. The influential and state-of-art visual explanation
algorithms CAM, Grad-CAM, and Grad-CAM++ are implemented for comparison.

4.1. Experimental Setup
4.1.1. Datasets Description

Two publicly available datasets designed for remote sensing image classification
with a different quantity of images were adopted in our experiments. The first one is
UC Merced land-use dataset which consists of images of 21 land-use scene categories
selected from aerial orthoimagery with a pixel resolution of 1 foot [34]. Each class contains
100 images with the size of 256 × 256 pixels. Figure 5 shows some example images
randomly selected from UCM. We implemented data augmentation, including flipping
and rotating, owing to the limited amount of images. The other one is NWPU-RESISC45
dataset which are extracted from Google Earth (Google Inc., Mountain View, Santa Clara
County, CA, USA) [1], covering more than 100 countries and regions all over the world.
The NWPU-RESISC45 dataset contains 31,500 images, containing 45 scene classes with
700 images in each class. Every image is 256 × 256 pixels in the red–green–blue (RGB) color
space. The spatial resolution varies from about 30 to 0.2 m per pixel for most scene classes.
Compared with UCM, NWPU-RESISC45 not merely covers the most categories of UCM,
such as airplane, baseball diamond, forest, freeway, intersection, storage tank, etc., but also
includes more generalized scene classification data such as commercial area, mountain,
church, palace, cloud, sea ice, etc., making the classification task more challenging. Figure 6
shows some example images from NWPU-RESISC45 with one sample per class.

Figure 5. Example images from the UCM dataset: (1) agricultural; (2) airplane; (3) baseball diamond;
(4) beach; (5) building; (6) chaparral; (7) dense residential; (8) forest; (9) freeway; (10) golfcourse;
(11) harbor; (12) intersection; (13) medium residential; (14) mobile home park; (15) overpass; (16) parking
lot; (17) river; (18) runway; (19) sparse residential; (20) storage tank; (21) tennis court.
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Figure 6. Example images from the NWPU-RESISC45 dataset.

4.1.2. Networks and Parameters Setup

We implemented three practical CNNs with different types of structures on the pro-
posed framework: VGG-16 [16], AlexNet [15] and ResNet-50 [35], and the corresponding
numbers of convolutional layers are 5, 16, and 50, respectively. For VGG-16, we took
’pool1’, ’pool2’, ’pool3’, ’conv4-3’ and ’conv5-3’ as examples to verify the ability of the
proposed method, and ’pool1’, ’conv2’, ’conv3’, ’conv4’, ’conv5’ are selected for AlexNet.
For ResNet-50, we took ’pool1’ and the last convolutional layer of each residual block,
namely ’conv2-3’, ’conv3-4’, ’conv4-6’ and ’conv5-3’. When train the probe network, the
feature maps directly after the pooling layer and the ReLU layer of the convolutional layer
were employed as input.

The three networks are supposed to be re-trained on two remote sensing image
datasets at first. The images were randomly divided into subsets for training, validation
and testing. The ratios of UCM and NWPU-RESISC45 were set as 60%, 20%, 20% and 20%,
10%, 70%, respectively. These ratios and the identical images in respective subsets were
also adopted in the period of training the probe network and computing the weighted
probability of occlusion. All the networks including probe networks were trained using
SGD [36], with a batch size of 64. During re-training the networks, the initial learning rate
was set to 0.05 and divided by 5 every 5 epochs, while the average value of the objective
function over the validation set stopped decreasing. The training epochs for three networks
are 40, 20 and 50, respectively. As for training of the probe networks, the initial learning
rate was set to 0.001 and is divided by 5 every 5 epochs, while the training epochs was set
to 20.

The weighted probability of occlusion (wPO) for each category was obtained on the train-
ing subsets. The only hyper-parameter δ in wPO was set to 32 in the following experiments.

4.1.3. Evaluation Criteria

The effectiveness of visual explanation is usually measured from two aspects: faithful-
ness and explainability. The faithfulness objectively evaluates the fidelity of the explanation
to the judgment of the original model, while the explainability subjectively describes how
much humans can understand the explanation results.

To quantify the faithfulness, two metrics proposed in [37] were adopted in this paper:
(i) Average Drop and (ii) Increase in Confidence. The Average Drop compares the average
% drop in the model’s confidence of a particular category in an image. It is obtained
by calculating the percentage of original probability occupied by the probability drop
between original image and occluded image. Thus, a lower Average Drop means higher
faithfulness. The Increase in Confidence considers another scenario, where the probability
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of the highlighted explanation map might exceed the original one. This index computes
the proportion of abovementioned cases over the total number of images, so a higher
Increase in Confidence is better. Note that these two evaluation indexes are gained on the
testing subset.

Quantifying the explainability of algorithms on remote sensing image classification is
tough because there is not a dataset that marks every distinct object in each scene category,
and it is hard to mark a specific target in the scenes similar to the texture image. As a
consequence, we evaluate the explainability from two aspects. First, considering that
the explainability is a subjective measurement, we directly display the explanation maps
generated by the proposed method and comparison methods as well. The gray level
maps of salient heat maps corresponding to shallow layers are also shown to demonstrate
the proposed algorithm’s explainability on scene categories similar to the texture image.
Second, we refer to the measurement method in [19,28], a weakly supervised localization is
implemented to indirectly verify the explainability.

4.1.4. Hardware Equipment

All the experiments were run on an HP Z8 workstation with two Intel Xeon Gold 5120
CPUs with 14 cores, two NVIDIA GeForce RTX 2080 Ti GPUs and a 128-GB memory.

4.2. Optimal Explanation Layer

In this subsection, we report the proposed weighted probability of occlusion (wPO)
and generated optimal explanation layer achieved on two datasets and three networks. The
wPO of each layer on UCM from VGG-16, AlexNet and ResNet-50 is shown in Tables 1–3.
The maximum wPO of each category in all layers is highlighted in bold and marked with
a check mark for the ease of comparing. In the meantime, The optimal explanation layer
from three networks for each class of NWPU-RESIS45 dataset is presented in Tables 4–6
respectively. The wPO of NWPU-RESISC45 is not presented in detail because of paper
length limits.

Table 1. wPO(%) of each layer from VGG-16 on UCM.

pool1 pool2 pool3 conv4-3 conv5-3

agricultural 23.88(X) 12.52 2.13 2.66 12.64
airplane 28.86 16.69 16.85 20.83 42.34(X)

baseballdiamond 47.41 9.92 4.58 8.62 85.49(X)
beach 9.81 11.28 3.11 6.63 48.89(X)

buildings 57.41(X) 33.09 32.81 28.33 43.73
chaparral 87.41 91.99(X) 6.55 1.67 19.17

denseresidential 41.67 46.82(X) 26.66 17.51 14.88
forest 68.90(X) 63.25 20.59 2.83 4.80

freeway 43.32 23.04 23.01 21.17 45.82(X)
golfcourse 46.70 23.21 90.92 96.60(X) 82.09

harbor 63.37 76.63 70.94 79.54 82.31(X)
intersection 35.19(X) 22.54 11.60 12.72 20.82

mediumresidential 6.02 13.17 16.14 22.75(X) 17.41
mobilehomepark 16.18 60.21 64.73(X) 48.77 37.14

overpass 25.45 12.55 24.97 22.68 44.73(X)
parkinglot 17.11 18.71 19.96 58.03(X) 51.75

river 49.63 31.24 16.19 24.83 54.13(X)
runway 4.27 2.15 0.61 1.15 5.17(X)

sparseresidential 34.75 9.66 17.49 16.57 51.88(X)
storagetanks 64.82 48.55 47.19 67.20 81.76(X)
tenniscourt 26.13 12.50 28.16 35.77 65.34(X)
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Table 2. wPO(%) of each layer from AlexNet on UCM.

pool1 conv2 conv3 conv4 conv5

agricultural 6.51(X) 5.43 0.95 2.82 3.32
airplane 13.41 22.10 16.82 15.85 36.47(X)

baseballdiamond 19.85 26.05 48.39 55.01(X) 52.71
beach 6.96 11.87 4.56 8.38 13.73(X)

buildings 36.34 38.72(X) 34.71 35.56 38.42
chaparral 2.29(X) 1.67 0.29 0.48 0.44

denseresidential 17.35(X) 16.26 7.63 5.23 6.84
fores 61.61(X) 43.30 17.63 15.13 20.59

freeway 5.56 12.37 8.95 9.38 13.30(X)
golfcourse 9.19 11.95 33.53 40.68 43.72(X)

harbor 27.28 36.35 50.74 52.08 78.82(X)
intersection 23.22(X) 20.70 11.96 9.96 16.54

mediumresidential 5.97 4.79 4.95 4.62 6.65(X)
mobilehomepark 24.95 30.48(X) 12.49 9.82 12.64

overpass 13.43 18.43 15.55 15.83 38.89(X)
parkinglot 3.01 11.07 15.34(X) 11.33 12.30

river 19.75 19.73 15.51 28.26 36.07(X)
runway 28.77 56.86 42.05 65.33(X) 56.59

sparseresidential 17.10 15.04 13.56 19.02 19.54(X)
storagetanks 61.80 65.05 72.36 78.00 79.11(X)
tenniscourt 20.07 25.73 38.48 40.73 41.13(X)

Table 3. wPO(%) of each layer from ResNet-50 on UCM.

pool1 conv2-3 conv3-4 conv4-6 conv5-3

agricultural 18.92(X) 7.47 0.60 0.54 1.32
airplane 10.60 5.50 14.82 19.70 38.94(X)

baseballdiamond 77.08 65.56 53.87 67.20 80.04(X)
beach 36.57 38.12 37.17 39.86 46.18(X)

buildings 13.87(X) 10.47 3.21 2.38 5.01
chaparral 19.32(X) 4.74 3.97 3.50 3.71

denseresidential 11.88(X) 2.23 5.51 7.69 10.14
forest 45.26(X) 35.68 38.84 34.66 28.01

freeway 43.36 19.12 19.67 26.07 58.73(X)
golfcourse 11.83 3.63 43.35 64.51 51.31(X)

harbor 43.36 19.12 19.67 26.07 58.73(X)
intersection 17.97(X) 17.92 4.57 4.74 3.63

mediumresidential 11.83 3.63 43.35 64.51(X) 51.31
mobilehomepark 58.12 62.78(X) 43.09 42.26 33.21

overpass 5.17 9.59 8.04 8.69 14.18(X)
parkinglot 9.44 18.48 19.44 24.24(X) 21.40

river 12.76 18.43 19.85 17.39 22.73(X)
runway 2.11 1.25 1.91 2.72 35.22(X)

sparseresidential 26.68 25.86 24.68 16.59 27.93(X)
storagetanks 19.61 29.97 31.78 33.43 35.61(X)
tenniscourt 6.31 11.48 47.81 51.63 61.83(X)
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Table 4. The optimal explanation layer from VGG-16 for each class of NWPU-RESIS45 dataset.

pool1 chaparral, commercial area, dense residential, desert, forest, harbor,
meadow, railway, railway station, snowberg

pool2

pool3 parking lot, roundabout, wetland

conv4-3 golf course, intersection, island, medium residential, mobile home park

conv5-3

airplane, airport, baseball diamond, basketball court, beach, bridge,
church, circular farmland, cloud, freeway, ground track field, industrial
area, lake, mountain, overpass, palace, rectangular farmland, river,
runway, sea ice, ship, sparse residential, stadium, storage tank, tennis
court, terrace, thermal power station

Table 5. The optimal explanation layer from AlexNet for each class of NWPU-RESIS45 dataset.

pool1 dense residential, desert, forest, harbor, meadow, snowberg

conv2 bridge, chaparral, commercial area, freeway, medium residential, mobile
home park, mountain, railway, railway station, wetland

conv3 parking lot

conv4
airport, baseball diamond, beach, church, circular farmland, golf course,
ground track field, industrial area, rectangular farmland, roundabout,
stadium, terrace

conv5

airplane, basketball court, cloud, intersection, island, lake, overpass, palace,
river, runway, sea ice, ship, sparse residential, storage tank, tennis court,
thermal power station

Table 6. The optimal explanation layer from ResNet-50 for each class of NWPU-RESIS45 dataset.

pool1 chaparral, desert, forest, harbor, meadow, mountain, railway, railway station,
snowberg, wetland

conv2-3 commercial area, dense residential, industrial area, parking lot, terrace

conv3-4 medium residential, roundabout

conv4-6 beach, circular farmland, golf course, intersection, mobile home park,
rectangular farmland

conv5-3

airplane, airport, baseball diamond, basketball court, bridge, church, cloud,
freeway, ground track field, island, lake, overpass, palace, river, runway,
sea ice, ship, sparse residential, stadium, storage tank, tennis court, thermal
power station

From these results, we made the following observations. First, not all scene classes
identified the last convolutional layer as the optimal explanation layer, which proves the
argument of this article. The scene classes containing clear objects of a large scale generally
chose the last layer, such as airplane, storage tanks, tennis court and so on. In contrast,
the scene classes similar to the texture image, such as agricultural, chaparral, forest and
meadow, had the obvious trend that the explainability of the lower layer was stronger than
the higher layer. Moreover, the middle layer was most likely to be chosen by the scene
classes containing targets with a small scale, such as parking lot and mobile home park.
This could be reasonably explained: the shallow layers in CNNs capture more detailed
features, whereas the deep layers learn more holistic features of objects owing to the larger
receptive fields. The kernels in the first convolutional layer usually represent texture
information. Therefore, the low and middle layers provide more discriminative features for
the abovementioned categories. In other words, the shallow layers are more suitable to be
explained for these classes. The visual explanations are shown in the following subsections.
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Second, although there were small differences in some classes owing to the diversity of
networks and datasets, the optimal explanation layer of identical class basically remained
the same between different networks and datasets. This indicates that our argument
possesses a certain universality. There are small differences in some classes on account of
the diversity of networks and datasets.

4.3. Faithfulness

The quantitative evaluation on the faithfulness of the proposed Prob-POS and com-
parison methods is reported in this subsection. Two different metrics proposed in [37] are
adopted: (i) Average Drop and (ii) Increase in Confidence. For comparison, we implement
CAM, Grad-CAM (GCAM) and Grad-CAM++ (GCAM++) on the two datasets and eval-
uate their faithfulness. Additionally, we also apply our proposed weighted probability
of occlusion (wPO) selection strategy on Grad-CAM (GCAM&POS) and Grad-CAM++
(GCAM++&POS) to verify the effectiveness. It is noted that the Grad-CAM and Grad-
CAM++ are implemented on the same retrained networks that are used by Prob-POS.
Nevertheless, CAM changes the network architecture, so we sufficiently train the CAM
networks according to the original reference on both datasets.

Table 7. Quantitative evaluation of faithfulness on UCM.

Average Drop % Incr. in Confidence %

VGG-16 AlexNet ResNet-50 VGG-16 AlexNet ResNet-50

Prob-POS 32.37 48.24 37.28 9.29 4.95 6.86

Prob-CAM 40.41 55.70 42.45 6.29 3.14 6.23

CAM 42.38 51.14 49.62 3.96 4.09 5.73

GCAM 52.55 60.36 55.78 3.19 2.48 3.28

GCAM++ 53.89 59.52 54.74 4.06 2.37 4.77

GCAM&POS 48.97 56.96 50.49 4.10 2.96 4.31

GCAM++&POS 49.33 54.14 52.16 4.83 2.8 5.25

Table 8. Quantitative evaluation of faithfulness on NWPU-RESISC45.

Average Drop % Incr. in Confidence %

VGG-16 AlexNet ResNet-50 VGG-16 AlexNet ResNet-50

Prob-POS 58.45 65.42 59.33 8.79 4.77 6.58

Prob-CAM 67.97 74.49 66.41 4.10 2.40 3.63

CAM 70.42 72.23 69.21 3.92 3.25 4.47

GCAM 73.15 79.73 71.27 2.93 2.18 3.55

GCAM++ 69.22 79.52 70.06 3.48 3.67 4.26

GCAM&POS 68.17 76.71 66.93 3.99 3.29 5.13

GCAM++&POS 62.53 74.43 65.44 4.75 4.16 4.92

The results of faithfulness on the UCM and NWPU-RESISC45 dataset are shown in
Tables 7 and 8, respectively. The lower Average Drop and higher Increase in Confidence
indicate the better faithfulness. It can be seen that the proposed Prob-POS achieved the
best performance in both metrics and both datasets. This is because the Prob-POS chooses
the layers with the highest explainability for each category and the fidelity of global
explanation consequently outperforms the explanation methods that only concentrate on
the last layer. When we only employed the proposed method on the last layer (Prob-CAM
in the Table), the performance was also better than that of the comparison methods on two
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datasets with VGG-16. However, CAM achieved better faithfulness on AlexNet, a possible
conjecture is that CAM adds another convolutional layer with 1024 kernels after original
networks, enhancing the feature representation power of CNNs with a small volume, such
as AlexNet, and so the explainability was boosted. In addition to the above two conclusions,
the Average Drop and Increase in Confidence were both promoted by applying the wPO
selection strategy on Grad-CAM and Grad-CAM++; hence, the wPO selection strategy is
conducive to improving the faithfulness of visual explanation algorithms.

4.4. Explainability

Explainability subjectively describes how much humans could understand the expla-
nation results. This is a direct metric evaluating the performance of a visual explanation
algorithm. In this subsection, we respectively show the generated explanation maps from
the last convolutional layer and middle-shallow layers to demonstrate the effectiveness of
Prob-POS and Prob-CAM. If the salient regions of the generated explanation maps involve
more specific semantic meanings, the explainability is higher.

4.4.1. Explainability of Last Layer

We sampled images whose optimal explanation layer was the last convolutional layer
from UCM and NWPU-RESISC45 datasets, and display their corresponding explanation
results on the last layer generated by the proposed Prob-CAM, CAM, Grad-CAM and
Grad-CAM++ in Figure 7. It can be observed that the explanation maps from the last layer
mainly locate discriminative targets such as the airplane, the ground track field and the
runway, or locate the whole area that contains many specific targets, for example, the pier
berthing with rows of boats, shown in the harbor scene. These salient regions of the last
layer are generally associated with targets of a relatively large scale.

Figure 7. The explanation maps for sampled images from different scene class generated by Prob-
CAM, CAM and Grad-CAM. They were all obtained on the last layer, which was the optimal
explanation layer for the shown categories.
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Furthermore, the Prob-CAM achieved similar explainability as CAM, Grad-CAM
and Grad-CAM++ on some scene classes, such as the airplane and the ground track field.
However, in some categories, the explainability of Prob-CAM was better than that of the
other three methods. For example, the salient region of runway generated by Prob-CAM
includes more complete runway area than that of the others, and the explanation map on
storage tanks generated by our method precisely locates four storage tanks, yet the location
of CAM has errors, Grad-CAM and Grad-CAM++ both omit two storage tanks. On the
whole, the explainability of Prob-CAM on last layer is equal to or better than the the other
three methods on remote sensing images.

4.4.2. Explainability of Middle-Shallow Layer

Similarly, we sampled images whose optimal explanation layer was the middle or
shallow layer from two datasets. The results of corresponding explanation maps obtained
by the proposed method and comparison methods are shown in Figure 8, where the ’Prob-
POS’ indicates the explanation maps generated by the Prob-POS on the optimal explanation
layer for each scene class, the ’Prob-CAM’ refers to the explanation maps obtained by the
Prob-CAM on the last layer, the ’CAM’, ’Grad-CAM’ and ’Grad-CAM++’ also represent the
explanation maps on last layer. The following conclusions could be drawn by observing
these results.

Figure 8. The explanation maps for sampled images from different scene classes generated by Prob-
POS, CAM and Grad-CAM. They were obtained on middle or shallow layer, which was the optimal
explanation layer for the category shown.
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First, the explanation maps generated by the proposed method on shallow layer could
provide higher explainability for specific scene classes such as agricultural, chaparral and
wetland. As shown in Figure 8, the explanation maps on the shallow layer clearly depict
the texture information for above mentioned scene images. Compared with the jumbled
and irregular salient regions of explanation maps on the last layer, the results of shallow
layer are obviously more understandable for humans in visual appearance. Moreover,
there was a surprising phenomenon where the buildings scene that contained apparent
targets of a large scale identified the shallow layer as the optimal explanation layer. We
give a possible conjecture that the buildings are extremely regular shapes so the marginal
information learned by shallow layers could represent these shapes more properly.

Second, the scene classes that contain plenty of targets of a small scale were better
visually explained on middle layers. As shown in Figure 8, the mobile homes in the mobile
home park and the cars in parking lot are precisely located in the explanation maps on the
middle layer, yet the salient regions in explanation maps on the last layer omit more or
fewer targets, depending on methods applied. Considering the two points mentioned above,
we may draw another conclusion that the explanation maps on last layer trend to describe
centralized salient regions, whereas the tiny discrete objects and detailed information are
more likely described by explanation maps on middle and shallow layers respectively.

Finally, the ideal visual explanation results rely on understandable explanation maps
generated by the Prob-CAM as well as the optimal explanation layer chosen by the wPO
selection strategy. These two aspects jointly verify the effectiveness of the proposed Prob-
POS framework.

4.4.3. Evaluating Localization

In order to provide quantitative comparison results on explainability, we referred to the
operations in [19,28] and performed a weakly supervised localization in the context of scene
classification. The localization capability helps to indirectly reflect the explainability. Here,
we took VGG-16 as the backbone to implement the experiment. The NWPU-RESISC45
dataset was used as the training dataset. The NWPU VHR-10 dataset [38], which is a
publicly available 10-class geospatial object detection dataset, was used for testing. Except
from vehicle class, the other nine classes of NWPU VHR-10, which are airplane, ship,
oil tank, baseball diamond, tennis court, basketball court, ground track field, harbor and
bridge, are all included in the NWPU-RESISC45 dataset.

When inputting a testing scene image, to generate bounding boxes from explanation
results, we also used a simple thresholding technique to segment the saliency heatmap.
First, the regions of which the value is above 20% of the max value of the heatmap were seg-
mented. Then, the bounding boxes were drawn on the segments that cover the connected
component. We performed this procedure on the proposed Prob-POS and comparison
methods, respectively. Note that the explanation heatmap of the Prob-POS was gener-
ated from the optimal convolutional layer. The comprehensive metric average precision
(AP), in which the area overlap ratio was set to 0.5, was adopted to measure the location
performance. The experimental results are shown in Table 9.

Table 9. Localization capability of the Prob-POS and comparison methods in terms of the evaluation
metric of AP(%)

Airplane Ship Oil
Tank

Baseball
Diamond

Tennis
Court

Basketball
Court

Ground
Track Filed

Harbor Bridge

Prob-POS 6.49 1.36 6.67 12.61 0.40 0.29 2.23 2.17 0.22
CAM 5.36 0.16 2.84 12.27 0.13 0.11 1.79 0.07 0.04

GCAM 4.47 0.27 4.62 10.52 0.34 0.21 1.48 1.08 0.07
GCAM++ 5.85 0.31 4.33 10.07 0.41 0.26 1.61 1.15 0.07
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It can be observed that the Prob-POS shows the best localization capability in most
scenes. In the scenes of ship, oil tank and harbor, the Prob-POS achieves clear advantages.
These quantitative compasison results further verify the explainability of Prob-POS. It
should be noted that the average precision in this experiment is generally lower than that
with the method designed for object detection. This is because there are many factors we
had not taken into account, such as the diversity of scale and the segmentation of dense
objects. But this implementation is capable and fair to verify the explainability.

4.5. Explainability on Texture Information

To further demonstrate explainability on texture information of the explanation maps
obtained by the proposed method, we simply display the gray level maps of Prob-CAM on
the shallow layer of networks. Just like the above operation, here we also sampled images
whose optimal explanation layer was first layer from corresponding networks. The results
are shown in Figure 9. We took the gray level maps generated by Grad-CAM, Grad-CAM++
and the texture image obtained by the entropy filter for comparison.

Figure 9. The gray level maps of Prob-CAM and Grad-CAM on the shallow layer, and the texture
image obtained by the entropy filter.
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It can be seen from Figure 9 that the gray level maps of Pro-CAM show more clear and
detailed texture information than the other methods on most scene classes. Although the
gray level maps of Grad-CAM and Grad-CAM++ also present visual texture information,
some detailed elements are missing, for example part of the buildings are hard to identify
in the buildings scene and dense residential scene. In addition, the contrast of Grad-CAM
and Grad-CAM++ is generally low, so the present images are fuzzy. This is because the
hypothesis proposed in Grad-CAM and Grad-CAM++ is based on the final convolutional
layer. However, the proposed Prob-CAM does not suffer from this limitation, and thus it
works better on shallow layers.

5. Conclusions

In this paper, we proposed a framework for improving visual explanations of remote
sensing images called Prob-POS. The framework consists of two parts, the class activation
map based on probe network (Prob-CAM) and the weighted probability of occlusion (wPO)
selection strategy.

First, we used the probe network, which is composed of a probe layer, a ReLU layer
as well as a softmax, which is a simple but effective algorithm to elaborately discriminate
between the feature maps with different classes. We utilized the weights of a particular
class in a well-trained probe layer to linearly combine the feature maps, and then the
Prob-CAM is obtained. The Prob-CAM can be applied to convolutional feature maps after
any layer.

Second, we developed a metric called wPO to measure which layer was the most
suitable to be explained for different class. The variational weights were added to the
probability of occlusion considering that the high-scoring regions in the explanation map
embody the explainability of the visual image. The wPO provided a quantitative evaluation
of the explanation effectiveness of each layer for different categories, and further, the
optimal explanation layer can be automatically picked.

Finally, extensive experiments were carried out over publicly available datasets, UCM
and NWPU-RESISC45, as well as the prevalent networks VGG-16 and AlexNet. The
experimental results showed that the faithfulness of Prob-POS was better than that of other
algorithms that only concentrated on the last convolutional layer. Moreover, the Prob-POS
also achieved better explainability on remote sensing images, as the proper layer was
selected to generate explanation maps. Thus, compared with visual results on the last layer,
the Prob-CAM on middle or shallow layers provided accessible visual explanation patterns
for remote sensing scene images, especially scenes that contained plentiful small targets or
were similar to the texture image.

Some aspects of this study need further research. First, the gradients in CNNs were
shown to be helpful for locating distinct objects; thus, it is worth utilizing the gradients to
assist in the generation of explanation maps. Second, the location ability of objects is gener-
ally used to compute the explainability in existing methods, yet this is infeasible in some
remote sensing categories. Consequently, a quantified and fair metric should be proposed
to evaluate the explainability of explanation algorithms for remote sensing images.
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