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Abstract: Permafrost coasts are experiencing accelerated erosion in response to above average
warming in the Arctic resulting in local, regional, and global consequences. However, Arctic coasts
are expansive in scale, constituting 30-34% of Earth’s coastline, and represent a particular challenge
for wide-scale, high temporal measurement and monitoring. This study addresses the potential
strengths and limitations of an object-based approach to integrate with an automated workflow by
assessing the accuracy of coastal classifications and subsequent feature extraction of coastal indicator
features. We tested three object-based classifications; thresholding, supervised, and a deep learning
model using convolutional neural networks, focusing on a Pleaides satellite scene in the Western
Canadian Arctic. Multiple spatial resolutions (0.6, 1, 2.5, 5, 10, and 30 m/pixel) and segmentation
scales (100, 200, 300, 400, 500, 600, 700, and 800) were tested to understand the wider applicability
across imaging platforms. We achieved classification accuracies greater than 85% for the higher
image resolution scenarios using all classification methods. Coastal features, waterline and tundra, or
vegetation, line, generated from image classifications were found to be within the image uncertainty
60% of the time when compared to reference features. Further, for very high resolution scenarios,
segmentation scale did not affect classification accuracy; however, a smaller segmentation scale (i.e.,
smaller image objects) led to improved feature extraction. Similar results were generated across
classification approaches with a slight improvement observed when using deep learning CNN, which
we also suggest has wider applicability. Overall, our study provides a promising contribution towards
broad scale monitoring of Arctic coastal erosion.

Keywords: Arctic coastal erosion; coastal feature extraction; coastal classification; object-based image
analysis; GEOBIA

1. Introduction

Permafrost coasts in the Arctic are sensitive to climate change and are likely indicators
and integrators of changes occurring in the global climate system [1]. Permafrost coasts
have been shown to exhibit high rates of erosion [2-6] which are influenced and amplified
by reductions in sea ice extent, increased duration of the open water season [7], rising
sea surface and air temperatures [8], absolute and relative sea-level rise [9], increasing
permafrost temperatures [10,11], subsidence [12], and increased storm frequency and inten-
sity [13]. These changes to the Arctic system increase the vulnerability of Arctic coasts to
increased erosion and altered coastal morphologies [14], ecosystems and infrastructure [15],
carbon export to oceans [16], and subsistence living [14,15].

Remote sensing studies of Arctic coastal change are typically conducted through
manual delineation, or visual interpretation of a coastal indicator [17,18]. This approach is
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labor-intensive and therefore prohibitive for large areas and high temporal resolution map-
ping and monitoring. Further, visual interpretation is inherently subjective [19]. Large-scale
monitoring and high temporal studies are critical for developing coastal-zone management
strategies [20], understanding the relations between changes in environmental forcing and
the response of the coast [21], and better constraining estimates of the mobilization of old
organic carbon [22] through sediment release caused by coastal erosion [23], which has
regional and global consequences [15].

Contemporary coastal change detection studies account for less than 1% of the Arctic
coastline [21] and are difficult to compare because of differing time scales and definition
of coastal indicators. For example, Jones et al. [21] tracked annual bluff erosion over a
decade whereas Lantuit and Pollard [5] defined their coastal indicator as the observable
land—ocean interface at the time of photography, but also included measurements of retro-
gressive thaw slumps (RTS). Using airborne LiDAR, Obu et al. [24] defined their coastline
as the 1 m contour of the derived DEM to conform to the definition presented by Bird [25]
as the edge of the land at the limit of normal high spring tides, whereas Solomon [26] used
the wet—dry line as a proxy for the high tide line to define their shoreline. Conversely,
Cunliffe et al. [27] defined their shoreline using the vegetation edge rather than the wet-
dry line because the vegetation line was more visually distinct and temporally consistent.
Recently, Clark et al. [28] used UAV-SfM-derived products and found considerable dif-
ferences in reported coastal erosion measurements on inter-annual and annual datasets
based on multiple identified coastal indicators (waterline, bluff edge, or vegetation line,
and bluff toe).

Generally, coastal erosion studies and subsequent coastal indicators have been dictated
by the availability and resolution of remote sensing data products. The increasing ubiquity
of very high resolution data such as RapidEye, PlanetScope, or DigitalGlobal imagery
offers opportunities to address the paucity of information regarding short-term coastal
dynamics [21], the limited spatiotemporal coverage, and standardize coastal indicators but
poses significant challenges for image classification and specifically feature detection [29].
The existing pixel-based paradigm on such very high resolution (VHR) imagery is no longer
effective as individual pixels are not necessarily representative of the land cover class they
are meant to refer [30], and an object-based image analysis (OBIA) approach represents a
significant advancement [31] but is limited in the application to coastal erosion studies and
particularly along Arctic coasts. Object-based and deep learning applications have been
applied to infrastructure detection in the Arctic [32], ice-wedge polygon mapping [33-35],
and recently in detecting RTS [29]. Broadly, deep learning neural networks have been
successfully demonstrated in image classification, segmentation, and object detection,
leading to substantial application in remote sensing [36—41], coastal erosion [42-45], and
geomorphology [46—48].

In OBIA or geographic object-based image analysis (GEOBIA) [49], image objects are
used to represent the basic units (primitives) to extract spatial information that is implicit in
RS imagery while integrating better with vector-based GIS [49] with the goal of emulating
human interpretation of RS imagery [30]. Image objects are derived from image segmenta-
tion which groups pixels into regions of homogeneity that contain spectral information,
like pixels, but also include measures of median values, minimum and maximum values,
variance, and texture [31]. Image objects can be classified through a variety of approaches
and through an iterative process of region growing, geo-objects, with real world meaning,
are created.

The aim of this study was to assess the feasibility of an object-based approach to
address some of the challenges present in studying Arctic coastal erosion. Namely, the
issues involved in large area mapping, and the discrepancies in the use of different coastal
indicators between studies. Object-based image analysis will prove viable if a system-
atic approach can produce accurate classifications and if multiple coastal indicator line
features can be extracted accurately. For this, we tested three classification approaches:
thresholding, supervised classification, and a deep learning convolutional neural network
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(CNN) algorithm. We test our classification approaches on six common resolutions of
satellite imagery, 0.6, 1, 2.5, 5, 10, and 30 m, to understand broad scale applicability of our
classification methods. Classifications are assessed across the entire scene but also limited
to the primary area of interest in the coastal zone. Finally, we iterate the scale parameter of
the image segmentation algorithm to identify the implications of image object size in the
Arctic coastal environment.

2. Materials and Methods
2.1. Study Area

The study site encompasses an approximate area of 210 km? in Beaufort Sea of the
western Canadian Arctic in the Northwest Territories (NT) (69°31'17.33'N, 133°52/24.76"'W)
(Figure 1). The nearest population center, the Hamlet of Tuktoyaktuk, NT, is located 34
km southeast of the study site. The mean annual air temperature recorded at Tuktoyaktuk,
NT, between 1981 and 2010 was —10.1 °C with average daily air temperatures of —26.6 °C
in January and 11.0 °C in July, with the mean annual air temperature increasing by 3 °C
per century during the open water season [50]. In our study site, there is approximately
162 km of ocean-connected coastline with a predominant easterly exposure with a portion
that is protected from direct wave action in the form of a bay found in the approximate
geographic center of the study site. The northernmost extent of our study site is known as
Crumbling Point (69°36/20.08"N, 133°53/37.27""W), which is the location of a 600-m-long
polycyclic retrogressive thaw slump with maximum width of 200 m from the shoreline.
The polycyclic RTS has a rapidly retreating headwall and experiences substantial coastal
cliff erosion [28], which deposits sediments in the near shore zone that are then moved
along the coast through longshore transport, creating an 800-m-long sandspit southeast of
the RTS.
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Figure 1. Study site in the Western Canadian Arctic in the Mackenzie Delta area (Panel (A)). The
Pleaides satellite scene (panel (B), Pléiades © CNES 2018, Distribution AIRBUS DS) is a four band
(RGB, NIR) image, pansharpened to 0.6 m/pixel resolution and projected into NAD 1983 UTM Zone
8N spatial reference. Crumbling Point (highlighted in panel (B)) is the northern extent of the scene,
which is exposed to the Beaufort Sea, and represents an extensive polycyclic retrogressive thaw slump.
The eastern shore borders Kugmallit Bay. The land surface is marked with thermokarst lakes, some
of which have been breached and contribute to the 150 km of ocean connected coastline.
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The area is underlain by continuous permafrost with nearby Richards Island hav-
ing 600-700 m permafrost thickness [51] and mean annual ground temperatures of —8
to —9 °C [52]. The area is typical of the Tuktoyaktuk Coastlands being spotted with
thermokarst lakes, and in some cases susceptible to breaching and subsequent draining
from coastal erosion of the non-lithified sediments found throughout the region. The region
is typically ice-free from late June to October with changes to the Arctic sea ice regime
leading to a lengthening of the open water season [53] resulting in increased open-water
fetch for wave generation [54,55].

2.2. Source Data

We used a Pléiades satellite image scene (CNES, Airbus), acquired on 23 July 2018, by
the PHR 1B platform, as our primary data source. The scene covered an area of approxi-
mately 210 km? and was cloud free. The image was provided as a 0.6m panchromatic band
and four 2.4 m multispectral bands (red, green, blue, NIR) in the WGS 1984 geographic
coordinate system. A pansharpened dataset was created using the Gram-Schmidt sharpen-
ing type with weights of 0.9, 0.75, 0.5, and 0.5 for the red, green, blue, and infrared bands,
respectively, resulting in a 0.6 m multispectral image (RGB, NIR) with 16-bit unsigned pixel
depth. The image was projected into the NAD 1983 UTM Zone 8N projected coordinate
system and resampled based on nearest neighbor into 1, 2.5, 5, 10, and 30 m resolutions
using ArcGIS Pro version 2.8.0 (Esri, Redlands, CA, USA).

2.3. Classification Approaches

Object-based classifications were conducted using Trimble’s eCognition Developer
version 9 software, which enables users to build classification workflows in the form of
rule sets from an extensive library of algorithms. Image objects provide the building blocks
of our classifications, as opposed to pixels, and were created using the multiresolution
segmentation algorithm with equal weighting given to all MS bands. The segmentation
parameters of scale, shape, and compactness were determined through iterative testing.
The shape and compactness parameters range between 0 and 1 where the shape parameter
provides balance between shape and color, while the compactness parameter provides
balance between compactness and smoothness [56]. The shape parameter influences the
effect of spectral reflectance on the segmentation process and compactness refers to the
ratio of border length to area. Therefore, the higher the shape parameter, the lower the
influence of color and the higher the compactness parameter, the more compact the object
will be [57-60]. Through iterative testing (trial and error), a shape value of 0.6 and a
compactness value of 0.5 were determined to create appropriate objects for our application.

The scale parameter is used to control average image object size [41,42] where a
higher value results in bigger objects and a smaller value results in smaller objects. The
scale parameter has been considered the primary factor for segmentation in object-based
research [43,44] and the determination of the scale parameter depends on factors such as the
sensor type, resolution, the purpose of the segmentation, and objects of interest. As a result,
we incremented our scale parameter by 100 between 100 and 800 in our threshold-based
and supervised classifications to better understand the influence of object size on accuracy.
Because objects constitute our building blocks, which should be as large as possible but
small enough to provide good object primitives, it was necessary to systematically isolate
the scale parameter.

We determined three target classes for this analysis: water, tundra, and coastal bound-
ary zone (Figure 2). The Water class encompasses ocean connected waters and thermokarst
lakes. The Tundra class encompasses upland vegetated areas. The coastal boundary zone
represents the land area between the water and tundra classes. The coastal boundary zone
can be further subdivided into classes of beach, or sand, cliff, retrogressive thaw slumps,
and semi-submerged ice wedge polygons but we chose to simplify the classification into a
single class.
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Figure 2. Coastal profile schematic used for classification and feature extraction. A water classification
was given to all objects seaward of the waterline, which represents the instantaneous interface
between water and land. A tundra classification was given to land surfaces with high presence
of vegetation. The tundra line represents the extent of vegetation. The coastal boundary zone
classification represents the area between the extent of vegetation (i.e., tundra line) and the land-
water interface (i.e., waterline). This class represents a transitional zone and includes subclasses of
sandy beaches and coastal cliffs and bluffs.

2.3.1. Threshold-Based Classification

A threshold-based classification workflow was developed in eCognition Developer
(Trimble, Sunnyvale, California, United States) (Figure 3) to assign objects into the desired
classes of water, tundra, and coastal zone. Using the multiresolution segmentation algo-
rithm, image objects were created, and subsequent indices were calculated for each object.

NIR — Red

NDV] = ——— —— 1
NIR + Red M)
Green — NIR

NDW] = —— 2
Green + NIR @)

Using the assign class algorithm, user-defined thresholds were determined and used
to classify image objects. Objects with a high NDVI (>0.3), or presence of vegetation,
were assigned to the Tundra class and objects with a high NDWI (>0.4), or presence of
water, were assigned to the Water class. An additional threshold of NDWI > 0.1 and mean
digital number of NIR < 300 was used to classify the remainder of the Water class. The
remaining unclassified objects were assigned to the coastal boundary zone. Lastly, the
export vector layer algorithm was used to export the classified image objects as a polygonal
shapefile. The rule set was then applied to a new set of objects created by incrementing the
scale parameter. Further, the threshold-based classification was applied to down sampled
versions of the satellite scene (1, 2.5, 5, 10, and 30 m) that reflect typical resolutions of
satellite imagery products. In total, 48 scenarios were generated to be evaluated in the
accuracy assessment.

2.3.2. Supervised Classification

Training samples were created in ArcGIS Pro using the Create Accuracy Assessment
Points tool. Forty points were created for each class for a total of 120 training points based
on a manual interpretation of the point locations. Image objects were created in the same
way as the threshold-based classification where object size was varied by incrementing
the scale parameter and iterating through down sampled satellite scenes. From here, we
created samples within eCognition from our input vector training samples using the assign
class by thematic layer algorithm. Training sample objects were converted to a sample
statistics file used to train a random forest (RF) classifier. Sample statistics used were the
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object mean values and standard deviations for the RGB and NIR input layers. The RF
classifier was applied, and classified image objects were exported as a polygonal shapefile
to be further assessed using our accuracy assessment workflow.
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Figure 3. Processing workflow. Three object-based rule sets were created representing different
classification approaches (threshold, supervised, and a deep learning CNN classifier). Accuracy
assessment was conducted on all outputs based on a common set of validation points. Coastal
indicator features were extracted and assessed through a buffer analysis.

2.3.3. Deep Learning Classification

We chose to create a convolutional neural network classification using only the highest
available image resolutions (0.6 and 1 m/pixel) based on preliminary results of our previous
classification approaches, assuming that the highest resolution imagery would provide the
highest classification accuracies. A CNN is a deep learning neural network algorithm which
is mainly used in image classification. The model receives an image as input and with a
user-defined number of hidden layers, output classes are generated. For more information
on CNN architecture see [40,41]. Our CNN was implemented using the workflow available
in eCognition Developer using the algorithms create, train, and apply CNN which are
based on the Google TensorFlow™ library [61].

A CNN classification rule set (Figure 3) was created in eCognition Developer. First,
samples were created by importing a set of 3000 ground truth points, 1000 points per
class. Ground truth points were generated using equalized stratified random sampling
on a manually classified set of image objects. Sample patches of size 64 x 64 pixels were
generated for each ground truth point and rotated through 12 different angles to increase
the number of training samples. In total, 36,000 samples were created from the original
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3000 ground truth sample points. Next, the CNN was created using 2 hidden layers. The
first hidden layer had a kernel size of 5 with 12 feature maps and max pooling set to No.
The second hidden layer had a kernel size of 3, 12 feature maps, and max pooling set to No.
Sample patches were randomized and used to train the CNN. After saving and loading
the model, the CNN model was applied to create heat maps of our desired classes (water,
tundra, coastal boundary zone) that represent a probability occurrence for each pixel of
our image. Further, image objects were created and classified using a membership function
created based on the generated heat maps. At this point, further object-based refinements to
the classification can be made but we chose to accept the classification without modification
and proceeded to export the classified objects and continue with our accuracy assessment.

2.4. Accuracy Assessment
2.4.1. Reference Datasets

A ground truth, or reference, classification was created by manual identification of
individual image objects. The interpretation was conducted on image objects derived from
the segmentation of the highest resolution scene (0.6 m/pixel) with a scale parameter of
100. This combination of parameters represented the smallest image objects, or building
blocks, used in our analysis, and constituted roughly 70,000 image objects. Image objects
were assigned to our primary classes of Water, Tundra, and Coastal boundary zone, but an
additional class, of Uncertain, was added during this process to assign objects whose class
membership were not readily apparent. The 0.6 m/pixel resolution image scene was used
as the primary basemap with additional image server basemaps used to help identify the
appropriate class of Uncertain objects. In some instances, image objects spanned multiple
classes in which case the image object polygons were modified to separate the classes.

A set of 300 validation points (100 per class) were created using equalized stratified
random sampling. The set of validation points was verified against the image scene and
reference classification and found to be in perfect agreement. A separate set of 300 val-
idation points were created within a 100 m buffer of a generalized coastline using the
same approach. This reference point set was used to determine if there is a difference in
classification accuracy for a subset of the output classifications.

2.4.2. Confusion Matrices

Confusion matrices were created for each output classification following the steps of
Figure 3. The vector-based classifications were converted to raster files using the Assign
Class field in ArcGIS Pro, from which a new point file was created by sampling our
validation point sets, both the coastal and entire scene, to the classified raster image. The
point files, with classified and ground truth fields, were used to compute confusion matrices
of our classifications.

2.4.3. Feature Extraction

Using the vector-based classifications, the waterline and tundra line features were
extracted, following the steps in Figure 3, creating two coastal indicator features [62]. These
feature lines were evaluated using a buffer analysis [63] with buffers of size 1-10 m at 1 m
increments created from reference feature lines. The reference feature lines were extracted
from our reference classification using the same methods, which gave a baseline feature
length. The extracted coastal indicator features from the classification scenarios were
intersected with the set of buffers resulting in a percent of coastal feature lying within each
buffer relative to the reference feature lines. Feature extraction from the CNN classifications
was only conducted on the 0.6 and 1.0 m/pixel resolution imagery because it was assumed
based on preliminary results that the highest resolution imagery would provide the highest
feature extraction accuracies.
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3. Results

We analyzed a 210 km? satellite scene composed of approximately 75 km? (36%) of
water and 135 km? (64%) of land. To investigate the classification and feature extraction
accuracies of an object-based approach, we resampled our original dataset of 0.6 m/pixel
resolution to 1.0, 2.5, 5, 10, and 30 m/pixel resolution and varied the segmentation scale
parameter to alter object size. Because our primary area of interest is the coastal zone,
we evaluated our classification accuracies for the entire scene as well as a 100 m buffered
area from a generalized coastline to determine if there was a marked difference. Further,
feature extraction was limited to the waterline and tundra lines, or vegetation line, of the
coastal zone as the primary goal was to investigate the ability of an object-based approach
to accurately identify coastal indicators as opposed to similar scene features such as the
land-water interface of thermokarst lakes.

3.1. Classification Accuracy
3.1.1. Threshold-Based Classification

There was a consistent improvement in classification accuracy by several percentage
points when restricting the area of evaluation to the 200 m coastal zone (Table 1). Overall,
for image resolutions of 0.6, 1.0, and 2.5 m/pixel (very high resolution), the classification
accuracies were consistent across all segmentation scales whereas image resolutions of 5,
10, and 30 m/pixel (high resolution) were found to have a steady decrease in classification
accuracy as the segmentation scale parameter increased. In addition, the classification
accuracies of the very high resolution datasets were considerably higher than that of the
high resolution datasets. Classification accuracies ranged between 83 and 90% using the
very high resolution datasets and 21 and 85% for high resolution datasets; however, when
using a small segmentation scale (100-300) on the 5 m/pixel resolution dataset, there were
comparable accuracies to the very high resolution datasets. Similar trends existed for the
kappa coefficient, a measure of model accuracy relative to a random classifier used to
compare between classifiers, where there was a small, consistent, increase between the
overall scene and when restricting to the coastal zone. Beyond a resolution of 5 m/pixel at
segmentation scale larger than 300, the kappa coefficients decrease dramatically.

Table 1. Threshold classification accuracies generated from a confusion matrix. Six image resolutions
(rows) and eight segmentation scales (columns) are presented as percentages with averages for
individual image resolutions across segmentation scales. Kappa values given. Accuracy assessments
were conducted for the entire scene (upper value) and a 200 m coastal zone (lower value).

Scale Segmentation ;50 50 300 400 500 600 700 800 Average Kappa
Resolution (m)

Entire Scene 83 83 83 84 85 84 84 84 84 0.75-0.78
06 Coastal Subset 84 87 87 89 88 89 88 90 88 0.76-0.85
Entire Scene 83 8 8 8 84 8 8 85 85 0.75-0.81
! Coastal Subset 8 8 8 8 8 8 8 88 88 0.79-0.84
Entire Scene 85 8 8 8 87 8 8 8 85 0.73-0.81
25 Coastal Subset 87 87 88 88 87 86 85 85 87 0.78-0.82
Entire Scene 85 84 81 78 75 75 75 74 78 0.61-0.78
> Coastal Subset 87 88 88 77 76 77 75 75 80 0.63-0.82
Entire Scene 81 76 69 67 65 30 21 21 54 0.25-0.71
10 Coastal Subset 80 75 68 62 60 60 64 64 67 0.41-0.71
Entire Scene 60 61 62 6 62 62 62 50 61 0.24-0.54
% Coastal Subset 6 63 61 61 56 56 56 41 58 0.12-0.49

The number of objects created through the multiresolution segmentation process was
a function of image resolution and segmentation scale parameter where more objects are
created for higher resolution images with small scale parameters. However, the number



Remote Sens. 2022, 14, 2982

9 of 22

of original image objects created did not directly impact classification results for the very
high resolution datasets. For example, in the 1 m/pixel image scenario, there were over
25,000 image objects created with a 100-scale parameter and 692 image objects created
with an 800-scale parameter, but the classification accuracies and kappa coefficients varied
minimally. In contrast, far fewer objects were created on the medium resolution datasets
particularly at large segmentation scale resulting in a dramatic decrease in classification
accuracies especially on the 10 and 30 m/pixel where fewer than 100 objects were created
in 12 of the 16 scenarios.

3.1.2. Supervised Classification

In the supervised classification scenarios, there was minimal difference between classi-
fication accuracies when assessing over the entire scene or restricting to the coastal zone.
The classification accuracies using a supervised classification approach were marginally to
substantially better in almost all cases compared to the threshold-based approach. However,
there was more variability between scales of segmentation in the supervised classifica-
tion accuracies for a given resolution including notably low accuracies for the highest
resolution—smallest segmentation scale. For the very high resolution datasets, there was
an at least 8% difference between the highest and lowest achieved accuracies within a
given data resolution with a maximum range of 28 points for the highest resolution dataset
(0.6 m/pixel). The medium resolution datasets saw a general downward trend in classi-
fication accuracies with increasing segmentation scale following the pattern observed in
the threshold-based classification where too few objects are created to produce an accurate
classification. The best overall classification accuracy was achieved using resolutions of
1 and 2.5 m/pixel with average accuracies of 88 and 86% (Table 2), respectively, in the
coastal zone. Kappa coefficients were highest among the 1m/pixel resolution dataset up to
a segmentation scale parameter of 400. High kappa coefficients were also produced for the
2.5 m/pixel resolution dataset at a segmentation scale parameter of 100 with reduced but
consistent values thereafter. Conversely, at the highest resolution available (0.6 m/pixel),
classification accuracies and kappa coefficients were relatively low at segmentation scales
of 100, 200, 300, and 500.

Table 2. Supervised classifications were generated using 120 samples (40 per class) and assessed
using 200 validations points across the entire scene (upper value) and a separated 200 validations
points in the coastal zone (lower value). A total of 48 classification scenarios were generated by
modifying image resolution and segmentation scale.

Scale Segmentation ;50 550 300 400 500 600 700 800 Average Kappa
Resolution (m)

Entire Scene 6 77 8 9 76 8 88 86 81 0.43-0.83
06 Coastal Subset 60 8 8 90 76 90 8 88 84 0.54-0.85
Entire Scene 91 90 88 88 8 94 8 85 88 0.77-0.86

! Coastal Subset 90 9% 9 9 8 8 8 8 88 0.8-0.86
Entire Scene 90 8 88 8 8 8 8 8 87 0.73-0.84
20 Coastal Subset 91 8 87 8 8 8 84 83 86 0.77-0.87
Entire Scene 85 84 8 8 9 76 75 77 80 0.62-0.78
> Coastal Subset 8 8 8 79 78 77 75 75 80 0.62-0.81
Entire Scene 80 78 74 70 68 62 63 63 70 043-0.7

10 Coastal Subset 88 77 71 65 63 60 64 64 68 0.4-0.72
Entire Scene 71 61 62 54 62 62 62 50 61 0.24-0.56

% Coastal Subset 66 63 61 53 56 56 56 41 57 0.12-0.5

3.1.3. CNN

Images (0.6 and 1 m/pixel resolutions) classified using deep learning convolutional
neural networks (CNN) provided the highest classification accuracies and kappa coef-
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ficients. The CNN classifier achieved an average overall accuracy of 93% and a kappa
coefficient up to 0.93 on the 0.6 m/pixel resolution image. On the 1m/pixel resolution
image, the CNN classifier achieved an average overall accuracy of 91% with a kappa coeffi-
cient up to 0.92. Interestingly, the overall scene was classified to a higher accuracy than the
coastal zone representing a departure from the trend observed in threshold- and supervised-
based classifications. The single highest accuracies observed were when a small segmentation
scale (100) was used with a classification accuracy of 95% and 0.93 kappa coefficient.

3.2. Feature Extraction
3.2.1. Threshold-Based Classification

Segmentation scale and image resolution (i.e., object size) played a critical factor in
the percentage of line features within a given buffer size around the reference feature lines.
For nearly all resolution scenarios, the percentage of coastal feature, relative to reference,
decreased with increasing segmentation scale. Similarly, the percentage within a given
buffer size decreased with increasing image resolution (Figures 4 and 5). As a result, the
best results were achieved on very high resolution datasets with small segmentation scale
parameters (Figures 4 and 5). At a 1m buffer size, across all segmentation scales, there
was an approximately 20% improvement between the 1m/pixel resolution image and the
0.6 m/pixel resolution image.

Waterline

09

Percent in Buffer

1 2 3 4 S 6 7 8 9 10
Buffer Size (m)
—&—0.6m TH A—1mTH A—2.5mTH —&—5mTH == 10m TH —&—30m TH
—g—(0.6m 5C @—1m SC @—25mSC —@=5mSC —@— 10m 5C == 30m SC

—8—0.6m CNN —#—1m CNN

Figure 4. Percentage of waterline coastal feature that is captured by a given buffer size relative
to the reference features for all classification approaches. Presented are the averages across all
segmentation scales. Common resolutions are symbolized with the same color but are differentiated
with a triangular symbol for the threshold-based approach, a circular symbol for the supervised
classification approach, and a square symbol for the deep learning approach.
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Tundra line

3 4 S 6 7 8 9 10
Buffer Size (m)
—&—0.6m TH A—1m TH A—25mTH —&—5mTH —&— 10mTH —&—30mTH
—e—0.6m SC ®—1m SC ®—2.5mSC —e—5mSC —e—10mSC —e—30mSC

~—@—0.6m CNN ~—@—1m CNN

Figure 5. Percentage of tundra line coastal feature that is captured by a given buffer size relative
to the reference features for all classification approaches. Presented are the averages across all
segmentation scales. Common resolutions are symbolized with the same color but are differentiated
with a triangular symbol for the threshold-based approach, a circular symbol for the supervised
classification approach, and a square symbol for the deep learning approach.

The accuracy was also dependent on the coastal indicator. There was a consistent bias
where the waterline was extracted more accurately than the tundra line, particularly in
very high resolution images. In the 0.6 m/pixel image, with a scale parameter of 100, the
waterline showed a 10% higher accuracy over the tundra line across all buffer sizes. In
the best case (0.6 m/pixel image, 100 scale), the waterline was within 1m of the reference
waterline 60% of the time and the tundra line was within 1 m of the reference tundra line
50% of the time. Increasing the buffer size to 5 m, the percentages increase to 81 and 70%
for the waterline and tundra lines, respectively. Finally, 92% of the waterline and 83% of
the tundra line were within 10m of the reference feature lines.

3.2.2. Supervised Classification

The trends of increasing pixel size and segmentation scale leading to reduced feature
extraction accuracy were maintained for high resolution scenarios but there was more
variability among the very high resolution datasets. In many cases, the tundra line was
close if not better than the waterline and increasing the segmentation scale led to a slight
improvement in results. However, in the 0.6 m/pixel resolution scenario, there tended to
be large differences between the waterline and tundra lines for some segmentation scales
whereas other segmentation scales exhibited more typical behavior. For example, at a
100-segmentation scale, the 10 m buffer captured 98% of the waterline but only 40% of
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the tundra line, and at an 800-segmentation scale, the 10 m buffer captured 74% of the
waterline and 79% of the tundra line. Generally, for a given resolution and segmentation
scale, the features extracted from the image objects through supervised classification did
not perform as well as the threshold-based approach but tended not to have a bias towards
the waterline. In addition, in the 0.6 m/pixel image scenario, which provided the best
results in the threshold-based approach, did not provide consistent results. Therefore, the
best results were achieved on the 1 m/pixel resolution image with a scale parameter of
100 corresponding to 32% of the waterline and 33% of the tundra line falling within 1 m of
the reference feature lines. The 5 m buffer captured 64% of the waterline and 66% of the
buffer line while the 10 m buffer captured 77% of the waterline and 78% of the tundra line.
The tundra lines are comparable to the threshold-based approach while the waterline was
several percentage points lower on average. Further, the best of the supervised approach
was considerably less accurate than the best of the threshold-based approach.

3.2.3. CNN

For the CNN classifier scenarios (0.6, 1 m/pixel resolution, all segmentation scales),
feature extraction was over 10% more accurate on the 0.6 m/pixel image than the 1 m/pixel
image. Unlike the previous methods, a smaller segmentation scale did not lead to an
increase in feature extraction accuracy using the CNN classifier method with the best
results achieved with a segmentation scale of 600. Further, the tundra line was extracted
more than 10% more accurately than the waterline. In the best case, the waterline was
extracted to within 1m of the reference line 42% of the time while the tundra line was
extracted to within 1m of the reference line 54% of the time. Increasing the buffer size to
5 m captured 62% of the waterline and 67% of the tundra line. At a 10 m bulffer size, 75% of
the waterline and 77% of the tundra line were captured using our methods.

4. Discussion

The presented methodology provides a new approach to studying Arctic coastal ero-
sion that is highly adaptable and integrates well into automated workflows. Through
object-based image segmentation, very high resolution satellite imagery was classified with
high accuracy. Subsequently, two important coastal indicator features, the waterline and
tundra line, were extracted with encouraging results. We attribute some of the inconsis-
tencies to the complexity and variability of the coastal zone (Figure 6), which is a frequent
issue described in the coastal erosion literature [64].

Figure 7 provides an overview of the study area with the extent indicators for ar-
eas of interest highlighted in Figures 8-10. High classification accuracies were achieved,
particularly for common very high image resolutions, across all three tested classifica-
tion approaches (Figure 8, Tables 1-3), with the deep learning CNN providing the best
classifications. In all cases, the tundra and water classes were classified with very high
accuracy, but the overall accuracy was impacted by the challenges in identifying the coastal
boundary zone class, which was commonly misclassified as tundra. Further, we found
there to be a slight increase, in many cases, in classification accuracy when the assessment
area was restricted to a 200-m-wide area of the coastal zone. Due to the thermokarst lake
features covering the landscape, there is an increased number of land-water transitional
zones, which increases the prevalence of the coastal boundary zone class, resulting in more
occurrences of model confusion. Interestingly, the deep learning CNN approach saw a
small decrease in accuracy for the coastal zone assessment area, suggesting this method was
better able to classify thermokarst lake transitional zones. The difficulty of classifying the
coastal boundary zone is exemplified in B panels of Figure 8, where in low lying transitional
areas, irregular objects are produced due to local variability and introduce subjectivity in
creating reference and training data. The class transition zone between the Water class and
the Coastal boundary class can also be impacted by wave breaking [65]. We were able to
avoid misclassifications by using a low cloud cover scene, but it was common for shadows
caused by steep north facing slopes to be misclassified as the Water class, particularly
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in the threshold-based classification (Figure 8). The polycyclic retrogressive thaw slump
(Figure 8(A1-A4) and Figure 9(D1-D3)), which are unique coastal processes in the Arctic, at
Crumbling Point was particularly well identified using DL and supervised classifications
suggesting the importance of high-quality training datasets. However, due to the presence
of vegetation in stabilized areas, the RTS becomes highly ambiguous and hardly discern-
able [29], resulting in the threshold-based classification to identify unvegetated areas of the
slump, suggesting that a hierarchical approach may be able to distinguish between active
and inactive retrogressive thaw slumps.

A B

Figure 6. Sample coastal types found in the study site. (A) represents an active retrogressive thaw
slump found at the northern extent of the study site. (B) represents a stabilized retrogressive thaw
slump with a sandy exposed cliff. (C) is a coastal bluff/cliff stretch with varying heights and with
vegetation found on the cliff face. (D) shows a low-lying network of ice-wedge polygons with
thermokarst lakes in the background. (E) is a low plain coastal environment with multiple ocean-
connected channels. (F) shows a section of the study site where a sand spit has formed through
longshore transport of sediments.
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Figure 7. Study site overview map with figure inset extent indicators shown. Inset maps of Figure 8
are shown in red, Figure 9 in blue, and Figure 10 in yellow. Image is the Pléiades scene (Pléiades ©
CNES 2018, Distribution AIRBUS DS).
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A1 Manual Classification A2 Threshold Classification
Resolution: 1m, Scale: 100

A3 Supervised Classification Ad CNN Classification
Resolution: 1m, Scale: 100 Resolution: 1m, Scale: 100

WMM

Threshold Classification
Resolution: 1m, Scale: 100

Manual Classification

CNN Classification
Resolutin: 1m, Scale: 100

Figure 8. Two sample locations highlighted comparing the three classification approaches to the
reference, manual classification. (A,B) panels are denoted by red bounding boxes in the study site
overview map of Figure 7. (A) panels highlight Crumbling Point, an extensive polycyclic retrogressive
thaw slump and (B) panels highlight a complex coastal area with open ocean and protected exposures,
sandy beaches, low and high bluffs, and semi-submerged shorelines.
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Figure 9. Visual comparison of segmentation scale. Extent indicators are shown by blue boxes of
Figure 7. Highlighted areas demonstrate image objects for different coastal environments at the
smallest and largest segmentation scales used in analysis (first and second column, respectively).
The third panel of each row is an RGB visualization of the area (Pléiades © CNES 2018, Distribution
AIRBUS DS). A segmentation parameter of 100 creates many objects, representing smaller image
objects (more detailed). A segmentation parameter of 800 creates fewer, larger image objects resulting
in a more generalized classification.

0 50 100 200
Meters

Figure 10. Visual comparison of extracted coastal features to reference features. Extent indicators are
shown by yellow boxes of Figure 7. Blue lines represent the combined reference features of waterline
and tundra line where red lines represent the combined coastal features derived from rule-based
classifications. (A1-D1) panels show a sample derived from threshold-based classifications at four
locations. (A2-D2) panels show a sample derived from supervised classification at four locations.
(A3-D3) panels show a sample derived from the deep learning CNN classification at four locations.
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Table 3. CNN classifications were generated for the highest resolution images available (0.6 and
1.0 m/pixel) across the eight segmentation scales. Classification accuracies were evaluated using
the same approach as threshold and supervised classifications for the entire scene (upper value)
and coastal zone (lower value). Each confusion matrix was based on 200 validation points. Of all
classification approaches, the deep learning CNN classifier resulted in the highest accuracy and
kappa coefficients.

Scale Segmentation ;05 200 300 400 500 600 700 800 Average  Kappa
Resolution (m)
Entire Scene 95 94 95 94 92 92 93 93 93 0.88-0.93
06
Coastal Subset 91 91 9 91 91 91 90 8 91 0.84-0.87
Entire Scene 95 93 93 91 8 8 88 88 91 0.82-0.92
1
Coastal Subset 88 88 8 8 88 88 88 88 88 0.82-0.83

In segmentation-based approaches, the segmentation depends on the shape, com-
pactness, and scale parameters, which will differ based on imaging sensor, resolution,
and application [31] and is typically a practice of trial-and-error. We fixed the shape and
compactness parameters at 0.6 and 0.5, respectively, but tested eight different segmentation
scales (100, 200, 300, 400, 500, 600, 700, and 800) to determine the most appropriate image-
object size for Arctic coastal classifications. From Figure 9, we see that a small segmentation
scale (100) leads to more detail and therefore more variability, but a large segmentation
scale (800) gives a more generalized view that potentially misses key information. Broadly,
the segmentation scale did not impact classification results on very high resolution im-
agery (0.6, 1, and 2.5 m) but on high resolution imagery (5, 10, and 30 m) having a small
segmentation parameter (i.e., smaller/more objects) led to higher classification accura-
cies. In contrast, feature extraction accuracy increased with decreasing segmentation scale
because the coastal zone was made up of more image objects leading to more precision
in the location of boundaries between classes. However, small objects, particularly in
class transition zones, can be misclassified due slope shadows (Figure 9(A1-A3),(C1-C3)),
landscape complexity (Figure 9(B1-B3)), or sediment mixing (Figure 9(D1-D3)). Sediment
mixing was problematic in identifying the waterline along actively eroding coastal sections
and therefore particularly pronounced in the nearshore zone of Crumbling Point, where
large amounts of sediment in the waters led to model confusion. Along straight coastal
stretches with well-defined beach and cliff features, long linear segments (Figure 9(C1,C2))
are created where over segmentation (Figure 9(C1)) leads to misclassification but under
segmentation (Figure 9(C2)) can lead to a loss in precision of the boundary lines.

Four sample locations of feature extraction are shown in Figure 10. Blue lines represent
the reference waterline and tundra lines, and red lines represent extracted features. A and
D columns show a high and low coastal bluff coastal type, respectively, and highlight areas
of effective feature extraction where there is near exact agreement, in many cases, between
datasets and the majority within 1m accuracy. Conversely, B and C columns of Figure 10
highlight sample regions where the waterline and tundra line extraction can fall outside
an acceptable range where the tundra line is particularly subjective in column B and the
waterline in column C. However, because these environments are not actively eroding, they
are not likely to contribute to significant coastal land loss or contribute to release of organic
carbon into the ocean.

Overall, feature extraction derived from object-based classifications was effective
along coastal types with clear boundary lines but proved less effective along coasts with
low-centered ice-wedge polygon networks, intertidal zones, and low plain tundra where
there is also uncertainty in the reference dataset due to coastal interpretation. For studies
measuring coastal bluff and cliff erosion [2,3,18,47], our methods can be effectively applied.
Jones et al. [21] removed areas without exposed coastal bluffs from their analysis, further
suggesting the applicability of our methods since our buffering technique identifies areas
that are indicative of non-eroding coastlines, which can be left out of the analysis.
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Figures 4 and 5 presented small differences depending on the classification approach,
which is encouraging since very high resolution imagery has become standard for Arctic
coastal erosion studies [18,25,48,49]. We see a particularly good fit for our methods to
integrate with a novel approach introduced by Lim et al. [66] that derives very high
resolution imagery through structure-from-motion photogrammetry from imagery capture
by helicopter for Arctic coastal reconstruction introduced for measurement of wide-scale
storm impacts. Our contribution of identifying multiple coastal features is well suited for
modeling complex coastal processes and environmental forcing factors [18,50].

We suggest that, at minimum, our methods can be adopted to delineate coastal fea-
tures in the Arctic along coastal stretches with well-defined boundaries and by augmenting
with manual interpretation in areas with fuzzy boundaries, greatly improving efficiency.
Further, the creation of image objects through segmentation provides the necessary linear
features, making the manual interpretation process more streamlined. Our three methods of
image-object classification, threshold-based, supervised, and deep learning produced very
similar results at all resolutions and segmentation scales; however, each requires method
specific intervention of expert knowledge that has implications for widespread application.
The threshold values must be determined which may vary depending on satellite scene
but was effective at separating water and tundra land cover types. Encouragingly, a study
by Abdelhady et al. [65] introduced an automated way to determine threshold values in
identifying the waterline along a temperate coastal environment. The supervised and
deep learning techniques require high-quality training datasets which must be generated
by the user and will determine the quality of the classification. Significantly more train-
ing samples are required for deep learning (1000 s vs. 10 s per class) and considerably
more computation time and storage. Classifications based on training samples present
opportunities to create more information-rich classifications, and potential applications, by
introducing more classes and potentially dealing directly with problem areas by classifying
the coastal zone into subclasses. Similar work by Nitze et al. [29], where a deep learning,
segmentation-based approach for mapping retrogressive thaw slumps further recommends
the importance of pan-Arctic training data for DL-based applications. We believe a deep
learning approach augmented with expert knowledge refinements, such as thresholding,
would ultimately provide the most robust approach for wider application.

5. Conclusions

We tested three object-based classification approaches, threshold-based, supervised,
and a deep learning CNN, to understand their applicability to be integrated into an au-
tomated workflow for wide-scale measurement and monitoring of Arctic coastal change.
First, we assessed the accuracy of a classified satellite scene, representing a typical coastal
area of the Western Canadian Arctic, at multiple resolutions and varying the segmenta-
tion scale to create image-objects of multiple sizes. Next, based on the classifications, we
extracted waterline and tundra line coastal indicator features, which are linear features
typically used to measure coastal erosion, and evaluated against manually interpreted
reference features. We achieved classification accuracies up to 95% on very high resolution
versions (0.6, 1, 2.5 m/pixel) of the satellite scene with the deep learning CNN classifier
consistently providing the highest accuracies. The image resolution and segmentation scale
were influential in feature extraction accuracy which tended to favor the smallest pixel and
segmentation size because of the increased precision. The waterline and tundra lines were
extracted with similar accuracy, but the waterline tended to slightly outperform the tundra
line, likely due to their relative complexities.

Our study represents an important contribution to wide-scale, high temporal, Arctic
coastal monitoring through the development of automated workflows. A fully automated
approach may be difficult to ever achieve but we have shown at least a 50% reduction in
labor-intensive manual processing that furthers eases the burden of manual intervention
by providing homogenous vector objects. We generated multiple coastal features from very
high resolution imagery which we believe should become standard among Arctic coastal
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erosion studies to provide study-to-study comparisons but also to ensure that the most ap-
propriate feature is used for a given application. For example, when quantifying volumetric
erosion to estimate greenhouse gas release from permafrost coasts, the changes to the tun-
dra line of actively eroding coasts would be more appropriate while the waterline may be
sufficient for long-term marine transgression. Our models struggled along complex coastal
types such as low plains and wetlands without well-defined boundaries but performed
very well along coastal types with well-defined boundaries. We anticipate that further
development of a deep learning approach and introduction of additional coastal boundary
zone subclasses will lead to improvements along challenging coastal types, particularly
with advancements in high-quality training datasets. Additional investigations should look
to apply segmentation-based approaches across extensive areas of interest, over multiple
time steps, and the use of ArcticDEM [67] to better understand and quantify the volumetric
erosion of Arctic coasts and the local and global implications. Finally, while we were specifi-
cally interested in coastal classification and feature extraction accuracy to better understand
Arctic coastal dynamics and the potential impacts and drivers of climate change, but the
high accuracy achieved across the entire study site suggests that our approach could be
adapted to a range of applications specific to the Arctic that require widespread monitoring
such as the identification and evolution of retrogressive thaw slumps, thermokarst lakes,
and ice-wedge polygon networks.
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