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Abstract: Marine floating raft aquaculture (FRA) monitoring is significant for marine ecological
environment and food security assessment. Synthetic aperture radar-based monitoring is considered
to be an effective means of FRA identification because of its capability for all-weather applications.
Considering the poor generalization and extraction accuracy of traditional monitoring methods, a
semantic segmentation model called D-ResUnet is proposed to extract FRA areas from Sentinel-1
images. The proposed model has a U-Net-like structure but combines the pre-trained ResNet34
as the encoder and adds dense residual units into the decoder. For this model, the final layer and
cropping operation of the original U-Net model are removed to eliminate the model parameters. The
mean and standard deviation of Precision, Recall, Intersection over Union (IoU), and F1 score are
calculated under a five-fold training strategy to evaluate the model accuracy. The test experiments
indicated that the proposed model performs well with the F1 of 92.6% and IoU of 86.24% in FRA
extraction tasks. In particular, the ablation experiments and application experiments proved the
effectiveness of the improvement strategy and the portability of the proposed D-ResUnet model,
respectively. Compared with the other three state-of-the-art semantic segmentation models, the
experiments demonstrate a clear accuracy advantage of the D-ResUnet model. For the FRA extraction
task, this paper presents a promising approach that has refined extraction capability, high accuracy,
and acceptable model complexity.

Keywords: floating raft aquaculture; remote sensing; deep learning; residual unit; synthetic aperture radar

1. Introduction

The Food and Agriculture Organization of the United Nations (FAO) reports that the
global marine aquaculture industry has been developing rapidly year by year [1]. As a
critical component of mariculture, the rapid growth of marine floating raft aquaculture
(FRA) has huge economic benefits but may harm the marine ecological environment, mar-
itime traffic safety, and mariculture sustainable development [2–5]. Therefore, monitoring
the distribution and quantity of FRA areas is of great significance for marine aquaculture
planning and food security assessment.

The FRA, which uses floats and ropes to form floating rafts on the sea surface and is
fixed to the seabed with cables, has mariculture products suspended on slings and sunk
in the water. Shellfish and algae are the two main products of FRA; the former mainly
includes oysters, scallops, clams, mussels, etc., while the latter mainly includes seaweed,
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nori, etc. The FRA is widely distributed in several countries around the world, such as
China [6,7], Japan [8], France [9], and the United States [10], and has contributed greatly
to the local marine product acquisition and fisheries economy. The traditional on-site
investigation is laborious and time consuming, with low efficiency for large-scale FRA
monitoring. Therefore, remote sensing (RS) technology is considered an effective approach
because of its advantages in terms of wide spatial coverage, short revisit period, and high
economic efficiency [6,11–13]. Various remote-sensing-based methods have been applied
for FRA extraction, including the visual interpretation method [7,14], the spectral feature-
based method [15], the polarization feature-based method [16,17], and others. However,
the visual interpretation method is time consuming and relies heavily on the experts’ level
of experience; the spectral feature-based method cannot solve the classification problem
whereby different objects have a similar spectral signature; the polarization feature-based
method requires too much extensive preprocessing to reduce the speckle noise. In addition,
the poor portability and generalization ability of the above traditional methods also lead to a
lower extraction accuracy. As for the data sources, although researchers have indicated that
FRA extraction using optical images can achieve impressive accuracy in some cases [2,18],
the characteristics of optical images lead to its unsuitability for all-weather applications
and result in unsuccessful observations when the FRA is below the sea surface. In contrast,
synthetic aperture radar (SAR) can actively transmit signals and receive reflected signals,
and thus has the capability to be used in all-weather and day/night applications [19].
Therefore, the SAR-based extraction method is considered to be a promising means of
FRA monitoring.

With the development of the Deep Learning (DL) method, various state-of-the-art se-
mantic segmentation models have been proposed, such as FCN [20], U-Net [21],
DeepLabs [22–24], LinkNet [25], etc. The semantic segmentation method can achieve
image segmentation and target recognition by using the captured multi-level semantic
features and complex contents of RS images. In the above semantic segmentation models,
convolutional neural networks that consist of multiple convolutional layers and pooling
layers are used to learn low- and high-level features of the target object from RS images. By
these different levels of target classification features, the forward propagation algorithms
are used in combination with backward propagation algorithms to force the output val-
ues of models closer to the true values [26,27]. Since the convolutional neural network
structure is highly suitable for processing RS images with a regular arrangement of pixels,
these semantic segmentation models and their improved versions enable the pixel-level
segmentation and have achieved significant success in many RS image analysis tasks, such
as object detection, image classification, road extraction, etc. [28–33].

However, only limited research has been conducted in recent years on SAR-based
FRA extraction tasks using deep learning methods. Among these studies, Geng et al. [34]
proposed a deep collaborative sparse coding network (DCSCN) to extract the optimized
texture features and contour features from Radarsat-2 images. Then, the collaborative
features were used to identify the FRA areas, with an overall accuracy between 89.04%
and 98.76%. Zhang et al. [35] paid more attention to using the nonsubsampled contourlet
transform (NSCT) to extract the contour and orientation features of large FRA areas from
Sentinel-1 images. The multiscale and asymmetric convolutions, channel, and spatial
attention modules were combined to improve the basic U-Net model, and the extraction
results showed an F1 score of 90.7%. Wang et al. [36] proposed a self-attention semantic
segmentation method named SA-U-Net++, and a FRA-ISAR data generation method
was combined to alleviate the sample shortage problem and improved the IoU accuracy
of extraction results to 60.2%. Although meaningful attempts were made in the above
studies, many limitations also exist. For example, Geng’s method requires a lot of complex
preprocessing to obtain texture features and contour features of the target FRA areas, and
research on deep learning algorithm is relatively weak [34]. Zhang’s study and Wang’s
study focus only on the extraction of the outer boundaries of large FRA areas and cannot
extract specific FRA units within large FRA areas. Furthermore, the IoU accuracy of Wang’s
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study was 60.2%, which still needs further improvement. In general, DL methods for
SAR-based FRA extraction tasks are still insufficiently explored, and the extraction accuracy
also needs to be further improved.

In this paper, a semantic segmentation model with dense residual units and a U-shaped
structure, which we call D-ResUnet, is proposed to extract FRA areas from Sentinel-1 SAR
images. The D-ResUnet was inspired by the U-Net model and residual units in ResNets [37].
The innovations of the proposed D-ResUnet model are as follows: (1) stronger feature
extraction capability by adopting the pre-trained ResNet34 without a classifier layer as the
encoder; (2) enhanced fine-grained recovery of output images by adding dense residual
units instead of plain neural units into decoder; and (3) acceptable calculation complexity.
The rest of this paper is organized as follows: Section 2 describes the design and training de-
tails of the proposed D-ResUnet model. Section 3 introduces the study area and RS datasets
for experiments. Section 4 conducts various experiments and gives detailed experimental
accuracy and resulting maps to evaluate the model performance. Sections 5 and 6 provide
a discussion about the model and conclusions of the paper, respectively.

2. Methodology

In this paper, the proposed D-ResUnet model has a U-Net-like structure but with
completely different model components and model parameters, resulting in stronger feature
extraction and image recovery capability. The major differences are as follows: (1) the
pre-trained ResNet34 without a classifier layer was adopted as the encoder to extract multi-
level features; (2) dense residual units instead of plain neural units are applied to build the
decoder to recover the details of the output image more finely.

Here, a brief review of the U-Net structure and deep residual units is given. Also, we
give a detailed introduction of the proposed D-ResUnet model, specific parameters for
model training, and accuracy evaluation metrics.

2.1. U-Net and Deep Residual Networks

The classical U-Net model was proposed by He et al. to achieve the biomedical image
segmentation task (Figure 1a) [21]. It consists of a 5-layer symmetrical architecture that
includes the contracting path (encoder stage) and expansive path (decoder stage) to down-
sample the image sample and restores it to its original size. In addition, the unique skip
connection structure supplies the path whereby feature information of different levels in the
encoder stage can propagate to the corresponding decoder stage. Therefore, the symmet-
rical encoder-decoder structure and skip connection structure can combine the low-level
detail features and high-level semantic features to improve the segmentation performance.
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In semantic segmentation tasks, network depth is crucial for segmentation perfor-
mance because a deeper network means a stronger extraction ability of high-level features
and better classification results [38,39]. However, training a “very deep” neural network
is very hard because the ensuing gradient disappearance problem always leads to the
degradation of the network [40]. To overcome this problem, the residual neural networks
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(ResNets) were proposed to ease the training and address the degradation problem when
only limited training samples are available [37]. The superiority of the deep residual net-
works comes from many stacked “Residual Units”(Figure 1c) [41]. The residual unit can be
expressed in a general form (Equations (1) and (2)):

yl = h(xl) + F(xl , Wl) (1)

xl+1 = f (yl) (2)

where xl and xl+1 are input and output of the l-th unit; h(xl) is an identity mapping,
i.e., h(xl) = xl ; F is a residual function; Wl is the weight of the l-th unit; f (yl) is an
activation function (ReLU). These residual units can facilitate the training of networks and
gain accuracy from considerably increased network depth.

2.2. The Proposed D-ResUnet

In this paper, our proposed D-ResUnet model was mainly inspired by the structure of
U-Net model, including the encoder-decoder structure and skip connection structure. Dif-
ferent from the U-Net model, the proposed D-ResUnet model enables stronger capabilities
of feature extraction in the encoder and more effective recovery of image details in the de-
coder. The former is derived from the use of the ResNet34, which has deeper convolutional
layers to capture more high-level features, and the latter is derived from the use of dense
residual units to create a simpler way that information can propagate effectively.

The proposed D-ResUnet model has a 5-level architecture in the encoder stage and
decoder stage (Figure 2). The Eni (i = 1, 2, 3, 4, and 5) represents the encoder block, and Dei
(i = 1, 2, 3, 4, and 5) represents the decoder block. The Conv represents the convolutional
layer, and a total of 3 types of convolutional units containing a different combination of
batch normalization layer and ReLU activation layer are used here (Conv + BN + ReLU,
Conv + BN, and Conv + ReLU). Encoder block 1 has a 7 × 7 convolutional layer and a
3 × 3 pooling layer, both of which have a stride of 2 to reduce the feature map by half.
Encoder blocks 2 to 5 have the residual units, and ×N means the similar convolutional
unit and residual unit are repeated N times in this block. It is worth noting that the first
convolutional layer at the beginning of each encoder block has a stride of 2, and others
have a default stride of 1. The sample images are fed to encoder block 1 and processed
into feature maps, then the feature maps are re-fed to the next encoder block until encoder
block 5 outputs the final feature map. In total, 5 levels of feature maps are obtained in the
encoder and then copied as the input of corresponding decoder blocks. Correspondingly,
decoder blocks 2 to 5 have up-sampling layers, concatenation layers, convolutional units,
and residual units. The feature map from a lower level of the decoder is up-sampled and
then concatenated with the corresponding feature map from the encoder block. There is
no concatenation but an additional convolutional layer in decoder block 1, which is used
to output the final semantic segmentation result. The parameters and output size in each
stage of the D-ResUnet model are provided in Table 1.

2.3. Pre-Training

Since labeled remote sensing images are valuable and limited, image segmentation
tasks often pre-train models on large-scale datasets and then fine-tune the pre-trained
model to obtain a better performance in target tasks [42]. Here, the most highly used
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 classification dataset
was used to pre-train the encoder of the D-ResUnet model and initial network weights. It
spans 1000 object classes and contains 1,281,167 training images, 50,000 validation images
and 100,000 test images [43]. In this way, techniques such as pre-training and fine-tuning
were used to initialize weights for the encoder of the D-ResUnet network and improve the
performance in the FRA extraction task.
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Table 1. The parameters and output size of D-ResUnet.

Stage Block Conv Channel Stride Feature Map Size
(Default 320 × 320)

1
7 × 7 64 2

80 × 80/ 64 2
2 3 × 3 64 2/1 40 × 40Encoder
3 3 × 3 128 2/1 20 × 20
4 3 × 3 256 2/1 10 × 10
5 3 × 3 512 2/1 5 × 5

5 3 × 3 256 1 20 × 20
4 3 × 3 128 1 40 × 40

Decoder 3 3 × 3 64 1 80 × 80
2 3 × 3 64 1 160 × 160
1 3 × 3 1 1 320 × 320

2.4. Parameters and Implementation Details
2.4.1. Learning Rate

Learning rate is a significant hyperparameter in the model training process to control
the convergence rate of the model [44]. A suitable learning rate can make the objective
function converge to a local minimum or the best accuracy in a short time. Here, the
step-based decay strategy with the gamma factor of 0.2 in every 10 steps was used to
change the learning rate; the strategy can be described as shown in Equation (3):

lr = lrbase × gammab
step

stepsize c (3)
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where lr is the current learning rate; lrbase is the initial learning rate; gamma factor is the
attenuation parameter; step is the current training epoch; stepsize is the set decay interval,
i.e., lr decays once after specific epochs; bc is the Floor function. The determination of the
initial learning rate will be specifically introduced in Section 4.1.

2.4.2. Loss Function

The loss function is used to measure the difference between the predicted value of the
model and the true value of label images. By means of the loss function, the model can
evaluate the difference between the predicted value of the forward propagation and the
true value, and then update the model parameters by backward propagation to force the
predicted value as close as possible to the true value. In the model training process, the
BCEWithLogitsLoss is a commonly used loss function and usually has good performance
in binary classification tasks. Therefore, the BCEWithLogitsLoss was used here to evaluate
the difference between the predicted value and the true value. It is essentially the BCELoss
function (Equation (4)) and then activated by the sigmoid function (Equation (5)).

BCELoss = − 1
N

N

∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] (4)

f (x) =
1

1 + e−x (5)

where N is the total number of samples; yi is the value of the category that the i-th sample
belongs; pi is the predicted value of the i-th sample; f (x) is the sigmoid function.

2.4.3. Other Configurations

All models were implemented in the PyTorch framework and optimized by the Adam
algorithm with the weight decay factor of 1 × 10−3. Given the available hardware status,
models were trained with a batch size of 8 on the NVIDIA Quadro RTX 4000 GPU.

2.4.4. Evaluation Metrics

Four metrics were used to assess the experiment results in this paper (Equations (6)–(9)),
including Precision, Recall, F1-Score (F1), and Intersection over Union (IoU). These metrics
are frequently used to evaluate the classification performance in similar binary classification
studies [2,35]. The confusion matrix (Table 2) of the extraction result and the ground truth
is as follows:

Table 2. The confusion matrix of the experiment result.

Confusion Matrix
Ground Truth

Positive Negative

Extraction result
Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

Precision is the proportion of true FRA areas among FRA areas that the model pre-
dicted, and it measures the model’s ability not to misclassify true negative samples into
positive samples.

Precision =TP/(TP + FP) (6)

Recall is the proportion of true FRA areas that are correctly predicted, and it is used to
measure the ability of the model to find all true FRA areas.

Recall =
TP

TP + FN
(7)
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F1 is an evaluation index that takes into account both Precision and Recall, it means
that Precision and Recall are equally important.

F1 =
2 × Precision × Recall

Precision + Recall
(8)

IoU indicates the intersection ratio of the predicted result map and ground truth map.
The ideal situation is complete overlap, i.e., a ratio of 1.

IoU =
TP

TP + FP + FN
(9)

3. Study Area and Experiment Data
3.1. The Study Area

Northern China has large-scale marine floating raft aquaculture areas, especially in the
Bohai Sea and Yellow Sea [36]. In this study, the Changhai county, Liaoning province, China,
was selected as the study area (Figure 3). Changhai county is located in the northern part
of the Yellow Sea, between 122◦13′ to 123◦17′E and 38◦55′ to 39◦18′N. It has a coastline of
358.9 km and a sea area of 10,324 km2, with a water depth between 10 and 40 m [45]. Since
Changhai county is far from the mainland, it is less likely to be affected by the pollution
of mainland river runoff, factories, and mines. Thus, it is a typical FRA area and ideal for
floating raft aquacultures of oysters, scallops, and other sea products.
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3.2. Dataset and Pre-Processing

Sentinel-1 satellites can provide high-quality C-band SAR data and have four polar-
ization capabilities (HH, VV, HH + HV, and VV + VH) [46]. Sentinel-1 SAR images of the
study area were obtained freely from the website of the Sentinel-1 Scientific Data Hub
(https://scihub.esa.int, 17 June 2020). Existing studies demonstrated that VV polarization
is more permeable than the other three polarization modes from direct observation and
mathematical analysis, and the backscattering feature of the FRA area under VV polariza-
tion is more significant and more likely to be observed [35,36]. Therefore, three images of
the VV polarized Level-1 Ground Range Detected (GRD) Sentinel-1 SAR images acquired
on 20 March 2020, 17 June 2020, and 18 July 2019 were utilized for this study.

All three images were pre-processed on the Sentinel’s Application Platform (SNAP)
including radiometric calibration, speckle noise removal with the default 7 × 7 Refined Lee
filter, and terrain correction with the default SRTM1 Sec HGT data. Experienced interpreters
used the ArcGIS tool to manually delineate the FRA areas from Sentinel-1 SAR images and
saved the labeled results as the ground truth map. Furthermore, the high-resolution optical
images from the Google Earth platform were utilized to check the labeled results and make
them as accurate as possible.

https://scihub.esa.int
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The SAR images and the ground truth maps were cropped to generate 1536 patches
with a size of 320 × 320. All 1536 patches were augmented to 6144 patches by horizontal
flip, vertical flip, and diagonal mirroring (Figure 4), and then divided into the training set,
validation set, and test set with an approximate ratio of 3:1:1 (Table 3).
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Table 3. Training, validation, and test dataset.

The Data Set Number
of Patches Size of Images Channel of Images

Training dataset SAR Image
3686 320 × 320 1Ground truth map

Validation dataset
SAR Image

1228 320 × 320 1Ground truth map

Test dataset
SAR Image

1230 320 × 320 1Ground truth map

4. Experiment, Evaluation, and Analysis
4.1. Initial Learning Rate Set

In training tasks, it is a common challenge to determine a proper learning rate at the
beginning of the model training process [44]. If the initial learning rate is set too high,
the objective function can fail to converge to a local minimum value and keep oscillating
randomly around the local minimum value. Conversely, the objective function can fail to
converge to the local minimum within the specified time when the initial learning rate is
set too low. In this paper, the learning rate was initialized as 1 × 10−1, 1 × 10−2, 1 × 10−3,
1 × 10−4, and 1× 10−5, respectively (Figure 5). The D-ResUnet model was five-fold trained
to show the change of loss function of different learning rates. In addition, the average
value and standard deviation of IoU and F1 are obtained under different learning rates
in 50 epochs. Figure 5a indicates that the loss decreases steadily and finally stays at a
small value when the learning rate is set to 1 × 10−4 (the green line) and 1 × 10−5 (the
red line), respectively. Figure 5b clearly shows that the learning rate of 1 × 10−4 receives
the highest accuracy and acceptable standard deviation in the FRA extraction task. In
addition, subsequent experiments also demonstrated that other DL models used in this
paper converged in 50 epochs using the learning rate of 1 × 10−4. Therefore, the initial
learning rate was set to 1 × 10−4 in this paper.
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4.2. Experimental Results

Here, the experiments were conducted on the test datasets of the study area to assess
the effectiveness of the D-ResUnet model. Previous state-of-the-art semantic segmentation
models, including U-Net, LinkNet, and DeeplabV3, were chosen and implemented as a
reference to assess the performance of the proposed model. All models were five-fold
trained to obtain the average value, and Table 4 showed the mean and standard deviation
of Precision, Recall, F1, and IoU.

Table 4. Precision, Recall, F1, and IoU of the models (Mean ± SD 1).

Methods Precision (%)
(Mean ± SD)

Recall (%)
(Mean ± SD)

F1 (%)
(Mean ± SD)

IoU (%)
(Mean ± SD)

LinkNet 78.81 ± 0.95 74.23 ± 2.19 76.44 ± 1.46 61.89 ± 1.88
DeepLabV3 78.95 ± 1.96 82.96 ± 2.23 80.91 ± 2.05 67.98 ± 2.84

U-Net 80.75 ± 1.17 81.20 ± 1.48 80.97 ± 1.28 68.04 ± 1.82
D-ResUnet 92.89 ± 1.06 92.32 ± 0.77 92.60 ± 0.91 86.24 ± 1.57

1 SD means the standard deviation.

The LinkNet model has a Precision of 78.81%, Recall of 74.23%, F1 of 76.44%, and
IoU of 61.89%, which are lower than U-Net and DeepLabV3 in the corresponding metric.
The U-Net model achieves a better Precision (80.75%) than DeepLabV3 but has a lower
value (81.20%) in Recall. In terms of F1 and IoU, the U-Net model is slightly better with F1
of 80.97% and IoU of 68.04% than DeepLabV3. As for the standard deviation, the U-Net
model has a lower standard deviation in four metrics than DeepLabV3 and LinkNet, which
shows a less deviation between single experiment accuracy and the average accuracy. The
D-ResUnet model is improved compared to the classical U-Net model, and its performance
outperforms the U-Net model by improving the Precision by 12.14%, Recall by 11.12%, F1
by 11.63%, and IoU by 18.20%. A significant enhancement of the FRA extraction accuracy
was achieved by the proposed D-ResUnet model in the study area. In addition, the D-
ResUnet model reported a lower standard deviation for the Precision with a value of 1.06%
(0.11 % lower than U-Net), a standard deviation value of 0.77% for Recall (0.71% lower
than U-Net), a standard deviation value of 0.91% for F1 (0.37% lower than U-Net), and
a value of 1.57% for IoU (0.25% lower than U-Net). Overall, the D-ResUnet has the best
performance in all four metrics and a lower standard deviation in Recall, F1, and IoU
compared to the three reference models, which indicates that it is the optimal one among
the four DL models.

Figure 6 shows the extraction results of different DL methods in four randomly
selected sub-areas of the study area, with black pixels representing the ocean background
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and white pixels representing the extracted FRA areas. Omissions and adhesions are
common problems in binary semantic segmentation tasks. The red rectangle shows the
FRA area, which can be easily missed, and the blue rectangle gives the area where the FRA
extraction results are prone to adhesions. As seen from the resulting maps, the LinkNet has
poor integrity in the red rectangles of Area A, B, C, and D. In addition, obvious adhesions
occur in the blue rectangles of Area A and D. Furthermore, the extraction results of the
LinkNet model has relatively inward shrinking edges in all test areas. The DeepLabV3 has
more serious adhesions, especially for the blue rectangles in Area B and D. The narrower
gaps between two neighboring floating rafts cannot be identified accurately on the resulting
maps. In addition, the edges of the FRA areas partially overflow and show an irregular
wavy shape. The U-Net model has obvious omissions in red rectangles of Area A and C,
which shows the poor extraction capability for these FRA areas. Meanwhile, less adhesion
exists in the U-Net extraction result compared to LinkNet and DeepLabV3. Compared with
the above models, the proposed D-ResUnet model has better integrity and more accurate
edges, where the gaps between two adjacent floating rafts can be identified and displayed
clearly. As can be seen from the resulting maps, fewer omission and adhesion areas exist in
the test area from A to D with the D-ResUnet model.
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Figure 6. Resulting maps of four models in four randomly selected test areas. Black pixels represent
the ocean background and white pixels represent the extracted FRA areas. Red rectangles are areas
where the FRA area is easily missed, and blue rectangles are areas where the FRA extraction result is
prone to adhesions.

4.3. Ablation Experiment

In this paper, the pre-trained ResNet34 structure and dense residual units were used
in the encoder and decoder respectively to improve the D-ResUnet performance. To
quantify the effectiveness of the proposed improvement strategy, experiments based on
original U-Net, ResNet34 encoder (denoted by ResNet34 + U-Net), dense residual decoder
(denoted by ResNet34 + residual decoder + U-Net) and pre-training (denoted by pre-trained
ResNet34 + residual decoder + U-Net) were conducted on test images.
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Table 5 shows the detailed accuracy value of Precision, Recall, F1, and IoU under the
different combinations of improvement strategies. As a baseline model, the original U-Net
gives the reference values of Precision, Recall, F1, and IoU (strategy 1). When ResNet34
was adopted as the encoder (strategy 2), the Recall improved by 4.13%, but Precision
decreased by 13.84%. This implies an increase in model extraction capability but a decrease
in extraction accuracy, i.e., for uncertain areas, the model prefers to consider them as FRA
areas. When dense residual units are added to the decoder (strategy 3), almost all metrics
have an obvious improvement with the Precision of 84.95%, the Recall of 85.24%, F1 of
85.09%, and IoU of 74.05%. Compared to U-Net with only the ResNet34 encoder (strategy 2),
the Precision improves by 18.04% and Recall is essentially the same, which results in a final
improvement of F1 by 10.09%. Meanwhile, the IoU is improved by 14.05% and it shows
superior performance in the FRA extraction task. When both pre-trained ResNet34 and
dense residual decoder are added to the U-Net model (strategy 4), Precision, Recall, F1,
and IoU are improved by 7.94% to 12.19% compared with the model without pre-training.
It can be seen that the pre-training strategy is critical for the excellent performance of the
proposed D-ResUnet model.

Table 5. Precision, Recall, F1, and IoU of the models (Mean ± SD 1).

Strategy Method Precision (%)
(Mean ± SD)

Recall (%)
(Mean ± SD)

F1 (%)
(Mean ± SD)

IoU (%)
(Mean ± SD)

1 U-Net 80.75 ± 1.17 81.20 ± 1.48 80.97 ± 1.28 68.04 ± 1.82
2 ResNet34 + U-Net 66.91 ± 1.16 85.33 ± 0.69 75.00 ± 0.65 60.00 ± 0.83

3 ResNet34 + residual decoder
+ U-Net 84.95 ± 0.61 85.24 ± 0.78 85.09 ± 0.46 74.05 ± 0.70

4 Pre-trained ResNet34 +
residual decoder + U-Net 92.89 ± 1.06 92.32 ± 0.77 92.60 ± 0.91 86.24 ± 1.57

1 SD means the standard deviation.

Taking a closer look at test area A, Figure 7 presents the resulting maps of the FRA
areas under different improvement strategies. As can be seen in Figure 7a, the original
U-Net has serious omission areas but acceptable adhesions. This indicates that the U-Net
model is weak in extraction capability. For uncertain pixels, the U-Net model prefers to
consider it as the ocean background. When only the ResNet34 encoder was used, the
extraction capability was improved, but extraction accuracy was decreased. As displayed
on the resulting map (Figure 7b), the missed FRA areas in the red rectangle of Figure 7a
were re-identified; however, adhesions also increased, leading to a decrease in F1 at the
same time. When dense residual units were added to the decoder, as shown in Figure 7c, the
missed FRA in Figure 7a was re-identified, and adhesions in Figure 7b were also reduced
at the same time. This demonstrated that the model encoder has a stronger capability
for extracting the object, while the decoder can achieve better RS image recovery using
different-level information. When pre-trained ResNet34 and dense residual decoder are
both used (Figure 7d), there are no obvious omissions or adhesions, showing the best
integrity and accuracy of the extraction results.

4.4. Application Experiment

To validate the applicability and portability of the proposed model, application experi-
ments were conducted in a different place in Penglai county, Shandong province, China. In
Figure 8, the red rectangles labeled from (a) to (d) are the FRA areas that are easily missed
in extraction results. As seen from the results, DeepLabV3 and LinkNet have serious
omissions in all red rectangles compared to the ground truth map. In addition, DeepLabV3
has worse integrity and shows a fragmented extraction result. The U-Net model shows
omissions in red rectangles (a) and (b), but better integrity in rectangles (c) and (d). Com-
pared to the above models, the proposed D-ResUnet model has better integrity of extraction
results in all red rectangles, showing the best performance in the application experiment.
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Meanwhile, the resulting maps show that the narrower end of adjacent floating rafts is
prone to stick together.
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Figure 7. Resulting maps of four DL models. Black pixels represent the ocean background and
white pixels represent the extracted FRA areas. Red rectangles are areas where the FRA area is easily
missed, and blue rectangles are areas where the FRA extraction result is prone to adhesions. (a) The
results obtained by U-Net; (b) the results obtained by ResNet34 + U-Net; (c) the results obtained by
ResNet34 + residual decoder + U-Net; (d) the results obtained by proposed D-ResUnet (Pre-trained
ResNet34 + residual decoder + U-Net).
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Figure 8. Resulting maps of the application experiment. Black pixels represent the seawater and
white pixels represent the extracted FRA areas. Red rectangles (a–d) are areas where the FRA area is
easily missed.
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In Table 6, the F1 of D-ResUnet is about 5% (compared to U-Net) to 10% (compared
to DeepLabV3) higher than the three reference models, and the IoU of D-ResUnet is 6%
(compared to U-Net) to 12% (compared to DeepLabV3) higher than other models.

Table 6. Precision, Recall, F1, and IoU of the models (Mean ± SD 1).

Methods Precision (%)
(Mean ± SD)

Recall (%)
(Mean ± SD)

F1 (%)
(Mean ± SD)

IoU (%)
(Mean ± SD)

DeepLabV3 73.74 ± 0.88 58.60 ± 4.96 65.17 ± 3.17 48.42 ± 3.39
LinkNet 80.68 ± 1.93 61.50 ± 4.41 69.64 ± 2.35 53.47 ± 2.71
U-Net 83.77 ± 0.63 60.38 ± 1.21 70.17 ± 0.75 54.05 ± 0.90

D-ResUnet 76.49 ± 1.03 74.40 ± 1.22 75.42 ± 0.86 60.55 ± 1.11
1 SD means standard deviation.

5. Discussion
5.1. Influence of Pre-Training Strategy

Typically, deep learning models are trained from scratch starting with randomly
initialized weights; however, it is very hard when researchers do not have thousands or
even millions of training images to overcome the over-fitting issue [37,43,47,48]. Therefore,
existing image datasets such as ImageNet are always used to initialize the network weights
in a customized task [42,49]. Here, the IoU of D-ResUnet with and without a pre-trained
model in 50 epochs is obtained to further illustrate the role of pre-training and fine-tuning
(Figure 9). As seen from the results, the IoU of the pre-trained model is consistently
higher than the other one, and it also grows faster and fluctuates less in the first 20 epochs,
which indicates that the pre-trained one is more likely to converge. Therefore, the obvious
improvement of the accuracy in the comparison reveals that the pre-training is valuable
and effective in the FRA extraction task.
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Figure 9. IoU of the pre-trained and not pre-trained D-ResUnet model.

Although pre-training has been proved to be important for the target task, the current
strategy of pre-training and fine-tuning applies the learning procedure of the original
dataset only in several non-pre-trained layers or even the last layer of the target network. In
other words, fewer learning processes based on the original RS images may lead to higher
uncertainty in determining the accurate model parameters. Here, the mean and standard
deviation of Precision, Recall, F1, and IoU of pre-trained D-ResUnet and the non-pre-trained
one are listed in Table 7. Though pre-trained D-ResUnet improved the accuracy in all four
metrics compared to the other one, a worse standard deviation in Precision (denoted by
0.45% increase), F1 (denoted by 0.45% increase), and IoU (denoted by 0.87% increase) were
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presented. This enlightens stakeholders that pre-training and fine-tuning the model only
once may lead to significant uncertainty in extraction results; thus, training multiple times
to ensure the model capability as much as possible is necessary.

Table 7. The Precision, Recall, F1, and IOU of the models (Mean ± SD 1).

Methods Precision (%)
(Mean ± SD)

Recall (%)
(Mean ± SD)

F1 (%)
(Mean ± SD)

IoU (%)
(Mean ± SD)

Not Pre-trained D-ResUet 84.95 ± 0.61 85.24 ± 0.78 85.09 ± 0.46 74.05 ± 0.70
Pre-trained D-ResUet 92.89 ± 1.06 92.32 ± 0.77 92.60 ± 0.91 86.24 ± 1.57

1 SD means standard deviation.

5.2. Model Complexity

In addition to model accuracy, model complexity is another important indicator
for evaluating model performance. Here, the numbers of parameters and floating-point
operations (FLOPs) were used to evaluate the algorithm complexity [36]. In Table 8, the
lightweight LinkNet model has advantages in terms of parameters and FLOPs, indicating
that it is more suitable for tasks that need a fast response. Compared to the DeepLabV3
and U-Net models, the proposed D-ResUnet model exhibited a decrease of 4.5% and 20%
in parameters, and 49.50% and 74.84% in FLOPs, respectively. This shows its advantages
in calculation complexity because less physical memory and prediction time are needed
when the D-ResUnet model is employed in specific tasks.

Table 8. Calculation complexity of four models.

Methods Parameters FLOPs

LinkNet 21.77 M 8.38 G
DeepLabV3 26 M 42.56 G

U-Net 31.04 M 85.43 G
D-ResUnet 24.83 M 21.49 G

5.3. Error Analysis

Though the proposed D-ResUnet model produces more satisfactory results than the
other three state-of-the-art models, some issues also exist. For example, the edges of the FRA
areas are easily misidentified as seawater, and the narrower gaps between two neighboring
floating rafts cannot be identified accurately. These issues can largely be attributed to
the dynamic ocean environment. Specifically, floating rafts will mix with the seawater
and become unobvious on SAR images when the wind speed increases and high waves
appear, thus resulting in low extraction accuracy of the models. Minimization of the mis-
detection of edges in the FRA semantic segmentation task can be achieved by the following
approaches: (1) Using a more appropriate loss function to optimize the model’s learning
strategy and refine the FRA boundary [36,50]. (2) Developing an additional FAR contour
correction model to optimize the extraction results and reduce the edge errors [34].

In addition, the high-quality sample dataset plays a critical role in model training
of the semantic segmentation tasks [26,43,48]. Although the significant superiority and
applicability of the proposed D-ResUnet model have been proved in various experiments,
model accuracy in application experiments (Section 4.4) decreased to varying degrees
compared to its performance in the test experiments (Section 4.2). A few possible reasons
are as follows: (1) FRA areas in different regions have different physical structures and
show different characteristics on SAR images. The current training dataset is not abundant
enough to encompass all types of FRA structures. In other words, the sample dataset
prepared in Changhai county does not consist of the floating raft types and their structural
features in Penglai country, thus showing decreased applicability for extracting FRA areas
of Penglai country. (2) Similar FRA areas have large differences in grayscale values when
serious speckle noise exists randomly on SAR images at different times, thus causing
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inevitable errors when DL models are used to extract the target objects by analyzing the
pixel matrix values of SAR images. In this context, more samples of FRA areas need to
be added to the training dataset in future work, and more effective image processing
algorithms should be adopted to further reduce the speckle noise.

6. Conclusions

In this paper, we proposed the D-ResUnet model for extracting the floating raft
aquaculture areas from Sentinel-1 SAR images. The proposed model has innovations
such as using the pre-trained ResNet34 network in the encoder to achieve a stronger
extraction capability for abstract features and adding dense residual units in the decoder to
recover fine-grained details more efficiently. In addition, the strategy of pre-training on the
ImageNet dataset was used to further improve the segmentation accuracy. The ablation
experiments and application experiments proved the effectiveness of the improvement
strategy and the application value of the proposed model. Compared with three state-of-
the-art semantic segmentation models, the proposed model achieved the best performance
in the task of floating raft aquaculture extraction and provides a promising approach for
stakeholders. In future work, multiple types of skip connection structures and residual
units will be employed to further improve the extraction accuracy of the model. In addition,
more sample datasets and effective pre-processing methods for SAR images will be added
to improve the portability of the proposed models.
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