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Abstract: Accurate and automatic identification of tree species information at the individual tree scale
is of great significance for fine-scale investigation and management of forest resources and scientific
assessment of forest ecosystems. Despite the fact that numerous studies have been conducted on the
delineation of individual tree crown and species classification using drone high-resolution red, green
and blue (RGB) images, and Light Detection and Ranging (LiDAR) data, performing the above tasks
simultaneously has rarely been explored, especially in complex forest environments. In this study, we
improve upon the state of the Mask region-based convolution neural network (Mask R-CNN) with
our proposed attention complementary network (ACNet) and edge detection R-CNN (ACE R-CNN)
for individual tree species identification in high-density and complex forest environments. First, we
propose ACNet as the feature extraction backbone network to fuse the weighted features extracted
from RGB images and canopy height model (CHM) data through an attention complementary
module, which is able to selectively fuse weighted features extracted from RGB and CHM data at
different scales, and enables the network to focus on more effective information. Second, edge loss is
added to the loss function to improve the edge accuracy of the segmentation, which is calculated
through the edge detection filter introduced in the Mask branch of Mask R-CNN. We demonstrate
the performance of ACE R-CNN for individual tree species identification in three experimental
areas of different tree species in southern China with precision (P), recall (R), F1-score, and average
precision (AP) above 0.9. Our proposed ACNet–the backbone network for feature extraction–has
better performance in individual tree species identification compared with the ResNet50-FPN (feature
pyramid network). The addition of the edge loss obtained by the Sobel filter further improves the
identification accuracy of individual tree species and accelerates the convergence speed of the model
training. This work demonstrates the improved performance of ACE R-CNN for individual tree
species identification and provides a new solution for tree-level species identification in complex
forest environments, which can support carbon stock estimation and biodiversity assessment.

Keywords: individual tree species identification; ACE R-CNN; Mask R-CNN; attention complementary
module; edge detection; UAV RGB and CHM data

1. Introduction

Tree species information is an important indicator for describing the biodiversity of
forest ecosystems [1–3]. Accurate tree species identification plays an important role in
managing forest resources, monitoring forest competition, assessing stand health, and
valuing ecological benefits [4]. Manual field survey for individual tree species identification
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is usually an accurate and reliable method [5], however it is time consuming, costly,
and does not allow for large-scale forest species identification [6,7]. Unmanned aerial
vehicles (UAV) remote sensing technology, with its characteristics of flexibility, efficiency
and convenience [8], provides a new means of identifying tree species and obtaining
information on the distribution of tree species in large areas of forests [9]. The technology
can be equipped with a variety of sensors (such as high-resolution cameras, multispectral
or hyperspectral sensors, and Light Detection and Ranging (LiDAR) to obtain a wealth
of multi-source remote sensing data. Multi/hyperspectral data, characterized by the
integration of maps and spectra [10,11], provide a wealth of spatial, radiometric, and
spectral information for forest species identification and remain a favorite alternative for
describing forest canopy information [12]. However, multi/hyperspectral data cannot
penetrate the canopy and accurate acquisition of individual tree information remains a
serious challenge for complex forest canopy situations, such as different canopy sizes,
overlapping canopies, and confusion between canopy and background.

Unlike multispectral and hyperspectral, LiDAR sensors acquire three-dimensional
point cloud information and vertical structure information of the forest by emitting high-
frequency pulses from laser transmitters [13]. Researches on forestry applications of LiDAR
data have focused on individual tree segmentation [14–16] and forest structure parameter
extraction such as stand height, crown width, and biomass [17–19]. Some researchers
have also used height as well as intensity information from LiDAR data for tree species
classification [20,21].

In the past decades, machine learning methods such as Support Vector Machines
(SVM) [22–24], Random Forests (RF) [25,26], and Artificial Neural Networks have been
widely used in the field of tree species classification and identification [27]. Among them,
SVM has become the mainstream method in forest tree species classification [23]. However,
SVM is over-reliant on the choice of kernel functions and optimal parameters, and has low
generalization ability. Therefore, some researchers have attempted to carry out studies on
tree species classification and identification, taking advantage of deep learning techniques
in feature extraction. Hamraz et al. [16] uses deep convolutional neural networks to
classify needles and deciduous leaves from single tree data obtained by segmentation
based on airborne LiDAR data. Hu et al. [28] proposed a method combining convolutional
neural networks, convolutional generative adversarial networks (CGANs), and AdaBoost
classifiers to identify diseased pine trees using red, green, and blue (RGB) drone images,
with a recall of 95%. Zhang et al. [10] used an improved three-dimensional convolutional
neural network (3D-1D CNN) tree species classification model based on hyperspectral data
to achieve short time, large area, and high accuracy classification mapping of multiple tree
species in complex terrain at the forest stand scale.

Current researches on tree species classification usually focus on stand and regional
scales [28], and most of the tree species identification at the individual tree scale is obtained
by a two-step operation combining the classification results of stand classification and
the results of individual tree crown segmentation [11,16]. However, in the complex forest
environment, the generalization performance of these methods is poor, and the accuracy is
relatively low.

With further developments in deep learning, researchers have developed an advanced
instance segmentation model named the Mask region-based convolution neural network
(Mask R-CNN), which integrates the core tasks of target detection and semantic segmen-
tation to identify the boundaries of target objects precisely at the pixel level, enabling
end-to-end training [29]. Mask R-CNN had made progress in the recognition of targets
using high spatial resolution images [30,31]. For example, Wang et al. [30] proposed an
automatic extraction algorithm using Mask R-CNN based on multispectral images and
achieved crop identification with relatively high accuracy. Zhang et al. [31] proposed an
improved Mask R-CNN model for individual tree segmentation and recognition from UAV
images with an accuracy of more than 75%. The above methods are based on a single data
source and use the idea of sharp changes in the grey scale values of the canopy edges for
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target object recognition, which has achieved good results in simple and less heterogeneous
environments. However, there are more uncertainties in the results in forest environments
with high densities, irregular canopy boundaries, and mutual shading [32]. The vertical
structure information obtained from LiDAR data is a useful complement to individual tree
crown extraction, however, the basic backbone networks of Mask R-CNN (e.g., ResNet50,
ResNet101) cannot selectively utilize the unique deep features from each of the multiple
data sources [29]. In addition, the cross-entropy loss function ignores the prediction loss of
the boundary in the segmentation task, which reduces the accuracy of the segmentation
boundary [31]. Therefore, how to fuse the spectral information provided by high spatial
resolution image data and the vertical structure information provided by LiDAR data to
achieve end-to-end individual tree species classification is an urgent problem needing to be
solved [33,34].

Here, we design an improved Mask R-CNN network named the attention complemen-
tary network (ACNet) and edge detection R-CNN (ACE R-CNN) for individual tree species
identification in complex forest environments using UAV RGB images and LiDAR data.
Firstly, we propose a backbone network named ACNet to replace the basic backbone of
Mask R-CNN, which fuses features extracted from high-resolution RGB images and canopy
height model (CHM) data by an attention complementary module (ACM). The features
extracted from the RGB and CHM branches are weighted and the weighted features are
added to the fusion branch by introducing an attention module that can highlight certain
important features. We then propose to add an edge loss function, presenting the loss
between the predicted and ground-truth mask contours to the Mask R-CNN loss function
to improve the edge accuracy of the crown segmentation. The edge loss is computed by in-
troducing an edge detection filter in the Mask branch. Finally, we evaluate the performance
of our proposed ACE R-CNN framework for individual tree species identification with
different data input methods, different backbone networks, and different edge detection
methods in different subregions composed of different tree species. Our proposed ACE
R-CNN framework allows for end-to-end individual tree species identification with fast
training speed and high accuracy, which provides a new solution for obtaining individual
tree-level tree species distribution information in forest resource surveys.

2. Materials and Methods
2.1. Study Area

Gaofeng Forest Farm is a forest plantation in Nanning, Guangxi Province, southern
China (22◦49′–23◦5′N, 108◦7′–108◦38′E) (Figure 1a), with a cover area of approximately
52 km2. The area has a subtropical monsoon climate with abundant sunshine and rain-
fall, an average annual temperature of 21.7 ◦C, and an average annual precipitation of
1300 mm. The topography is mainly hilly, with an elevation of 100~350 m, a slope of
6~35◦, and an average slope of approximately 29◦. There are thick russet soils and many
subtropical and tropical tree species growing here, mainly including Betula alnoides Hamilt.
(BH), Michelia macclurei Dandy (MD), Acacia melanoxylon (AM), Eucalyptus urophyllus (EU),
Castanopsis hystrix Miq. (CM), Pinus elliottii (PE), and Camellia oleifera Abel (CA). The trees
in the plantation are tall with high stand density (Figure 1b,c) and have a complex canopy
structure–e.g., various crown sizes, overlapping crowns–which poses a challenge for accu-
rate identification of individual tree species.

Combining subcompartment data from the National Forest Resources of China and
Gaofen-2 image data, we selected three experimental areas composed of different tree
species to validate our proposed method. These areas had different stand densities and
relatively uniform slopes. The first area (Figure 1b) has a size of 180 m × 160 m and the
center coordinates are approximately 108◦22′6′′ E, 22◦58′28′′ N. This area is dominated by
broad-leaved tree species, consisting of Betula alnoides Hamilt., Michelia macclurei Dandy,
Acacia melanoxylon, and Other Soft Broads (SB). The second area (Figure 1c) has a size of
180 m × 155 m and the center coordinates are approximately 108◦22′6′′ E, 22◦58′20′′ N.
It is composed of Acacia melanoxylon, Eucalyptus urophyllus, Castanopsis hystrix Miq., and
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Other Soft Broads. The third area (Figure 1d) has a size of 105 m × 80 m and the center
coordinates are approximately 108◦22′5′′ E, 22◦57′47′′ N. This area consists of coniferous
and broadleaf trees, with the main tree species consisting of Eucalyptus urophyllus, Pinus
elliottii, and Camellia oleifera Abel.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. Overview of the study areas. (a) Location of the study area. (b–d) UAV-RGB images, CHM, 
and photographs of the main tree species for the three experimental areas, respectively. 

Combining subcompartment data from the National Forest Resources of China and 
Gaofen-2 image data, we selected three experimental areas composed of different tree spe-
cies to validate our proposed method. These areas had different stand densities and rela-
tively uniform slopes. The first area (Figure 1b) has a size of 180 m × 160 m and the center 
coordinates are approximately 108°22′6″E, 22°58′28″N. This area is dominated by broad-
leaved tree species, consisting of Betula alnoides Hamilt., Michelia macclurei Dandy, Acacia 
melanoxylon, and Other Soft Broads (SB). The second area (Figure 1c) has a size of 180 m × 
155 m and the center coordinates are approximately 108°22′6″E, 22°58′20″N. It is com-
posed of Acacia melanoxylon, Eucalyptus urophyllus, Castanopsis hystrix Miq., and Other Soft 
Broads. The third area (Figure 1d) has a size of 105 m × 80 m and the center coordinates 
are approximately 108°22′5″E, 22°57′47″N. This area consists of coniferous and broadleaf 
trees, with the main tree species consisting of Eucalyptus urophyllus, Pinus elliottii, and Ca-
mellia oleifera Abel. 

2.2. Remote Sensing Data Collection and Processing 
In May 2020, LiDAR data for three experimental areas were obtained using a Riegl 

VUX-1LR scanner onboard a GV2000 UAV flown at ~250 m above ground level with a 
strip overlap rate of ~80%. The scanner emits a wavelength of 1550 nm at a scan frequency 
of 200 Hz. The beam divergence was approximately 0.5 mrad. The point cloud has an 
average point density of ~45 points/m2. During the same flight, RGB images were acquired 
using a FC6310R camera (focal length 8.8 mm) at 5472 × 3648 pixels with an exposure time 
of 1/400 s. The flight direction overlap and the side overlap were about 80%. The LiDAR 
scanner, camera, and flight parameters are shown in Table 1. 
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2.2. Remote Sensing Data Collection and Processing

In May 2020, LiDAR data for three experimental areas were obtained using a Riegl
VUX-1LR scanner onboard a GV2000 UAV flown at ~250 m above ground level with a strip
overlap rate of ~80%. The scanner emits a wavelength of 1550 nm at a scan frequency of
200 Hz. The beam divergence was approximately 0.5 mrad. The point cloud has an average
point density of ~45 points/m2. During the same flight, RGB images were acquired using
a FC6310R camera (focal length 8.8 mm) at 5472 × 3648 pixels with an exposure time of
1/400 s. The flight direction overlap and the side overlap were about 80%. The LiDAR
scanner, camera, and flight parameters are shown in Table 1.

Table 1. The LiDAR scanner, camera, and flight parameters.

LiDAR and Flight Parameters Riegl VUX-1LR Camera Parameters FC6310R

Wavelength 1550 nm Optical resolution 5472 × 3648 pixels
Scanning frequency 200 KHz Imaging sensor size 40.30 × 53.78 mm
Scanning distance 5~1350 m Imaging focal length 8.8 mm

Beam dispersion angle 0.5 mrad Ground Sampling Distance 0.08 m
Scan angle ±60◦ Azimuth during imaging 0◦

Flight speed 7.5 m/s
Flight altitude 250 m

The pre-processing of UAV RGB image data was conducted using LiPPK (Version 1.1,
GreenValley International, Beijing, China) and LiMapper (Version 3.1, GreenValley Interna-
tional, Beijing, China), including image position and orientation system (POS) decomposi-
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tion and orthophoto mosaic. This process generated a RGB orthophotos with a WGS 1984
reference ellipsoid and UTM 49 N projection. The RGB orthophotos has a spatial resolution
of 0.08 m.

LiDAR data pre-processing was conducted using LiDAR360 (Version 5.0, GreenValley
International, Beijing, China), mainly including resampling, noise point removal, point
cloud filtering, and generation of the CHM. Firstly, a Gaussian filtering algorithm [35] was
used to remove the noisy points and a modified progressive encrypted triangular mesh
filtering algorithm [36] was used to classify the ground points. Then, the digital terrain
model (DTM) and digital surface model (DSM) were generated using inverse distance
weighted (IDW) algorithm, with a spatial resolution of 0.5 m. The CHM was created by
subtracting the DTM from the DSM, which represents the height of real ground objects
after removing the terrain background. To reduce the effect of CHM holes, the CHM was
processed using the canopy area-controlled CHM null fill method. Finally, the spatial
resolution of the CHM was resampled to 0.08 m using the nearest neighbor interpolation
method to achieve consistency with the RGB image spatial resolution.

In addition, we used QGIS (Version 3.22, QGIS.ORG) to register the RGB orthophotos
and CHM. Ten control points were evenly selected in each area, and the RGB orthophoto
and CHM were then corrected using a polynomial correction model, with accuracy con-
trolled within one pixel.

2.3. Individual Tree Species Sample Set Construction

To match the input image requirements of the Mask R-CNN architecture, RGB or-
thophotos and CHM from three experimental areas were split into 512 × 512-pixel image
tiles for processing (Figure 2a,b). Based on a priori knowledge of individual tree species
information in the experiment area provided from subcompartment data and ground sur-
vey data, we used Lableme (Version 4.6.0, Computer Science and Artificial Intelligence Lab,
Massachusetts Institute of Technology, Cambridge, MA, USA) software to construct the
individual tree species sample set by manual visual interpretation (Figure 2c). The crown
boundary of each tree in the RGB image was manually outlined by the Create Polygon
tool and given different labels according to its species information, with different numbers
indicating different individual trees under the same species. The individual tree species
sample sets were stored in the JSON file format. Then, 60% of the sample set was randomly
selected as the training set, and the remaining 40% as the test set. Detailed sample set
label information is shown in Table 2. To avoid overfitting during the model training, each
image of the training set was rotated (90◦, 180◦, and 270◦) and inverted (horizontally and
vertically) at a certain ratio for the data augmentation process.
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Table 2. The number of trees labeled in all image tiles of training set and test set for each species.

Sample Sets Tree Species Sample Sets

Training Set Test Set

Experiment area 1

BH 240 172
MD 291 209
AM 141 106
SB 99 80

Total 771 567

Experiment area 2

AM 146 114
EU 288 212
CM 271 192
SB 235 174

Total 940 692

Experiment area 3

EU 181 135
PE 160 116
CA 147 117

Total 488 368

2.4. Methods
2.4.1. Mask R-CNN Individual Tree Species Identification Framework

Mask R-CNN is a pixel-level multi-target instance segmentation algorithm proposed
by He et al. [29]. The network is able to not only accurately classify target instances
and output target bounding boxes, but also finely segment the segmentation mask of
instances, which achieves the task of simultaneously solving tree species classification,
detection, and individual tree crown segmentation [30,37–40]. The network structure of
Mask R-CNN is shown in Figure 3, including the backbone network (Backbone) layer,
region proposal network (RPN) layer, region of interest (RoI)-Align layer, and bounding
box (Bbox) as well as classification and masks. Specifically, the input to the network is
a set/multiset of fixed-size images, and the feature maps are generated by the feature
extraction backbone networks of the ResNet and feature pyramid networks (FPN). The
RoIs then are extracted using the RPN. The RoIs and the corresponding feature vectors
are mapped in the RoIAlign layer with fixed sizes. Finally, the output of the RoIAlign
layer is divided into two branches, i.e., the classification detection branch and the Mask
prediction branch. The classification detection branch outputs the class with the highest
probability and prediction bounding box for each RoI region after a fully-connected layer
transformation. The Mask prediction branch uses a convolutional network to generate a
binary mask map for the highest confidence class of each RoI region, thus completing the
pixel-level segmentation.

The loss function of Mask R-CNN consists of three components: classification error
loss (Lcls), bounding box regression error loss (Lbox), and mask segmentation error loss
(Lmask). The equations are as follows.

L = Lcls + Lbox + Lmask, (1)

where, Mask loss function represents the average binary cross-entropy loss of decoupling
the mask branch and the classification branch. For a RoI belonging to the kth class, only
the kth mask is considered to be calculated in the loss function. Such a definition allows
generating a mask for each category and there is no inter-class competition.

2.4.2. ACE R-CNN: An Improved Mask R-CNN Framework for Individual Tree
Species Identification

Since the forest structure in the study area is complex–the canopy boundaries are
irregular and blocked by each other–it is difficult to segment the crown and achieve
individual tree species identification by only using the idea of mutation of the gray value
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of the crown boundaries in the RGB images [28,41]. CHM can describe the height variation
information of tree crowns and help extract accurate information regarding individual
tree crown boundaries [42]. Although the backbone feature extraction network of Mask
R-CNN allows the use of CHM as an additional channel to RGB images (in a combined
form as input images) [43], the effective information contained in the RGB and CHM
images are different and contribute differently to the final target prediction, and the original
backbone network treats both data sources equally in the feature extraction process, which
easily causes the loss of effective information of CHM. In this study, we integrate the
distinct features of high-resolution RGB images and CHM, respectively, and propose a
multi-scale feature fusion backbone network named ACNet by introducing an attention
complementary module to replace the ResNet-FPN backbone of Mask R-CNN. ACNet can
selectively learn features from RGB branches and CHM branches to make the network focus
on more important informative regions. In addition, the prediction loss of the boundary
in the segmentation task is ignored during the Mask loss calculation in Mask R-CNN,
which reduces the accuracy of the segmentation Mask [31,44], and thus we add the edge
loss [45] to the mask branch to improve the accuracy of the segmentation result edge. The
architecture of our proposed ACE R-CNN network is shown in Figure 4.

ACNet Backbone Network

ACNet is a multi-scale feature fusion network based on the attention mechanism. For
the input RGB image and CHM, two complete ResNet branches are deployed to extract
features separately. In the forward propagation process, each branch generates a set of
feature maps at each module stage, and then extracts weighted features from these feature
maps using ACM (Figure 4). The ACM provides a series of attention allocation coefficients
(weighting parameters) that can be used to emphasize or select important information
about the target processing object and to suppress some irrelevant detailed information.
After convolution, the feature maps are further element-wise added to the merge branch,
while the others are added to the output of the fusion branch. In this way, low-level and
high-level features can be extracted, reorganized, and fused. The specific parameters of the
ACNet network structure are shown in Table 3.
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Table 3. The specific parameters of the ACNet network structure.

Layer Name Input Layer Output Size Parameters

Input - [2, 512, 512] 0
C-1 RGB [2, 64, 256, 256] 9536
H-1 CHM [2, 64, 256, 256] 9536
M-1 (C-1, H-1) [2, 64, 128, 128] 8320
C-2 C-1 [2, 256, 128, 128] 75,008
H-2 H-1 [2, 256, 128, 128] 70,400
M-2 (C-2, H-2) [2, 128, 128, 128] 666,624
C-3 C-2 [2, 512, 64, 64] 346,368
H-3 H-2 [2, 512, 64, 64] 280,064
M-3 (C-3, H-3) [2, 256, 64, 64] 3,656,192
C-4 C-3 [2, 1024, 32, 32] 1,380,864
H-4 H-3 [2, 1024, 32, 32] 1,117,184
M-4 (C-4, H-4) [2, 2048, 16, 16] 26,804,224
C-5 C-4 [2, 2048, 16, 16] 4,462,592
H-5 H-4 [2, 2048, 16, 16] 4,462,592
M-5 (C-5, H-5) [2, 256, 16, 16] 39,436,800

Total 82,786,304
Note: C: RGB Branch convolution; H: CHM Branch convolution; M: Fusion branch.
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Figure 5 shows the ACM in ACNet, assuming that the input feature map A = [A1, ..., Ac]
∈ RC×H×W, where C denotes the number of channels, and H and W denotes the height and
width of the feature map, respectively. The output Z ∈ RC×1×1 is obtained using global
average pooling, the kth position of Z (k ∈ [1, C]) can be expressed as Equation (2).

Zk =
1

H ×W

H

∑
i

W

∑
j

Ak(i, j), (2)
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Figure 5. Attention Complementary Module.

Z is reconstructed by a 1 × 1 convolutional layer with the same number of channels
as Z. The 1 × 1 convolutional layer is able to mine the correlation between channels to
derive the appropriate weight distribution for these channels. The sigmoid function is
then applied to activate the convolution result, constraining the value of the weight vector
V ∈ RC×1×1 to be between 0 and 1. Finally, we perform the outer product of A and V. The
result U ∈ RC×H×W can be expressed as Equation (3).

U = A⊗ σ[φ(Z)], (3)

where ⊗ denotes the outer product, σ denotes the sigmoid function, and φ denotes the
1 × 1 convolution. In this way, the feature map A is transformed into a new feature map U,
which contains more valid information.

Edge Detection

In order to further improve the accuracy of the segmentation mask, the method of
adding edge loss in the mask branch is proposed to make the segmentation boundary more
accurate. As shown in the mask branch in Figure 4, the mask corresponding to the correct
category is first selected in the 28 × 28 × C output of the mask branch, and then the labeled
image is transformed into a binary segmentation map (i.e., the target mask), and finally the
prediction mask and the target mask output from the mask branch are taken as input and
convolved with the edge detection filter to obtain the edge detection binary output map,
and then the edge loss Ledge (Equation (4)).

Ledge = mean(|y− y|2), (4)

where y denotes the edges detected from the target mask; y denotes the edges detected
from the prediction mask. Thus, the final improved ACE R-CNN loss function is shown in
Equation (5).

L = Lcls + Lbox + Lmask + Ledge, (5)

In this study, we used traditional edge detection filters which can be described as
a convolution with a 3 × 3 kernel–such as Sobel and Laplacian kernels–to evaluate the
effectiveness of the edge loss.
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The Sobel operator is a two-dimensional gradient operator to detect edges (Equation (6)).
Sx and Sy describes the horizontal and vertical gradient factor of the Sobel operator, respec-
tively. These two factors are convolved with the image I to obtain the horizontal gray value
Gx and the vertical gray value Gy (Equation (7)) of each pixel point in the image. The changed
gray value (G) is calculated by Equation (8). Here, a threshold value needs to be set for G,
where G is greater than this threshold value output is 1, and vice versa output is 0. The final
output is the edge detection binary map.

Sx =

1 0 −1
2 0 −2
3 0 −1

, Sy =

 1 2 1
0 0 0
−1 −2 −1

, (6)

Gx = Sx · I, Gy = Sy · I, (7)

G =
√

G2
x + G2

y , (8)

The Laplace operator is a second-order differential linear operator (Equation (9)) with
the same result in the four 90◦ directions, i.e., up, down, left, and right. In other words, the
operator has no directionality in the 90◦ direction. In order to make this operator also have
this property in the 45◦ direction, the operator is extended and defined as Equation (10).
The edges can be detected by convolution operation with the image.

L =

0 1 0
1 −4 1
0 1 0

, (9)

L =

1 1 1
1 −8 1
1 1 1

, (10)

2.4.3. Experimental Design

To evaluate the performance of Mask R-CNN and ACE R-CNN with different configu-
rations applied to individual tree species identification, we designed five sets of compara-
tive experiments based on different data input types, backbone feature extraction networks,
and edge detection filters. The specific experimental design is shown in Table 4.

Table 4. Comparison experiments with different data input types, backbone networks, and edge
detection filters.

Experiments Model Input Image Backbone Edge Detection

A Mask R-CNN RGB ResNet50-FPN No
B Mask R-CNN RGB + CHM ResNet50-FPN No
C ACE R-CNN RGB + CHM ACNet No
D ACE R-CNN RGB + CHM ACNet Laplacian
E ACE R-CNN RGB + CHM ACNet Sobel

We used a pre-training ResNet50-FPN architecture framework to initialize the new
model in order to speed up the model training and improve the accuracy. The training
configuration of the models was specified as follows: batch size was set to 2 and epochs
was set to 2000. All models used the same polynomial learning rate (η), with an initial
learning rate of 0.001 and an ending learning rate of 0.0001, which decreases at a fixed
decreasing rate. Finally, a stochastic gradient descent (SGD) was used as the optimizer with
momentum and weight decay set to 0.9 and 0.0001, respectively.

For each experimental area data product, multiple rectangular bounding boxes were
predicted around each tree, and each bounding box contained confidence scores for the
probability of a tree presence ranging from 0 to 1. In this study, overlapping crowns with
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confidence scores > 0.3 were retained with the highest confidence scores, and overlapping
redundant bounding boxes were removed using a non-maximal suppression algorithm.

In this study, the proposed approach is implemented using the open source PyTorch
learning framework and the MMDetection open-source project. The hardware environment
is a Dell Precision T7910 (AWT7910) workstation with an IntelR Xeon (R) E5-2620 v4 @2.10
GHZ CPU and an NVIDIA 1080 Ti (12 GB); the operating system is 64-bit Ubuntu 20.02.

2.4.4. Accuracy Evaluation

The intersection-over-union statistic (IoU) was used to evaluate whether the tree-crown
polygons were successfully detected (Figure 6). The ground-truth samples as well as the
prediction tree bounding boxes were used to calculated IoU. IoU > 0.5 is usually considered
as the correct threshold for successful detection [46,47].

P =
TP

TP + FP
, (11)

R =
TP

TP + FN
, (12)

F1− score =
2(P× R)

P + R
, (13)

AP =
∫ 1

0
P(R)dR, (14)

where TP is the number of correctly identified trees, FN is the number of trees that were
not identified, and FP is the number of extra trees that did not exist in the field.
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Figure 6. Diagram of IoU calculation process. Ctrue is the ground-truth of the crown polygons,
Cpredicted is predicted crown polygons.The performance of the Mask R-CNN and ACE R-CNN was
evaluated using precision (P), recall (R), F1-score, and average precision (AP). P is the correctness of
identified trees, which is the ratio between the number of correctly identified trees and the number of
identified trees. R is the individual tree identification rate, which is the ratio between the number of
correctly identified trees and the number of ground-truth trees. The F1-score is the overall accuracy
of identified trees, which combines P and R. These indicators range from 0 to 1 with larger values
indicating higher accuracy, and are calculated based on true positives (TP), false positives (FP), and
false negatives (FN) using Equations (11)–(13). Ideally, we would like the model to have higher P and
R; however, this relationship is usually negative in reality. With R as the horizontal coordinate and P
as the vertical coordinate, the precision–recall curve (P–R curve) can be obtained by selecting different
confidence thresholds to calculate the values of R and P and plotting the curve. AP is the area under
the P–R curve, ranging from 0 to 1 with larger values indicating higher accuracy (Equation (14)).

3. Results

The performance of Mask R-CNN and ACE R-CNN with different input data, back-
bone networks, and edge detection filters for individual tree species identification were
evaluated using test datasets from three experimental areas, and the results are presented in
Tables 5–7. The distribution maps of individual tree crowns and their species information
in the three experimental areas were generated to show the effect of individual tree species
identification more clearly (Figure 7). In addition, a confusion matrix was used to show the
individual tree species identification results (Figure 8).
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Table 5. Accuracy evaluation of individual tree species identification with different input data.

Experiment
Scheme

Experiment
Area

Tree
Species P R F1-Score AP

A Area 1 AM 0.059 0.053 0.056 0.029
B Area 1 AM 0.840 0.359 0.503 0.511
A Area 2 AM 0.000 0.000 0.000 0.203
B Area 2 AM 0.500 0.204 0.290 0.442
A Area 1 BH 0.217 0.375 0.275 0.221
B Area 1 BH 0.817 0.536 0.647 0.352
A Area 3 CA 0.307 0.230 0.263 0.085
B Area 3 CA 0.625 0.328 0.430 0.255
A Area 2 CM 0.126 0.081 0.099 0.096
B Area 2 CM 0.247 0.262 0.254 0.296
A Area 2 EU 0.147 0.129 0.137 0.200
B Area 2 EU 0.247 0.389 0.302 0.419
A Area 3 EU 0.385 0.150 0.216 0.119
B Area 3 EU 0.492 0.387 0.433 0.299
A Area 1 MD 0.186 0.298 0.229 0.072
B Area 1 MD 0.815 0.275 0.411 0.454
A Area 3 PE 0.311 0.18 0.228 0.114
B Area 3 PE 0.367 0.313 0.338 0.264
A Area 1 SB 0.857 0.072 0.133 0.088
B Area 1 SB 0.532 0.393 0.452 0.114
A Area 2 SB 0.000 0.000 0.000 0.121
B Area 2 SB 0.228 0.178 0.200 0.330

A Area 1 Overall 0.330 0.200 0.173 0.103
B Area 1 Overall 0.751 0.391 0.503 0.358
A Area 2 Overall 0.068 0.053 0.059 0.155
B Area 2 Overall 0.306 0.258 0.262 0.372
A Area 3 Overall 0.334 0.187 0.236 0.106
B Area 3 Overall 0.495 0.343 0.400 0.273

Table 6. Accuracy evaluation of individual tree species identification with different backbone networks.

Experiment
Scheme

Experiment
Area

Tree
Species P R F1-Score AP

B Area 1 AM 0.84 0.359 0.503 0.511
C Area 1 AM 0.974 0.603 0.745 0.844
B Area 2 AM 0.500 0.204 0.290 0.442
C Area 2 AM 0.955 0.764 0.849 0.866
B Area 1 BH 0.817 0.536 0.647 0.352
C Area 1 BH 0.923 0.796 0.855 0.859
B Area 3 CA 0.625 0.328 0.430 0.255
C Area 3 CA 0.989 0.775 0.869 0.827
B Area 2 CM 0.247 0.262 0.254 0.296
C Area 2 CM 0.947 0.852 0.897 0.861
B Area 2 EU 0.247 0.389 0.302 0.419
C Area 2 EU 0.970 0.853 0.908 0.885
B Area 3 EU 0.492 0.387 0.433 0.299
C Area 3 EU 0.934 0.760 0.838 0.823
B Area 3 PE 0.367 0.313 0.338 0.264
C Area 3 PE 0.795 0.827 0.811 0.818
B Area 1 SB 0.532 0.393 0.452 0.114
C Area 1 SB 0.562 0.663 0.608 0.678
B Area 2 SB 0.228 0.178 0.200 0.330
C Area 2 SB 0.984 0.783 0.872 0.871

B Area 1 Overall 0.751 0.391 0.503 0.358
C Area 1 Overall 0.861 0.652 0.727 0.775
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Table 6. Cont.

Experiment
Scheme

Experiment
Area

Tree
Species P R F1-Score AP

B Area 2 Overall 0.306 0.258 0.262 0.372
C Area 2 Overall 0.964 0.813 0.882 0.871
B Area 3 Overall 0.495 0.343 0.400 0.273
C Area 3 Overall 0.906 0.787 0.839 0.823

Table 7. Accuracy evaluation of individual tree species identification with different edge detection filters.

Experiment
Scheme

Experiment
Area

Tree
Species P R F1-Score AP

C Area 1 AM 0.974 0.603 0.745 0.844
D Area 1 AM 0.989 0.667 0.796 0.909
E Area 1 AM 0.982 0.982 0.982 0.970
C Area 2 AM 0.955 0.764 0.849 0.866
D Area 2 AM 0.983 0.923 0.952 0.939
E Area 2 AM 0.976 0.931 0.953 0.960
C Area 1 BH 0.923 0.796 0.855 0.859
D Area 1 BH 0.859 0.839 0.849 0.857
E Area 1 BH 0.988 0.980 0.984 0.987
C Area 3 CA 0.989 0.775 0.869 0.827
D Area 3 CA 0.982 0.917 0.948 0.94
E Area 3 CA 0.991 0.991 0.961 0.98
C Area 2 CM 0.947 0.852 0.897 0.861
D Area 2 CM 0.994 0.952 0.973 0.948
E Area 2 CM 0.994 0.927 0.959 0.988
C Area 2 EU 0.97 0.853 0.908 0.885
D Area 2 EU 0.997 0.918 0.956 0.939
E Area 2 EU 0.997 0.913 0.953 0.989
C Area 3 EU 0.934 0.760 0.838 0.823
D Area 3 EU 0.965 0.832 0.894 0.889
E Area 3 EU 0.967 0.874 0.918 0.949
C Area 1 MD 0.986 0.544 0.701 0.72
D Area 1 MD 0.986 0.554 0.71 0.81
E Area 1 MD 0.979 0.926 0.952 0.969
C Area 3 PE 0.795 0.827 0.811 0.818
D Area 3 PE 0.984 0.945 0.964 0.926
E Area 3 PE 0.976 0.969 0.97 0.974
C Area 1 SB 0.562 0.663 0.608 0.678
D Area 1 SB 0.517 0.594 0.553 0.663
E Area 1 SB 0.987 0.951 0.969 0.97
C Area 2 SB 0.984 0.783 0.872 0.871
D Area 2 SB 0.996 0.915 0.954 0.939
E Area 2 SB 0.993 0.925 0.958 0.97

C Area 1 Overall 0.861 0.652 0.727 0.775
D Area 1 Overall 0.838 0.664 0.727 0.81
E Area 1 Overall 0.984 0.96 0.972 0.974
C Area 2 Overall 0.964 0.813 0.882 0.871
D Area 2 Overall 0.993 0.927 0.959 0.941
E Area 2 Overall 0.99 0.924 0.956 0.977
C Area 3 Overall 0.906 0.787 0.839 0.823
D Area 3 Overall 0.977 0.898 0.935 0.918
E Area 3 Overall 0.978 0.945 0.950 0.968
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3.1. Applicability of Different Input Data on Individual Tree Species Identification

Based on Mask-R-CNN with ResNet50-FPN as the backbone network, we used RGB
alone, and RGB and CHM data to identify individual tree species in three experiment areas,
namely experiment A and B. The results showed that the combination of RGB with CHM



Remote Sens. 2022, 14, 3035 16 of 21

data performed better than RGB data alone (Table 5). With the addition of CHM data, the
values of the AP and F1-score were higher, indicating that the accuracy of individual tree
species identification was significantly improved. This suggests that CHM data are useful
for individual tree species identification.

In Experiment A, the P and R were all lower except for Other Soft Broads in the
experiment area 1 (Table 5). The higher P of Other Soft Broads in the experiment area 1
is due to the fact that most individual trees of Other Soft Broads are not detected. As can
be seen from the Figures 7 and 8, there were serious missing phenomenon in all three
experiment areas when RGB data were used alone. Especially in the experiment area 2,
the R of Acacia melanoxylon and Other Soft Broads were all 0. In the experiment B, the
phenomenon of missed individual trees detection has been significantly alleviated with
RGB and CHM data. It can be concluded that all tree species have better identification
results. In the experiment area 1, the P of Betula alnoides Hamilt., Michelia macclurei Dandy,
and Acacia melanoxylon achieved 0.8. For Acacia melanoxylon and Eucalyptus urophyllus, the
accuracy is significantly improved no matter which experiment area is surveyed, which
further demonstrates the importance of CHM data for the identification of individual
tree species.

3.2. Effectiveness of Different Backbone Networks for Individual Tree Species Identification

Based on ResNet50-FPN and ACNet backbone networks, the individual tree species
identification experiments (Experiment B, C) were carried out in three experiment areas by
combining RGB and CHM data. Comparing the data in Table 6, it can be concluded that
the ACNet backbone network had superior identification results, with the overall AP of
the three areas greater than 0.75. The P, R, F1-score, and AP of all tree species in the three
experiment areas obtained by using ACNet were significantly higher than those obtained
by ResNet50-FPN backbone networks. With the exception of Michelia macclurei Dandy and
Other Soft Broads in the experiment area 1, the APs of individual tree species identification
by the ACNet backbone network were all above 0.8. All these indicated that the ACNet
backbone network we proposed could significantly improve the accuracy of individual tree
species identification.

By analyzing and comparing the results and confusion matrixes (Figures 7 and 8),
the phenomenon of missing the detection of individual tree species in the three exper-
iment areas was greatly relieved, and the identification precision was also greatly im-
proved. However, there are still some problems in the identification results. For example,
Michelia macclurei Dandy and Other Soft Broads of experiment area 1 have serious missing
detection and false identification problems, respectively.

In this study, the three experiment areas selected have different tree species compo-
sition with different stand densities, including broad-leaved forests and coniferous and
broad-leaved mixed forests, while the same tree species exist in different experiment areas.
The results showed that individual tree species identification accuracies of broad-leaved
and coniferous tree species were significantly improved under high canopy density con-
ditions using the ACNet. This confirms that the ACNet backbone network has strong
universality and robustness in the identification of individual tree species.

3.3. Influence of Edge Detector Filters on Individual Tree Species Identification

In order to better evaluate whether the addition of the edge detection filter will
improve the accuracy of individual tree species identification and which kind of edge
detection filter is more suitable, three individual tree species identification experiments
(experiment C, D, and E) were conducted in the three experiment areas using ACE R-CNN
with and without edge detection filter networks, respectively. As shown in the Table 7, the
ACE R-CNN that added edge detection filter performed better in individual tree species
identification. Among them, the ACE R-CNN with Sobel edge detection filter has the
highest accuracy, the AP, P, and F1-score of individual tree species, and the overall AP were
all higher than 0.9 in the three experiment areas.
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Compared with the ACE R-CNN model without edge detection filter, the R of the
ACE R-CNN with Laplacian edge detection filter is improved to a certain extent, but the
increase is small. However, the R of ACE R-CNN with Sobel filter is significantly improved,
and there is almost no missing detection phenomenon. Especially for Acacia melanoxylon
and Eucalyptus urophyllus in Experiment area 1, the problem of ACE R-CNN model in
individual tree species identification is effectively solved (Figures 7 and 8).

Moreover, we analyzed the training losses of ACE R-CNN models with/without edge
detection filters (Figure 9). The addition of Sobel filter can accelerate the convergence rate of
error, and loss is smaller. In other words, the training accuracy of the model with Sobel filter
is higher with the same number of epochs. The addition of the Laplace filter has little effect
on the convergence speed and accuracy. The effect of individual tree segmentation can be
improved by adding edge detection filter in ACE R-CNN because the addition of edge loss
could promote the predicted mask edges to gradually match the target mask edges.
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4. Discussion

In this study, an instance segmentation framework called ACE R-CNN was designed
by introducing the ACM and edge loss to realize identification of individual tree species in
an end-to-end manner by integrating UAV high-spatial resolution RGB images and LiDAR
data. Compared with traditional Mask R-CNN, which uses only RGB data as data input,
the addition of CHM data can significantly improve the accuracy of individual tree species
identification (Tables 5 and 6). This is due to the fact that CHM can provide the height
information of vegetation [32], which is important for the identification of individual trees
and the determination of crown boundary locations.

Our proposed ACNet could better facilitate CHM information as a complement to
RGB (Table 6). This is because ACNet introduced ACM can selectively learn the combi-
nation features of each pixel from RGB and CHM, effectively separating vegetation from
the ground surface and helping to complete the identification of individual tree species.
We compared the differences in feature extraction backbone networks between ACNet
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and ResNet50-FPN and visualized some of the results of feature extraction for analysis
(Figure 10). In order to match human vision, we choose low-level features from C-2, H-2,
M-2 in ACNet, and C-2 in ResNet50-FPN, respectively (Figures 3 and 4). The feature map
extracted from the RGB branch (Figure 10b) contains more effective visual information
and focuses on the instance content and its global features. The feature map extracted
from the CHM branch (Figure 10d) focuses more on the crown boundary information. The
feature map of the ACNet fusion branch is shown in Figure 10e. It can be seen that after
fusing the features of the two branches, the RGB and CHM information is fully combined,
which is beneficial for individual tree information extraction and segmentation. The fea-
tures (Figure 10g) extracted by ResNet50-FPN from the four-channel image (Figure 10f)
composed of RGB and CHM are able to express more crown information than the features
extracted using only RGB images (Figure 10b), but the crown boundary information is not
prominent, so the performance improvement for segmentation of individual tree instances
is limited.
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To train the model to have faster speed and improve the training accuracy, we also
evaluated the performance of two traditional edge detection filters (Sobel and Laplacian)
(Table 7). The performance of ACE R-CNN with edge detection filters for individual
tree species identification was significantly improved (Figure 7). This can be attributed
to the fact that the addition of edge loss promotes the agreement between the predicted
and ground-truth mask edges. The Sobel edge detector is superior to the Laplacian edge
detector because the Laplacian edge detector is more susceptible to noise and cannot
respond to real edges [48].

It is worth noting that ACE R-CNN uses the spectral information and texture informa-
tion provided by RGB images for individual tree species identification, and regions with
simple tree species composition can achieve better performance (Table 7). However, the
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spectral information of RGB images includes only three visible bands, and it is difficult
to describe the fine spectral features of the tree crown, which will limit the effect of indi-
vidual tree species identification in forest environments with complex tree species [10]. In
future study, high spatial resolution hyperspectral images and LiDAR point cloud data
can be used to seek higher accuracy of individual tree species identification [11,49–51].
The robustness of the model will be evaluated in areas of more complex natural forests
(mixed trees with different species and ages). Furthermore, we will expand the number of
samples and balance the proportion of different tree species in dataset [52,53]. Overall, our
proposed ACE R-CNN architecture can provide a reference for higher accuracy individual
tree species identification in high-density and complex forest environments.

5. Conclusions

In this study, we proposed an improved Mask R-CNN instance segmentation algorithm
named ACE R-CNN for individual tree species identification integrating UAV high-spatial
resolution RGB images and LiDAR data. ACE R-CNN uses a multi-branch attentional
architecture backbone network called ACNet, which is able to selectively complement
the weighted features extracted from RGB and CHM branches to the fusion branch by
introducing ACM. In addition, edge loss is added into the loss function to further improve
the edge precision of the segmentation mask. Through different comparative experiments,
the results show that, compared with RGB data alone, the combination of RGB and CHM
data is more suitable for individual tree species identification. Compared with the ResNet50-
FPN backbone network, the ACNet backbone network has better performance in instance
segmentation of individual tree species and could significantly improve the identification
accuracy of individual tree species. The ACE R-CNN with an edge detection filter can
not only further improve the accuracy of individual tree species identification, but also
accelerate the convergence rate of errors. The ACE R-CNN with Sobel filter has the best
identification result, with a P, R, F1-score, and AP of tree species all higher than 0.9 in the
three test areas. It is a low cost, high-speed, and high efficiency solution for individual tree
species identification, and achieves high-precision identification of individual tree species
under the high canopy density condition. Moreover, it is of great significance for forest
management and forest parameter estimations such as biomass and canopy density.
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