
����������
�������

Citation: Wu, G.; You, Y.; Yang, Y.;

Cao, J.; Bai, Y.; Zhu, S.; Wu, L.; Wang,

W.; Chang, M.; Wang, X. UAV-LiDAR

Measurement of Vegetation Canopy

Structure Parameters and Their

Impact on Land–Air Exchange

Simulation Based on Noah-MP

Model. Remote Sens. 2022, 14, 2998.

https://doi.org/10.3390/rs14132998

Academic Editors: Dengsheng Lu,

Guijun Yang, Langning Huo, Xiujuan

Chai and Xiaoli Zhang

Received: 25 April 2022

Accepted: 20 June 2022

Published: 23 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

UAV-LiDAR Measurement of Vegetation Canopy Structure
Parameters and Their Impact on Land–Air Exchange Simulation
Based on Noah-MP Model
Guotong Wu 1 , Yingchang You 1, Yibin Yang 2, Jiachen Cao 1 , Yujie Bai 1 , Shengjie Zhu 3 , Liping Wu 1,
Weiwen Wang 1 , Ming Chang 1,* and Xuemei Wang 1

1 Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality,
Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China;
wgt@stu2020.jnu.edu.cn (G.W.); youyc.jnu@gmail.com (Y.Y.); jiachenc@stu2018.jnu.edu.cn (J.C.);
baiyujie@stu2020.jnu.edu.cn (Y.B.); wlp@stu2020.jnu.edu.cn (L.W.); wwangeci@jnu.edu.cn (W.W.);
eciwxm@jnu.edu.cn (X.W.)

2 School of Computer Science and Engineering, South China University of Technology,
Guangzhou 510006, China; mrrockyoung@163.com

3 Department of Environmental Science, Guangdong Polytechnic of Environmental Protection Engineering,
Foshan 528216, China; zhushj@mail3.sysu.edu.cn

* Correspondence: changming@email.jnu.edu.cn

Abstract: Land surface processes play a vital role in the exchange of momentum, energy, and mass
between the land and the atmosphere. However, the current model simplifies the canopy structure
using approximately three to six parameters, which makes the representation of canopy radiation and
energy distribution uncertain to a large extent. To improve the simulation performance, more specific
canopy structure parameters were retrieved by a UAV-LiDAR observation system and updated
into the multiparameterization version of the Noah land surface model (Noah-MP) for a typical
forest area. Compared with visible-light photogrammetry, LiDAR retrieved a more accurate vertical
canopy structure, which had a significant impact on land–air exchange simulations. The LiDAR
solution resulted in a 35.0∼48.0% reduction in the range of perturbations for temperature and
another 27.8% reduction in the range of perturbations for moisture. This was due to the canopy
structure affecting the radiation and heat fluxes of the forest, reducing their perturbation range by
7.5% to 30.1%. To reduce the bias of the land surface interaction simulation, it will be necessary to
improve the method of retrieving the canopy morphological parameterization through UAV-LiDAR
on a continued basis in the future.

Keywords: LiDAR; forest parameters; canopy structure; land surface modeling

1. Introduction

The land surface plays an important role in the weather/climate/Earth system. Land
surface processes not only regulate the exchange of energy and mass (i.e., water, car-
bon dioxide, and aerosols) between the land and the atmosphere [1] but also determine
the proportions of net radiation and surface energy fluxes. Furthermore, the distribution
ratio of the land surface has a direct impact on both the atmospheric water cycle and
biogeochemical cycles, especially nitrogen and carbon fluxes [2]. However, there are vari-
ous uncertainties in the simulation of land surface processes [3], which may result from
the parameterization of turbulent and mesoscale fluxes under land surface non-uniformity
conditions such as those resulting from the nonlinearity of land surface processes and
non-uniformity of land surface characteristics [4]. In addition to regulating the land surface
processes, the sub-grid topography in the model also contributes to the uncertainties in
the simulation [5]. In addition, simulation of land surface processes can face even more un-
certainties due to the simplified parameterization of biochemical processes (e.g., the carbon
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cycle) and biological feedback mechanisms in the models. These factors limit the ability
of models to describe not only various land surface processes for different land surface
conditions (e.g., snow, soils, and hydrology) but also the interactions among different land
surface conditions [6,7]. Therefore, an accurate characterization of the sub-bedding surface
in models can significantly reduce the disparity between observations and simulations [8]
and improve the cycle and interannual results of simulations [9]. For this reason, it is
essential to improve the simulation performance by specifying the surface information
in numerical models precisely [10].

In the current global land surface models, the effect of the three-dimensional (3D)
canopy structure tends to be underestimated [11]. The canopy structure is a simple geomet-
ric shape characterized by several parameters of the land surface boundary. In contrast,
forest geometry is an important controlling parameter related to forest short-wave radia-
tive transfer, subsequent snow surface shading, and radiative energy exchange between
the atmosphere and the canopy. It is challenging to account for these vegetation features at
large spatial scales [12].

Among the traditional methods of forest-resource surveying, the manual ground sur-
vey is a mainstream method for the accurate expression of the canopy structure. However,
it is practically difficult to obtain large-scale forest parameters through field investigation
due to the involvement of cumbersome equipment and the lack of staff and time [13]. As
science and technology advance constantly, large-scale forest-resource monitoring has been
enabled by the application of remote sensing, geographic information systems, and global
positioning systems technologies in the field of forestry. In addition, the ability to compile
efficient and automated forest inventories across various regions is enabled by the collection
of high-resolution data through remote sensing techniques with a relatively small number
of sets of field sample plots [14]. Ecosystem monitoring has been improved by time series of
remote sensing images captured from various satellite platforms such as Landsat, Sentinel,
and the Moderate Resolution Imaging Spectroradiometer (MODIS). Vertical information
and the internal structure of plants, on the other hand, are typically ignored or represented
by simplistic geometric models in the relevant ecological studies [15]. Chang et al. [16]
developed a fast yet affordable method to obtain vegetation canopy parameters using un-
manned aerial vehicles (UAVs). However, this method is ineffective in retrieving accurate
topographic information and the vertical structure across the forest area due to the low
accuracy of vegetation structure attributes extracted from these passive optical images.
The widespread application of active remote sensing is assisted by the recent progress
made in forestry remote sensing, e.g., in forestry measurement and investigation. Ac-
tive remote sensing can be regarded as a promising supplement to traditional methods
of remote sensing. As an active remote sensing technology, LiDAR (light detection and
ranging) has demonstrated its ability to collect georeferenced data in a fast and accurate
way. It can penetrate the tree canopy to extract 3D structural information [17], which makes
it advantageous for tree detection. In addition, LiDAR data show greater robustness to
occlusions and shading than passive optical data [18], and therefore the technique has
been extensively applied to obtain the canopy structure parameters across various forest
regions [19,20]. The various LiDAR platforms can be classified into different categories
by resolution and spatial range, such as ground-based LiDAR, backpack and mobile Li-
DAR, airborne LiDAR, and satellite-based LiDAR. Ground-based LiDAR scanners are often
installed on permanent tripods to gather data in a walk-and-stop mode, which makes
it laborious to align multi-scan LiDAR data [21–23]. Despite having the longest ranging
capability of the satellite-based LiDAR systems, the centralized platform performs worst
in terms of resolution. Due to the recent progress made in integrated navigation tech-
niques and simultaneous positioning and mapping algorithms, more possibilities have
been presented for mounting ground-based laser scanners on mobile platforms, to signif-
icantly improve the efficiency of data collection [24,25]. With the development of UAV
low-altitude photography technology, the integration of UAV and LiDAR (UAV-LiDAR)
has been demonstrated to be advantageous in assisting forest investigations [26]. Integrat-
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ing positioning and inertial measurement technologies, UAV-LiDAR has the capacity to
considerably improve the ranging capability. Meanwhile, due to advanced manufacturing
techniques, UAV-LiDAR has become increasingly lightweight and compact, which makes
it more affordable. In summary, LiDAR not only enhances the flexibility of large-scale
investigations significantly but also reduces their cost [27].

In previous studies, reference has been made to the huge amount of point-cloud data
obtained using these new methods of quantitative remote sensing and the ability of these
methods to characterize the 3D canopy precisely [28–30]. To accurately simulate the 3D
radiation distributions, both voxel-based transfer models and discrete anisotropic radiative
transfer models have been developed, in order to integrate the vegetation structure infor-
mation into the solar radiation model, the vegetation dynamics model, and the cross-scale
biodiversity model. For instance, Regaieg et al. [31] applied the DART model to examine
the impact of the 3D canopy structure on chlorophyll fluorescence brightness and the
radiation income and expenditure in deciduous forests. Through a new-generation Earth
system model named CliMA, Braghiere et al. [32] investigated how the canopy structure
enhances hyperspectral radiative transfer and the characterization of solar-induced chloro-
phyll fluorescence. Using the CliMA Land (v0.1) model, Wang et al. [33] assessed stomatal
models at the stand level in both deciduous angiosperm and evergreen gymnosperm forests.
However, these 3D canopy structures are not directly available in stand-alone land surface
process models, nor are they available in the inland surface process modules coupled to
large-scale environmental models such as climate models and air-quality models. Despite
the fact that some 3D models suitable for the study of small-scale settings with complex
structures exist, it remains difficult to apply them on a large scale due to the need for
substantial computational resources [34].

Therefore, the proposed method of using 3D remote sensing data to improve the land
surface model (LSM) is worthy of in-depth research. It is imperative to establish connec-
tions with LiDAR observations through land surface models and the parameterization of
the observed 3D vegetation-canopy structure. The goal of this study is to update the LSM
with more specific canopy structure information. We designed a technique for LSM canopy
structure parameter improvement by integrating UAV and LiDAR photogrammetry and
using visible-light photogrammetry as a control experiment. We attempted to address
the following questions. (i) How accurate is LiDAR in terms of canopy parameter charac-
terization, compared to visible-light photogrammetry? (ii) In terms of simulations of land
surface processes, how did our replacement accurate canopy structure parameter model
compare to the default model? (iii) What were the reasons for the above-mentioned model
simulation variations? What part of the canopy structure did these variances relate to?

2. Materials and Methods
2.1. Study Area

This research was conducted at the Dinghushan forest ecosystem research station
(CN-DIN). This station, surrounded by coniferous and broad-leaved mixed forests, oc-
cupies the core area of the Dinghushan nature reserve located in Zhaoqing, Guangdong
Province, China (Figure 1a). The topography of this region shows a downward trend from
the southwest to the northeast, with an elevation difference close to 990 m. Almost all the
mountains and hills in this region have steep slopes, making it difficult to perform field
measurements manually. The forest communities of the CN-DIN show complexity and
diversity in species and include gully rain forests, southern subtropical evergreen broad-
leaved forests, montane evergreen broad-leaved forests, and montane evergreen scrubs.
The main vegetation of the CN-DIN is Pinus massoniana (Figure 1b). These favorable
ecological conditions facilitate the efforts made to retrieve the forest structure information
via the UAV platform.
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Figure 1. (a) Geographic location of the observed station. (b) Vegetation types at the CN-DIN.

2.2. Workflow

Figure 2 shows the general flowchart developed for factoring the canopy structure
information into the model. By comparing the canopy parameters retrieved through these
two different platforms, the different forest structures yielded by them were explored. Most
of the programs were executed using automated tools and algorithms [35]. They were
mainly divided into UAV-LiDAR data collection, point-cloud data processing, and acquisi-
tion of canopy parameters, together with canopy-parameter distribution functions driving
land surface model calculations and model verifications.The image acquisition and data
interpretation section is shown with a blue background, and the surface model simulation
section is shown with an orange background.
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Figure 2. Flowchart for this study.

2.3. Image Acquisition and Data Interpretation
2.3.1. Photography

The experimental equipment included a DJI Matrice 600 Pro six-rotor UAV, used
as the flight platform. Equipped with a LiAir V LiDAR system, it relies on the global
navigation satellite system (GNSS) ground-based station to carry out system positioning.
A DJI Phantom 3 Pro was used as a comparison flight platform, and the built-in visible-light
camera was used to take photos.

Data collection was scheduled for 14 May 2021, with a collection coverage of about
0.0327 km2. In this study, data collection was carried out using a LiDAR-equipped UAV,
which flew along a preset course after being equipped with a GNSS ground base station.
To ensure the comparability of the experiments, the LiDAR and the visible-light camera
were configured with the same flight settings (flight height, flight speed, and flight trajec-
tory) for retrieving the canopy structure parameters. The flight altitude was set as 100 m
above the landing point, the flight speed was set to 4.3 m/s, and the average ground sample
distance of the photos was fixed at 7.24 cm. The in-flight LiDAR and visible camera images
had the same course overlap and side overlap settings of 80.0% and 75.0%, and the scanning
angles were 37◦ and 70◦, respectively. Figure 3a illustrates the flight trajectory of the UAV
and the terrain height. Figure 3b presents three views of the spatial offset between the initial
and calculated image positions, where the blue dots represent the initial image positions
and the green dots indicate the calculated image positions. The offset between the initial
ground-control point positions and their calculated positions is indicated by blue and
green crosses, respectively. The dark green ellipse indicates the uncertainty of the absolute
position for the beam block-leveling results. As can be seen clearly from the right panel,
the accuracies of the images in the X, Y, and Z directions for the relative geographic location
are 95.0, 100.0, and 100.0%, respectively.
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Figure 3. (a) Three-dimensional terrain display. The orange line shows the UAV flight trajectory.
(b) Location uncertainty assessment map.

2.3.2. Data Interpretation

The method for processing the LiDAR and visible-light camera images to obtain the
canopy 3D parameters was as follows. Firstly, the differential GPS data and IMU data
collected during the aerial flight were decoded collectively to obtain the positioning and
orientation data. In addition, the joint positioning and orientation data, the original point-
cloud information, and the various parameters provided by the system were applied to
solve the data to obtain the 3D coordinates of each laser point in the WGS-84 coordinate
system. Then, the LiDAR data were correlated according to the overlapping area between
the airstrip data. The only difference between these two experiments was in the point-
cloud resolution software, which was LiGeoreference for LiDAR and Pix4Denterprise for
the visible-light camera. Coarse difference detection and rejection processing were carried
out in the course of preprocessing the data, due to the large number of coarse differences
and systematic errors contained in the massive point-cloud dataset obtained by the airborne
LiDAR system (i.e., the very high and very low points were rejected). The solved point-
cloud densities in the two experiments were 153 points/m2 and 325 points/m2, respectively.
They were both meeting the needs of interpolated range of digital elevation model data
(CH/T 8024-2011).

Secondly, a progressive TIN densification filtering algorithm was used to distinguish
the ground information from the laser point cloud. Moreover, a digital simulation of
the ground topography was performed with limited topographic elevation data through
inverse distance weighted interpolation (IDW) [36], i.e., using the digital elevation model
(DEM) representing the bare ground surface (with vegetation and other features removed)
and the digital surface model (DSM) representing the feature surface information [37].
Thirdly, the DSM was subtracted from the DEM to obtain a normalized point cloud, thus
eliminating the effect of topographic relief on the elevation values of the point-cloud data, to
construct the canopy height model (CHM). Furthermore, on the basis of the CHM, a single
wood segmentation was performed using a watershed algorithm [38]. Finally, canopy
structure parameters such as the single wood location, the height of trees, the canopy area,
the diameter at breast height, the crown diameter, and the tree boundary were obtained
through calculation and measurement of the single wood point cloud.

2.4. Land Surface Model Simulation
2.4.1. Atmospheric Forcing Data

The meteorological observations data included wind speed, wind direction, relative
humidity, air temperature, pressure, downward short-wave radiation, and downward
long-wave radiation, and these were collected from the CN-DIN from 1 January to 31 De-
cember 2019, with a temporal resolution of 30 min. Wind direction and speed, precipitation,
and radiation were all observed from a 36 m height. The temperature, surface pressure,
and relative humidity were measured at a height of 4 m. At a height of 27 m, where the near-
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est observation layer to the tree canopy was located, both the sensible heat flux (SH) and
the latent heat flux (LH) were collected using an open-path eddy covariance system termed
CSAT3 (https://www.campbellsci.com/csat3 (accessed on 24 April 2022)) [39].

2.4.2. Land Surface Model Setup And Validation

The Noah-Multiparameterization (Noah-MP) land surface model was applied in this
study to estimate the impact of the updated parameters. As a cutting-edge model, Noah-
MP is applicable for describing the heat flow between the surface and the atmosphere
by combining 12 biophysical and hydrological processes [39]. In the multilayer snow,
permafrost, and aquifer models, these processes also take into account dynamic vegetation,
stomatal conductivity, surface heat fluxes, water-vapor exchange coefficients, the radia-
tive interactions between the vegetation canopy structure and the soil, the hydrological
processes between the canopy and soil, and groundwater dynamics [40]. Furthermore,
the results of the Noah-MP simulation can be improved by more accurate land surface
heterogeneity and 3D plant structure parameterization for surface energy fluxes, soil mois-
ture, and temperature [2]. Table 1 lists the parameterizations performed in this study. The
underlying surface of the CN-DIN can be regarded as a mixed forest.

Table 1. The setup options of the Noah-MP land surface model.

Type of
Land

Surface
Process

Physical
Processes Description Options Contents

Vegetation

OPT_DVEG Mainly used to calculate leaf area index and vegetation cover. 2 Dynamic Vegatation
Model [41]

OPT_CRS
Calculation of foliar stomatal impedance. Stomatal impedance influences

the magnitude of the latent heat flux brought about by vegetation through leaf
transpiration.

1 Ball–Berry
Scheme [42]

OPT_SFC The calculation of the SH transport coefficient Ch, which in the model reflects
the strength of the energy exchange between land and air, is carried out. 2 Noah Type [43]

OPT_RAD Used to parametrically represent the canopy structure of the vegetation
in the grid. 1 Gap = f (3D, cosz) [44]

Soil

OPT_BTR For the calculation of soil moisture, which can influence stomatal conductivity,
photosynthesis, and soil decomposition. 1 Noah Type [45]

OPT_INF Expresses the process of water infiltration in permafrost. 1 NY06 [46]
OPT_TBOT For the selection of boundary conditions of soil temperature. 2 Original Noah [47]
OPT_STC For the selection of snow/soil temperature time scenarios. 1 Semi-Implicit [40]

Water

OPT_RUN Used to simulate runoff, groundwater, and the changes in soil moisture they
cause. 1 SIMGM [48]

OPT_FRZ Used to calculate the amount of liquid and solid water in the soil when it freezes. 1 NY06 [46]
OPT_ALB Used to calculate the surface albedo of snow on the ground. 2 CLASS [49]
OPT_SNF Distinguishes between rainfall and snowfall. 1 Jordan [50]

To evaluate the accuracy of the simulation, the root mean square error (RMSE) and
R-squared (R2) were used to evaluate the simulated mean values for different heights of
trees under the LPR and VPR scenarios (Equations (1) and (2)). The RMSE represents
the magnitude of the modeling error between the simulated (SIM) and observed (OBS)
values, and R2 is used to evaluate the goodness of fit. A higher value of R2, with a lower
value of the RMSE, indicates that the simulation result is consistent with the observation
result, and vice versa.

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (1)

R2 = 1 − ∑i(ŷi − yi)
2

∑i(ȳi − yi)
2 (2)

https://www.campbellsci.com/csat3


Remote Sens. 2022, 14, 2998 8 of 20

2.4.3. Vegetation Parameters Look-Up Table in Noah-MP

Noah-MP sets the main physical parameters that vary with vegetation type to drive
the simulation of land surface processes. Table 2 illustrates the values of the parameters
with high sensitivity when the dynamic vegetation scheme is used and the vegetation
type is mixed forest [51]. LTOVRC controls carbon exchange from plants to the soil owing
to leaf and stem senescence, whereas QE25 and VCMX25 directly control light-limited
and export-limited photosynthesis, respectively (export limitation is regulated by local air
pressure) [52]. SLA is used to calculate leaf and stem area indices and is dependent on plant
type. The 3D vegetation model in the radiative transfer scheme employs HVT to determine
the total available energy from the soil and plant surface, whereas Z0MVT regulates the
surface advection potential.

Table 2. Noah-MP’s vegetation-related parameters in mixed forest.

Parameter Name Description Value Units

Z0MVT Momentum roughness length 0.8 m
HVT Height of canopy 16 m
RC Tree crown radius 1.4 m

LTOVRC Leaf and stem/organic turnover rate 0.5 s−1

DILEFW Coefficient for leaf stress death related to water 0.2 s−1

RMF25 leaf maintenance respiration at 25 ◦C 3 µ mol m−2 s−1

SLA Single-side leaf area per kg 80 m2 kg−1

VCMX25 Maximum rate of carboxylation at 25 ◦C 55 µ mol m−2 s−1

QE25 Quantum efficiency at 25 ◦C 0.06 µ mol m−2 s−1

2.4.4. Energy Budget in Noah-MP

Land–atmosphere coupling is a complex process that is related to flux distribution,
aerodynamic resistance, the resistance to endurance, and the soil moisture of the land–
atmosphere system. The balance and distribution of radiation and energy are crucial
for understanding the operation of terrestrial ecosystems and for the accuracy of climate
change projections. The radiation balance of a forest is expressed as follows:

Rn = USR − DSR + ULR − DLR

= FvegSav +
(
1 − Fveg

)
Sab + FvegLav +

(
1 − Fveg

)
Lab

(3)

Fveg = 1 − e−0.52×(LAI+SAI) (4)

The terms USR, DSR, ULR, and DLR represent upward short-wave radiation, down-
ward short-wave radiation, upward long-wave radiation, and downward long-wave ra-
diation, respectively, while Rn refers to the net radiation. The net short-wave radiation
of vegetation and the net short-wave radiation of bare ground are denoted Sav and Sab,
respectively. Lav and Lab represent the net long-wave radiation of vegetation and the net
long-wave radiation of bare land. The vegetation fraction (Fveg) was calculated using
the leaf area index (LAI) and stem area index (SAI).

The forest energy balance can be calculated by the following equation:

Rn = SH + LH + G + ε ∼= SH + LH (5)

The sensible heat flux is represented by SH, the latent heat flux is denoted LH, and the
ground heat flux is indicated by G. In addition, ε stands for the residual term, which
includes heat storage, photosynthetic energy consumption, etc. G and ε can be discounted
as approximations in dense forest areas because they account for less than 5.0% of the total
heat flux.
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The equations for the heat fluxes over various surfaces are:

SHg,b =
ρcp

(
Tg,b − Ta

)
rah

(6)

SHg,v =
ρcp
(
Tg,v − Tac

)
rah,g

(7)

SHv = 2(Le + Se)ρcp(Tv − Tac)/rab (8)

LHg,b = ρcp

(
eg,b − ea

)
/γ(rah + rsoil) (9)

LHg,v =
ρcp
(
eg,v − eac

)
γ
(

rah,g + rsoil

) (10)

LHv = ρcp(ev − eac)γ(Cw
e + Cw

t ) (11)

In the above equations, SHg,b (LHg,b) is the SH (evaporation flux from the bare ground),
SHg,v (LHg,v) is the SH from the vegetated ground (vegetated canopy evaporation heat
flux from intercepted precipitation), and SHv (LHv) is the SH from the vegetation canopy
(transpiration heat flux from the vegetation canopy). In addition, ρ represents the psycho-
metric constant. Ta (ea), Tac (eac), Tv (ev), Tg,v (eg,v), and Tg,b (eg,b) refer to the air, canopy
air, vegetation canopy surface, vegetated ground surface, and bare ground temperatures
(surface water vapor pressure), respectively. The heat resistance coefficients. denoted rah
and rah,g, are linked to the surface layer turbulent transfer heat coefficient at the refer-
ence height and below the canopy, respectively. The leaf boundary layer resistance per
unit leaf is indicated by rb, and the wet leaf conductance is represented by Cw

e . The dry
leaf stomatal conductance, denoted Cw

t , is associated with the photosynthetic rates given
in the carbon budget.

3. Results
3.1. Characteristics of Measurement Results

In this study, the mean values and error ranges of six canopy structure parameters
of LiDAR photographic measurements (LPR) and visible photographic measurements
(VPR) were obtained by processing the photographic results to investigate the differences
in canopy structure revealed by LiDAR and visible photography (Table 3). For the CN-DIN
region, the values of averaged tree height, averaged canopy radius, and leaf area index
(LAI) retrieved by the LPR were 16.35 m, 7.84 m, and 4.28, respectively. The VPR retrieved
averaged tree height, averaged canopy radius, and leaf area index (LAI) values of 16.00 m,
9.61 m, and 0.48, respectively.

Table 3. Average values of the canopy structure.

Contents LPR VPR Observed (References)

Average tree height (m) 16.35 ± 2.19 16.02 ± 7.07 7.0∼16.7 [53]
Tree diameter at breast height (cm) 2.22 ± 1.95 1.48 ± 1.60 5.1∼21.9 [54]

Canopy diameter (m) 7.84 ± 1.78 9.61 ± 2.35 3.0∼16.0 [55]
Leaf area index 4.28 ± 2.38 0.48 ± 0.43 6.5 ± 0.7 [56]
Canopy cover 0.81 ± 0.18 0.48 ± 0.32 >0.8 [57]
Gap fraction 0.19 ± 0.18 0.52 ± 0.42 0.1∼0.2 [58]
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Although the LPR and VPR simulations were closer in terms of tree height, the dis-
parities in the computation of other canopy structure factors were still significant. In the
same region, the LPR’s DBH (diameter at breast height) increased by 0.74 cm, but the RC
(crown radius) decreased by 1.77 m. The three indices LAI, canopy cover, and gap percent-
age had the most significant variances, ranging from 39.5% to 88.8%. Except for DBH and
LAI, the LPR had a small margin of error, and it exhibited 219.0%, 32.0%, 77.8%, and 133.3%
decreases in average tree height, RC, canopy cover, and gap fraction, respectively.

To investigate the accuracy of the data obtained by LPR and VPR, the mean of the re-
sults obtained by these two methods was compared with field measurements (observed
values) from other studies. The mean tree height values for LPR and VPR were determined
to be the closest to the upper-limit value of the field measurements. In the sample plots,
the mean values of both LPR and VPR RC were within the tree shape interval of the dom-
inant tree species. Plant canopy height and silhouette shape can be accurately captured
using both LiDAR and visible photography. The results of the statistics and calculations
retrieved by LPR are comparable to the DBH results for mixed forests in the Dinghushan
sample site. By generating laser pulses and receiving echoes to produce a high-density data
point cloud, LPR can acquire a more accurate canopy structure. The LPR LAI, canopy cover,
and gap fraction were all closer to the observed LAI of mixed forests than the VPR LAI.
This may be attributed to the fact that passive optical imagery used for visible-light pho-
togrammetry, which depends on the observed surface reflectance, encounters significant
limitations when linked to vegetation [15]. Consequently, a small number of solved point
clouds and significant errors were present in the LAI representation, vegetation cover, etc.

To further compare the acquisition of canopy structure parameters in the area using
LiDAR and visible-light images, the distributions for HVT (vegetation top height), DBH
(tree diameter at breast height), and RC (canopy radius) were obtained by solving for
the LPR and VPR, and their fits were calculated (Figure 4). The HVT, DBH, and RC
values of the LPR solution exhibited GaussAmp, Allometric 1, and lognormal distributions,
with R2 values of 0.80, 0.75, and 0.85, respectively. The HVT, DBH, and RC of the VPR
solution exhibited GaussAmp, Allometric 1, and GaussAmp distributions, with R2 values
reaching 0.86, 0.99, and 0.95, respectively. As shown in Figure 4, the percentage of trees with
DBH in the interval 1.0–4.9 m was 83.1%, while it was 52.0% for the LPR and VPR in 2021,
respectively. In addition, it was 2.7% and 2.4%, respectively, for the 5.0–9.9 m interval.
The LPR and VPR results obtained in this study were found to be consistent with the tree
population curves sourced from the field survey of Dinghushan conducted by Li et al. [59]
in October 2020. A total of 83.0% of the trees were measured to be in the DBH range of
1.0–4.9 m, and 11.2% were in the range of 5.0–9.9 m. LPR showed a distribution that was
more consistent with the field observations. Unlike LiDAR, visible-light photography was
incapable of accurately capturing the vertical structure of the forest.

The input parameters of the Noah-MP model were adjusted based on the above
measurement results and fitting functions. Figure 5 shows the relationship between RC
and HVT obtained from LiDAR (i.e., LPR) and visible light (i.e., VPR). The tree height
used in LPR was the top vegetation height obtained from LiDAR (i.e., HVT from LPR),
and the tree height used in VPR was the top vegetation height obtained from the visible-
light camera (i.e., HVT from VPR). Under different scenarios, RC was replaced with
the equations corresponding to HVT (Figure 5), which were entered into Noah-MP instead
of the default values of the model (Table 4).
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Figure 4. Histograms of the distributions of canopy parameters obtained from LPR (a–c) and VPR
(d–f). Black curves are fits to the canopy parameter distributions.

Figure 5. Relationship between HVT and RC driven by LPR (a) and VPR (b). Red lines indicate
linear fits.
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Table 4. HVT and RC functions for Noah-MP inputs.

Variables Default LPR VPR

HVT 16.0 HVT from LPR HVT from VPR
RC 1.4 −0.09 × HVT + 0.01 × HVT2 + 3.21 −11.82 × 0.92HVT + 12.29

3.2. Results of the Simulated Canopy Temperature and Humidity Profiles

As for the assessment of plant carbon absorption processes within the land surface
model, the model can be better constrained and improved with more precise canopy param-
eter inputs. Temperature, soil moisture, and vegetation growth characteristics may all be
affected by these findings [60]. To fully understand the impact of accurate canopy parame-
ter inputs on these changes, the simulation results related to temperature were extracted
for comparison. Figure 6 shows the box plots of vegetation temperature (Tv), canopy air
temperature (Tac), ground temperature (Tg), soil temperature (Ts), and soil moisture (SMC),
averaged for different tree heights. The surface 0.1 m and 1.0 m under the ground were
treated as the first and second soil layers, respectively. As shown in Figure 6, the mean
values of the LPR scenario for Tv, Tac, Tg, Ts1, and Ts2 were 296.0 ± 0.13 K, 295.7 ± 0.11 K,
296.0 ± 0.14 K, 296.0 ± 0.13 K, and 296.1 ± 0.12 K, respectively. The mean values of the VPR
scenario for Tv, Tac, Tg, Ts1, and Ts1 were 295.9 ± 0.22 K, 295.6 ± 0.17 K, 295.9 ± 0.25 K,
296.1 ± 0.24 K, and 296.2 ± 0.23 K, respectively. The CN-DIN temperature profile observa-
tions were represented by the temperatures at 15 m, at 9 m, the surface air temperature,
0.1 m below ground, and 1 m below the ground, and these were 294.4 K, 294.3 K, 294.5 K,
294.6 K, and 294.8 K. According to the above simulation, there was an overestimation
of 5.7–6.8% and 5.9–6.5% of the observed temperature by LPR and VPR, respectively,
with relatively insignificant deviations, and the outcome of the simulation using the
Noah-MP model was satisfactory. The LPR scenario had 3 to 22 times more tempera-
ture outliers than the VPR scenario, for which the perturbation range of temperature was
reduced by 35∼48%. The observed soil moisture values were obtained as 0.247 m3/m3

and 0.258 m3/m3. The LPR and VPR simulation for SMC1 and SMC2 was 0.231 m3/m3,
0.230 m3/m3, 0.230 m3/m3, and 0.229 m3/m3, respectively, representing underestimations
of 6.9%, 12.2%, 7.4%, and 12.7%, respectively. The simulation results for soil moisture were
more comparable to the observation values than under the LPR scenario, and the margin of
error in the simulations was reduced by 27.8%.
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Figure 6. Diagrams for simulated vegetation temperature (Tv), canopy air temperature (Tac), ground
temperature (Tg), soil temperature (Ts), and soil moisture (SMC). Red lines indicate the median,
the bottom and top edges of the boxes indicate the 25th and 75th percentiles, and red crosses
indicate outliers.

4. Discussion
4.1. Diagnosis of the Upward Radiation Simulation

Firstly, the simulation difference for temperature in the canopy was identified from
the difference in the capacity of radiation acceptance. Driven by the same downward radia-
tion, the upward radiation simulation differed due to different canopy characterizations.
The characterization of the canopy structure had an immediate impact on the distribution of
solar radiation in the canopy. However, the multilayered character of canopies was not well
represented in earlier models. To explore the effect of different multilayered characteristics
of the tree canopy on the radiation distribution, two different tree height parameters were
set to drive the model, with different simulated USR and ULR values used for comparison
(Figure 7). The radiation process was largely affected by vegetation and ground tempera-
ture [61]. The RAD process of the model had an immediate impact on both the short-wave
radiation absorbed by the vegetation and the photosynthetically active radiation (PAR).
In this study, OPT−RAD = 1 was chosen, which is based on the assumption that the gap
probability is a function of the solar zenith angle and the 3D structure of the vegetation
canopy and that short-wave radiation is intercepted by the canopy. The simulated USR
under the default, LPR, and VPR scenarios was underestimated by an average of approxi-
mately 2.6, 3.3, and 2.8 W/m2 throughout the year, compared to the observed values. In
addition, the simulated ULR was overestimated by 11.3, 6.7, and 6.8 W/m2. The USR and
ULR simulated under the two improved scenarios were more accurate in the same range
of tree heights relative to the default case of the model. The difference between the USR
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and observed values from the simulations under the LPR and VPR scenarios ranged from
31.7% to 60.6%, with the range of perturbation reduced in the LPR scenario by 30.1%
compared to VPR. The difference between the ULR and observed values ranged from 0.8%
to 2.2%, with the range of perturbation reduced in the LPR scenario by 13.6% compared to
VPR. This is suspected to result from the correct solution of the LPR and VPR scenarios for
the vegetation canopy diameter. There was less pore space available between the canopy for
short-wave transition, the canopy shading of its substratum and the land below increased,
and the vegetation absorbed more short-wave radiation, light, and effective radiation, re-
sulting in a higher Tv. Accordingly, with less short-wave radiation absorbed by the ground
through the canopy, more long-wave radiation was reflected, leading to a reduction in Tg
and Ts. For the same tree height, the USR and ULR of the VPR simulations became more
accurate due to a more significant RC improvement for the VPR forest canopy. As a result,
there was a lower underestimation of USR and a higher overestimation of ULR in the LPR
scenario. However, with an increase in tree height and canopy width, the vegetation gap
in the VPR simulation became too small to absorb much short-wave radiation and PAR
when HVT exceeded 30 m. The accuracy of the simulated USR and ULR decreased by 9.5%
and 3.6% relative to LPR, while the range of perturbations was widened significantly for
the VPR simulation.

Figure 7. Accuracy assessment of radiation simulations for different scenarios. (a) Upward short-
wave radiation and (b) upward long-wave radiation. Black lines represent values, red lines represent
RMSE, and blue lines represent R2. Vertical bars represent the standard deviations of the data.

4.2. Diagnosis of the Surface Heat Flux Simulation

It was revealed that the temperature simulations varied, which is attributed to LH
and SH effects. According to Noah-MP’s OPT−SFC process, SH was the direct variable
that affected the temperature differential between the ground and the heat exchange
coefficient. The discrepancies in Ts and Tv resulted from the variations in turbulent ex-
change coefficients simulated in the SFC process, which also causes the SH differences
(Equations (6)–(8)). While ground exchange coefficients were related to tree height, differ-
ences in the canopy structure can affect the accuracy of latent heat processes in the forest,
which not only leads to variations in the distribution of surface energy but also affects
SH and LH exchange between the ground and the atmosphere. Therefore, the differences
in SH and LH obtained under the LPR and VPR scenarios were explored. Figure 8 shows
the accuracy of the surface energy simulated for different canopy heights in the CN-DIN
region. The annual mean values of SH and LH were observed to be 32.59 W/m2 and
21.04 W/m2, respectively. Upon comparison between the simulated and observed values,
a significant difference (overestimation) was found in SH. In addition, a slight difference
was found between the simulated LH and the observed LH (underestimation), which may
result from the excessively strong coupling of the Noah-MP model that led to the transfer
of excess energy and water vapor [62,63]. In contrast, the LH values were significantly
affected by the level of water availability and the exchange coefficient, with a narrow range
of variation.
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Figure 8. Accuracy assessment of energy simulations under different scenarios. (a) Sensible heat flux
and (b) latent heat flux. Black lines represent values, red lines indicate RMSE, and blue lines refer
to R2. Vertical bars represent the standard deviations of the data.

In this study, the approximate range of SH differences obtained between the LPR
and VPR scenarios was from 11.4% to 17.7%, with a 10.9% reduction in the range of
perturbations compared to VPR under the LPR scenario. This is likely to be the main
contributor to the difference in the temperature simulations. As a key parameter for
the transfer of energy from the surface to the lower atmosphere, the surface exchange
coefficient Ch indicates the strength of ground–air coupling. In contrast, LiDAR data enable
the detailed 3D measurement of the forest structure [64], making more accurate height
estimates achievable for low shrubs and tall trees in the forest. In this study, the strength of
the ground–air coupling could be more accurately characterized under the LPR scenario,
with a narrow range of perturbations in SH and minor temperature perturbations.

The approximate range of LH differences as obtained from the simulations of the LPR
and VPR scenarios was from 2.9% to 7.4%, with a 7.5% reduction in the range of perturba-
tions compared to VPR under the LPR scenario. In this study, the simulated differences
in LH were found to be more significant, compared to the results obtained by Chen et al. [65]
from woodland. This is attributable to the overestimation of SH for a constant Czil = 0 (Czil
is an empirical coefficient related to the roughness length of moisture and heat). With more
heat transferred from the surface to the atmosphere at greater Ch, the skin temperature was
reduced. The evaporation from the ground and canopy was slowed down by the declining
skin temperature, making the underestimation more significant. In this case, a better per-
formance was produced under the LPR scenario than in the VPR simulation, with a 3.5%
decrease in the RMSE. This is because the differences in Tv, Tg, and Fveg had a combined ef-
fect on the differences in some of the LH components associated with canopy transpiration
and ground evaporation, and ultimately on the total LH level. Therefore, this study focused
on three LH components to better understand the causes of LH disturbance. As shown
in Figure 9, the reductions in disturbance for LPR under the VPR scenario were LHg,v (i.e.,
1.0 W/m2 ), LHg,b (i.e., 0.2 W/m2 ), and LHv (i.e., 2.3 W/m2 ), respectively. Compared to
VPR, the three LH components of LPR were less perturbed but more accurately simulated
for the same tree height range. The rise in Tv of LPR (Figure 6) lowered the absorption
rates, reduced the leaf area index, increased the stomatal resistance, and thus suppressed
transpiration. Despite a smaller Fveg and a larger bare ground area simulated under the LPR
scenario, the overall effect of less significant radiation uptake by the soil and lower soil
temperatures was mitigated by soil evapotranspiration. Therefore, a smaller overall LH
was simulated under the LPR scenario compared to the VPR scenario. The level of LPR
soil moisture was higher than for VPR, thus resulting in a narrower range of moisture
simulation perturbations than for VPR.
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Figure 9. Comparison of the LH components under the LPR and VPR scenarios. The green font
represents LHg,v, the pink font represents LHg,b, and the blue font represents LHv.

4.3. Limitations and Possible Improvements

The approach proposed in this study is an initial attempt to associate the canopy
structure obtained by UAV-LiDAR with a simple scenario of the LSM. In some cases,
there was significant uncertainty in performance for the parameters of the input models
used in this study. Therefore, the focus of future research will be to establish how to
better propagate its large estimation uncertainty for constraining the LSM. Furthermore,
our study failed to reflect the seasonal changes in the canopy structure in the offline
simulation configuration of Noah-MP. The changes in the roughness length of momentum
occurred through the seasonal changes in the proportion of green vegetation, and the
seasonal changes in vegetation fraction affected the ratio of heat to the roughness length
of momentum. Future research based on LiDAR-observed plant canopies and cover data
over time might result in more valuable and objective advances in the land–air coupling.
Nonetheless, our study demonstrated that the optimal vegetation canopy structure can
enhance temperature and moisture modeling, especially through the improved modeling of
latent heat fluxes. These findings provide a reference for those scientists interested in future
modeling studies of surface reactions to the atmosphere and climate system. Therefore,
it is necessary to continue enhancing the parametric description of the canopy morphology
based on the results of this experiment, thus improving the accuracy of simulated near-
surface land surface processes and canopy dynamics.

Although current LiDAR technology is unmanned and miniaturized, its overall cost of
usage is high, due to the costly laser-detecting equipment, restricting LiDAR technology’s
wider deployment. As a result, it is necessary to find an alternative technology that
can balance economic considerations with high spatial resolution. By comparing the
canopy structures and model input data obtained by the two methods of photography, this
study used visible drone photography as a control test that was one third as expensive or
less than airborne LiDAR technology [66], to verify whether visible drone photography
results can be used as a complement to LiDAR for larger areas or longer data acquisition
times. In the study, HVT was discovered to be the most sensitive parameter in the model.
The correlation coefficient between the two approaches was found to be quite high when
comparing the tree height of the canopy point-cloud model derived by LPR and VPR
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methods. As a result, this study anticipates that in the future, LiDAR could be used
to obtain high-precision terrain or calibration data for areas with low terrain variation,
and then photogrammetry can be used to conduct multi-period aerial surveys to obtain
vegetation canopy height information in different seasons, resulting in low-cost long-series,
multi-period observations. This would allow for more precise ground monitoring findings,
which could help with decision-making at a local or regional scale [67].

5. Conclusions

Herein, a new method was developed to retrieve canopy parameters by means of
UAV-LiDAR photogrammetry. The new method was capable of capturing the forest-
canopy structure with centimeter accuracy and high cost-effectiveness. This new method
retrieved an accurate forest canopy over a typical subtropical forest area of the Dinghushan
forest ecosystem research station (CN-DIN). The canopy structure parameters retrieved
by UAV-LiDAR were updated in the Noah-MP model to improve the performance of the
numerical simulation.

According to the research results, the method was effective in capturing more detailed
forest canopy characteristics such as tree height, the diameter at breast height, and the
canopy radius, in the CN-DIN area. The aforementioned forest canopy characteristics
exhibited GaussAmp, Allometric 1, and lognormal distributions, respectively. The mean
values were 16.35 m, 7.84 m, and 4.28 for the tree height, canopy diameter, and leaf area
index retrieved from LiDAR, respectively.

Regarding the effect of different canopy heights on the simulation of temperature and
moisture, the updating of these local canopy parameters had a more significant impact
on the simulation of temperature. The LiDAR photogrammetry results (LPR) scenario
simulated vegetation and canopy air, ground, and soil temperatures, with errors from
5.7% to 6.8% compared with the results of observations. Compared to the visible-light
photogrammetry results (VPR) scenario, the LPR scenario showed a 35.0∼48.0% reduction
in the range of perturbations for temperature and a 27.8% reduction in the range of pertur-
bations for moisture.These results indicate that the accurate canopy parameters retrieved
from LiDAR can help to improve the model simulation. The accurate representation of the
canopy structure by LPR allowed for a more detailed description of the short-wave radia-
tion absorbed by the ground and the long-wave radiation reflected by the canopy, as well
as the processes of sensible and latent heat fluxes, by influencing the surface exchange
coefficient Ch and the strength of the ground–air coupling. Ultimately, temperature and
moisture were affected. The LPR simulations of the forest upward short-wave radiation
and long-wave radiation were reduced by 30.1% and 13.6% in the range of disturbance,
compared to the VPR scenario. The LPR simulations of sensible and latent heat fluxes were
10.9% and 7.5% less perturbed than in the VPR scenario. Although there are disadvan-
tages such as high cost and complex operation, LiDAR could be regarded as an important
supplement to active remote sensing in the future, due to the high-precision retrieval
of data.
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