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Abstract: A new method to classify electronic devices using a Frequency-Swept Harmonic Radar
(FSHR) approach is proposed in this paper. The FSHR approach enables us to utilize the frequency
diversity of the harmonic responses of the electronic circuits. Unlike previous studies, a frequency-
swept signal with a constant power is transmitted to Electronic Circuits Under Test (ECUTs). The
harmonic response to a frequency-swept transmitted signal is found to be distinguishable for dif-
ferent types of ECUTs. Statistical and Fourier features of the harmonic responses are derived for
classification. Later, the harmonic characteristics of the ECUTs are depicted in 3D harmonic and
feature spaces for classification. Three-dimensional harmonic and feature spaces are composed of the
first three harmonics of the re-radiated signal and the statistical or Fourier features, respectively. We
extensively evaluate the performance of our novel method through Monte Carlo simulations in the
presence of noise.

Keywords: harmonic radar; nonlinear target; electronic devices; harmonic analysis; classification;
k-nearest neighbours; Fourier analysis

1. Introduction

Harmonic radar, or nonlinear radar, is a radio frequency (RF) wave-based surveillance
technology that exploits re-radiation of RF waves at harmonic frequencies from nonlinear
targets [1,2]. Most man-made targets, such as electronic devices and mechanical metal
structures, are nonlinear targets. Mechanical metal structures contain metal–metal junc-
tions, whereas electronic devices contain nonlinear circuit components such as diodes,
semiconductors, mixers, amplifiers, transistors, etc. Both metal–metal junctions and non-
linear circuit components exhibit nonlinear current–voltage (I–V) relationships that cause
the re-radiation of RF waves at harmonic frequencies of the incident wave [3–8]. The
re-radiated RF wave from a nonlinear target depends on the harmonic characteristics of the
target, which can be utilized to detect, track, and classify this type of target using harmonic
radar [9,10]. One of the significant advantages of harmonic radar is its high clutter rejection;
it utilizes re-radiated RF waves at the harmonic frequencies of the transmitted frequency,
while echoes and clutter are due to natural obstacles which do not result in re-radiation
of RF waves at the harmonic frequencies of the transmitted signal [11,12]. In addition,
harmonic radar has the potential to yield more information about the target by exploiting
re-radiated RF signals at the harmonic frequencies of the transmitted signal with varying
power and frequency [2,9]. On the other hand, one of the main challenges in harmonic
radar is that the re-radiated signal power at the harmonic frequencies is weak, and thus
the signal-to-noise ratio (SNR) on the receiver side is low [13]. In addition, highly sensitive
components are used at the receiver, and thus the performance of the system is decreased
in the presence of Radio Frequency Interference (RFI) [14].
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Exploiting re-radiated signals at harmonic frequencies allows harmonic radar to be
used in a wide variety of applications. In agriculture, harmonic radar is employed to avoid
crop damage by insects [15–22]. Nonlinear compatible tags are placed on insects to track and
distinguish them from clutter-rich environments using harmonic radar. In the automotive
industry, nonlinear tags are mounted on automobiles and people to prevent fatal accidents
by identifying high-risk targets using harmonic radar [23]. Moreover, locating buried assets
is another application of harmonic radar. Water supplies and energy resources such as
natural gas and refined petroleum are transported through underground pipelines. It is
difficult to determine the positions of these pipelines accurately in urban areas, and thus
harmonic Radio Frequency Identification (RFID) tags are used for detecting the locations
of the complex underground pipeline network [24], minimizing accidental breakage of
pipelines during excavation. Harmonic RFID systems are applicable in these and many
other sensing applications, as they provide low self-jamming, accurate location information,
and high resistance to phase noise [25]. In addition, harmonic radar has unique usage in
security and military applications such as detecting hidden improvised explosive devices,
weapons, and other man-made objects in clutter-rich environments [4,26–28].

Detecting electronic targets is one of the most popular applications of harmonic radar.
The re-radiated signal from nonlinear devices is analyzed by transmitting different types of
waveforms to the targets. Transmitting a single-tone waveform to the device under test and
analyzing the harmonics of the fundamental frequency are commonly-used techniques in
harmonic radar [9–11,15–19,29–33]. Another method is to transmit a two-tone signal to the
targets and analyze both the harmonics and intermodulation terms of the transmitted frequen-
cies [4,10,23,33,34]. This technique allows for use of a receiver with a narrower bandwidth [5].
Furthermore, multi-tone signals can be transmitted to targets simultaneously in order to detect
and discriminate them when using a narrow-bandwidth receiver [5,11,34]. In addition, both
the magnitude and phase information are exploited using intermodulation terms, which are
helpful in determining the unambiguous range of the target [34]. A simultaneous-frequency
harmonic radar has been demonstrated in [34,35] for distinguishing two electronic targets.
Furthermore, linear frequency-modulated chirp signals [11,12,33,34,36] and stepped-frequency
pulses [11,12,33,34,37–39] have been transmitted to targets, enabling both their detection and
determination of the range to the targets. Moreover, in [40], a carrier modulation technique was
exploited to detect electronic devices remotely using harmonic radar. While the radar transmits
a single frequency, the nonlinear target emits intermodulation products of both the transmitted
frequency and the device’s emission.

Although several studies have focused on detecting, ranging, and tracking of electronic
devices, there have been only a few studies about distinguishing and classifying electronic
devices using harmonic radar. For the first time in the literature, multiple electronic devices
are characterized here as nonlinear targets with certain features using harmonic radar in
an experimental setup where targets are moved in cross and down ranges, changing the
distance to the receiving antennas [41]. Sixteen receiving antennas were used to collect
the harmonic responses of these targets in order to create different realizations. Later,
single-tone signals with varying power were transmitted to the electronic circuits under
test (ECUT) in order to distinguish and classify different types of electronic devices. In [29],
statistical features such as mean, variance, skewness, and kurtosis were introduced and
exploited to distinguish electronic devices by applying power-swept input signals. Re-
ceived powers at the second, third, and fourth harmonics were analyzed and the Euclidean
distances of the statistical features were used to measure the performance of the distin-
guishing the circuits. In [30], energy levels at the low, middle, and high frequencies of
the Fourier transformations of the received power curves at the second, third, and fourth
harmonic frequencies were exploited for classification. In [9], the received power values
at the second, third, and fourth harmonics were exploited to classify various electronic
devices using their statistical and Fourier features in the presence of noise. A linear model
was developed and employed in order to estimate the unknown deterministic vector of
parameters to be used in distinguishing ECUTs via single-tone transmission case [31]. This
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newly-developed linear model represents the measurements in terms of an observation
matrix and a deterministic vector of parameters in an analytical aspect. Furthermore, in [10],
single-tone and two-tone incident signals were transmitted to the ECUTs in order to classify
the devices using the same linear model.

Previous studies in the literature have shown that electronic devices with nonlinear
circuit components such as diodes, semiconductors, mixers, amplifiers, transistors, etc.
can be distinguished and classified by exploiting the harmonic characteristics of these
devices, which can be obtained by a harmonic radar receiving the re-radiated wave from
these targets [9,10,12,29–31,41]. In this study, we develop a novel method to classify
various electronic devices using a frequency-swept harmonic radar (FSHR) approach to
exploit frequency diversity, unlike previous studies where either power diversity or spatial
diversity was exploited. The harmonic characteristics of the ECUTs are conceived using
statistical features such as variance, skewness, and kurtosis. In addition, we derive the
Fourier features [9] in order to characterize the ECUTs.

In this paper, three types of electronic devices are classified using a FSHR approach
through simulation: a cascaded amplifier, a common emitter amplifier and a sawtooth
oscillator. Common emitter amplifiers are one of the most commonly used configuration
types in audio frequency (AF) and radio frequency (RF) applications; they both increase the
signal strength and provide 180◦ phase shifting of the input [42,43]. Cascaded amplifiers
are multi-stage systems which are used to improve the amplification and attain high gains.
Audio amplifiers and RF amplifiers, which require high gain to operate properly, consist
of cascaded systems [44]. Sawtooth oscillators are a commonly used oscillator type that
can produce sawtooth waveforms from square waves applied to the input. Electronic
systems such as control systems, automatic test equipment, and instruments use sawtooth
waveforms [45]. Circuit schematics of each type are presented in Figure 1. A set of a
large number of circuits was tested for each device type. A frequency-swept signal with
a constant power was transmitted to ECUTs and the received signal powers at the first,
second, and third harmonics were analyzed using simulations, as illustrated in Figure 2.
The frequency of the transmitted signal with a constant power value was swept across a
wide bandwidth. A signal with the frequency values in this specified range was transmitted
to the ECUTs sequentially. Afterward, the statistical and Fourier features of the harmonic
responses were analyzed. A kNN (k-Nearest Neighbors) algorithm was utilized to classify
the ECUTs. We performed realistic Monte Carlo simulations with additive noise.

The organization of this paper is as follows. In Section 2, the proposed method and
background information of this study are briefly explained. In Section 3, the features
that we exploited to characterize the harmonic responses of the nonlinear circuits are
described. In Section 4, the simulation setup, design of the ECUTs, and their simulated
harmonic responses are presented. In Section 5, the classification performance analysis
and confusion matrices used to evaluate the effectiveness of the proposed method are
presented. In addition, a performance comparison with other relevant studies in the
literature is provided. Finally, in Section 6, concluding remarks are provided and future
works addressed.
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(a) Cascaded amplifier

(b) Common emitter amplifier

(c) Sawtooth oscillator

Figure 1. Schematics of the ECUTs.
Figure 1. Schematics of the ECUTs.
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Figure 2. Illustration of the Frequency-Swept Harmonic Radar (FSHR) approach.

2. Frequency-Swept Harmonic Radar Approach

In harmonic radar phenomena, after a transmitted wave hits a nonlinear target, re-
radiation occurs due to the currents induced over the nonlinear target at the harmonic
frequencies of the incident wave. We simulate the received signals at the harmonic frequen-
cies based on the currents induced at the harmonic frequencies of the transmitted signal.
The re-radiated signal from a nonlinear target includes both the transmitted frequency and
integer multiples of the fundamental frequency. On the other hand, the response of a linear
target includes only the fundamental frequency components [11]. This is the main starting
point for harmonic radar studies. The re-radiated signal from a nonlinear device, in other
words, the harmonic response, is represented by a Taylor series model [2,3,41]:

srr(t) =
∞

∑
p=1

apsp
in(t) = a1sin(t) + a2s2

in(t) + a3s3
in(t) + . . . (1)

where srr denotes the re-radiated signal from the nonlinear target, sin represents the incident
signal to the target, the aps are the complex power series coefficients, the linear response of
the target is a1, and the nonlinear coefficients of the harmonics are {a2, a3, . . .}.

In this study, the nonlinear characteristics of the circuits are captured by sweeping the
frequency of the transmitted signal within a determined range which is a novel approach.
Because the re-radiated signals at higher-order harmonic frequencies are weak, the resulting
signals of first three harmonics are utilized to classify the ECUTs.

A frequency-swept zero-phase input signal can be expressed as

sin(t) = x0 sin(wit), i = 1, 2, . . . , M (2)

where x0 is the magnitude of the transmitted signal and wi is the instantaneous transmit-
ted frequency. It is important to note that M frequencies are transmitted to the targets
sequentially, not simultaneously with a predetermined step size.

The re-radiated signal from the target can be obtained by substituting (2) into (1).
The re-radiated signals of the first, second, and third order harmonics are approximately
equal to

srr(t) ≈ a1x0 sin(wit) + a2[x0(sin(wit))]
2

+a3[x0(sin(wit))]
3

srr(t) ≈ a1x0 sin(wit) + a2
x2

0
2
− a2

x2
0 cos(2wit)

2

+a3
3x3

0 sin(wit)
4

− a3
x3

0 sin(3wit)
4

(3)

where i = 1, 2, . . . , M.
The re-radiation of signals at the harmonics of the transmitted frequency is due to

the harmonic characteristics of the target nonlinear devices. Different types of electronic
devices have distinctive harmonic characteristics, whereas similar types of devices have
similar harmonic characteristics. These unique characteristics of electronic devices are
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essential to devising descriptive features in order to classify them. Thus, exploiting the
harmonics of re-radiated signals enables us to classify various electronic circuits.

3. Features Used for Target Classification

The harmonic characteristics of the ECUTs were gathered by transmitting frequency-
swept signals with a constant power to each of the electronic circuits under test. The
received powers at the first three harmonic frequencies were then utilized to devise statisti-
cal and Fourier features in order to classify the devices.

3.1. Statistical Features

Statistical features are one of the feature sets exploited to classify electronic circuits
under test. The statistical features utilized in this study were the variance, skewness, and
kurtosis of the received power curves shown in Figures 3–5. These features describe the
shape of the distribution of power curves and provide distinctive properties to classify
various electronic circuits. Each of the received power curves at the first, second, and third
harmonics, provided in Figures 3–5, is represented with a data vector x = [x1, x2, . . . , xM],
where M is the last frequency value within the predetermined transmitted frequency range.
Here, x1 indicates the first output power value corresponding to the first frequency value
within range, x2 shows the second output power corresponding to the second frequency
transmitted within range, etc.

The respective variance, skewness, and kurtosis of data vector x are expressed below [46]:

σ2 =
1

M− 1

M

∑
i=1

(xi − µ)2; S =
1
M

M
∑

i=1
(xi − µ)3

σ3 ; K =
1
M

M
∑

i=1
(xi − µ)4

σ4 (4)

where µ and σ denote the mean and standard deviations of data vector x, respectively. We
measure the dispersion of the data via the variance, the asymmetry of the distribution
around a sample mean via the skewness, and the peak sharpness and tail length of the data
via the kurtosis. In previous studies, these statistical features have proven to be useful in
characterize these kinds of data, namely, the power curves of each harmonic [9,10].

The statistical features mentioned above were used to analyze harmonic characteris-
tics of the ECUTs in terms of the re-radiated signal power of various transmitted signal
frequencies. Exploiting features which are related to the frequency content has the potential
to distinguish the ECUTs [9]. We investigate the aforementioned feature set below in
Section 3.2.

3.2. Fourier Features

Here, the statistical features described in Section 3.1 are utilized to depict the dis-
tribution of the re-radiated signal power due to various transmitted signal frequencies.
However, the information corresponding to the frequency content of these curves is lost
when using statistical features. The frequency content of the re-radiated signal power
curves in Figures 3–5 provides us with additional useful information about the distinctive
harmonic characteristics of the ECUTs, as evidenced by the scatter plots [9]. We obtain
the relevant frequency content of re-radiated signal power curves via Fourier analysis in
order to characterize and classify different types of electronic circuits by analyzing the
Fourier features of the received powers shown in Figures 3–5. These power curves are
considered as distributions. It is assumed that the re-radiated signal power values are
measured at times with different incident signal frequencies. Discrete Fourier Transform
(DFT) is applied to describe these distributions in the frequency domain. The DFT of the
data vector x = [x1, x2, . . . , xM] representing each received power curve in Figures 3–5 is
calculated as
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X(k) =
M

∑
n=1

xne−j2π(k−1)(n−1)/M (5)

where k = 1, . . . , M. M indicates the length of the determined frequency range.
The frequency content obtained by Fourier transform is exploited to classify the ECUTs.

We sub-divide the Fourier transform of the received power curves in the low, middle, and
high frequency ranges in order to calculate the energy values at each of these frequency
levels. This feature indicates how much of the total energy is at the relevant frequency level,
and provides a distinctive characteristic of the ECUTs.
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4. Simulations

Three different classes of electronic devices, namely, a cascaded amplifier, common
emitter amplifier and sawtooth oscillator, were designed in order to analyze the perfor-
mance of the proposed method. The main nonlinear circuit component that causes harmonic
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re-radiation in these electronic circuits is the Bipolar Junction Transistor (BJT). The received
signal powers at the harmonics were collected using a Harmonic Balance simulator tool
in the Cadence AWR Microwave Office Program. AWR enabled us to gather harmonic
responses, as would be the case in a real life scenario. Therefore, real-life issues such as
the coupling between the elements of the ECUTs and other possible sources of nonlinear
responses were all collectively and intrinsically present in the responses that we analyze
here. Antennas and free space propagation were not considered in the simulation setup.
However, the features in the proposed method do not depend on antennas or free space
propagation in the proposed scheme. Although this technique is demonstrated here with
certain classes of electronic circuits, it can be utilized in other classes of electronic circuits
(devices) that cause harmonic re-radiation upon a transmitted signal.

Schematics of each class of electronic circuits under test are presented in Figure 1. We
created a data set of 100 circuits for each 3 different circuit types using Swept Variable
Control (SWPVAR) in the AWR Microwave Office Program. The values of randomly
selected components were swept to create a set of different circuits for each device type.
The device types and their variations were chosen randomly, as the devices to be detected
and classified in real life will not be known. While the purpose here was only to collect
harmonic responses from all sets of the circuits, this study can be applied to any type of
nonlinear circuit.

A 10 dBm of constant input power with a frequency-swept signal was transmitted
to the nonlinear electronic circuits. We swept the input frequency from 1000 MHz to
10,000 MHz in 90 MHz steps to observe the nonlinear characteristics of the ECUTs. In
this study, both the power of the transmitted signal and operating frequency range were
arbitrarily chosen. However, the proposed method can be implemented using any input
power and frequency range. The simulated received powers at the first, second, and
third harmonics with respect to varying input frequency are presented in Figures 3–5.
The received powers in Figures 3–5 are based on noise-free received harmonic signals.
However, in the simulations used for performance analysis, complex white Gaussian noise
(CWGN) was added to the received harmonic signals. The feature sets, which are discussed
in Section 3, were extracted in order to create a data set, then exploited to classify the ECUTs
based on the received harmonic signals embedded in the CWGN.

5. Simulation Results and Performance Analysis

In this section, we provide the simulation results and performance evaluation of
the proposed method for classifying electronic devices. The results are analyzed in two
subsections for each of the statistical and Fourier features of the received power curves at
the first three harmonics. A kNN classifier was used to classify the electronic circuits in
both subsections. kNN [47] is based on finding the k nearest neighbors by computing the
Euclidean distances between the test and training data, which is a widely used and easily
applied method in kNN algorithm. According to the shortest Euclidean distances, test data
were assigned to one of the three types of electronic circuits. The received power data were
collected for a total number of 300 different circuits, with 100 circuits in each device type
presented in Figure 1.

Because harmonic radar has the advantage of high clutter rejection and exploits har-
monic frequencies over the fundamental frequency, only a thermal noise effect is observed,
rather than the more compound noise effect observed in linear radar. Accordingly, com-
plex white Gaussian noise (CWGN) was added to the simulated received signals in order
to to analyze the effectiveness of the proposed method for real life scenarios. Here, we
present the performance evaluation of the proposed method with scatter plots, confusion
matrices, and classification performance plots of each feature set with varying SNR values.
Classification performance plots with respect to varying SNR values are presented for
both the statistical and Fourier feature sets in the associated subsections. All performance
evaluations were conducted through Monte Carlo simulations. The classification perfor-
mances of the harmonics and features were analyzed individually in order to obtain a
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clearer understanding of the capability of separate harmonics by not placing all of the
features in a single pool.

5.1. Statistical Feature Results

In this section, the statistical features of the received signals discussed in Section 3.1 are
exploited to classify electronic targets. The variance, skewness, and kurtosis of the received
signal power curves, shown in Figures 3–5, are utilized as the features in a 3D harmonic
space. We define the 3D harmonic space with first, second, and third order harmonics as in
Figures 6 and 7. The scatter plots in Figures 6 and 7 present the variance, skewness, and
kurtosis data of the first, second, and third harmonics of the ECUTs with noise levels of
SNR = 2 dB and SNR = 14 dB, respectively. It can be seen that the data points in Figure 7
are well clustered compared to the ones in Figure 6 due to the increased SNR level.
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5.1. Statistical Feature Results234
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exploited to classify electronic targets. Variance, skewness and kurtosis of the received signal power236
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Figure 6. Scatter plots of variance, skewness, and kurtosis data in 3D harmonic space, SNR = 2 dB.
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Figure 7. Scattered plots of variance, skewness and kurtosis data in 3D harmonic space, SNR=14 dB.

harmonic space with first, second, and third order harmonics as in Figure 6 and Figure 7. Scattered238

plots in Figure 6 and and Figure 7 present the variance, skewness and kurtosis data of first, second239

and third harmonics of the ECUTs with noise levels of SNR=2 dB and SNR=14 dB, respectively. One240

can notice that the data points in Figure 7 are well clustered compared to the ones in Figure 6 due to241

increased SNR level.242

Table 1. Confusion matrices for statistical features in first, second, and third harmonic space for SNR=8
dB.

SNR = 8 dB

Variance

Device 1 Device 2 Device 3
Device 1 100% 0% 0%
Device 2 0% 100% 0%
Device 3 0% 0% 100%

Skewness

Device 1 Device 2 Device 3
Device 1 74% 25.8% 0.2%
Device 2 19.1% 80.7% 0.2%
Device 3 0% 0% 100%

Kurtosis

Device 1 Device 2 Device 3
Device 1 88.7% 9.8% 1.5%
Device 2 13.8% 84.3% 1.9%
Device 3 0.1% 0% 99.9%

We perform the 3-nearest neighbor algorithm to classify the ECUTs, which are represented in243

3D harmonic space by variance, skewness and kurtosis of received signal power curves of first three244

harmonics with respect to the transmitted frequency. We present classification performance via245

confusion matrices, which is available in Table 1 for a noise level of SNR=8 dB. In this manuscript,246

we only present confusion matrices for the noise level of SNR=8 dB, however, it is observed that the247

confusion matrices for each statistical feature show successful classification performances at various248

SNR levels. Thus, at various SNR levels, the performance results of 3-nearest neighbor classification249

via statistical features (variance, skewness, and kurtosis) of received signal power curves of first three250

harmonics is plotted in Figure 8. The percentage of the classification performance in Table 1 and251

Figure 8 are calculated by dividing the number of true positives in each circuit type to the total number252

of ECUTs. Variance of the harmonic power curves has the highest classification performance. It is also253

observed that the classification performances for skewness and kurtosis data increase with increasing254

SNR levels as expected. One can observe that the classification performance for skewness data is better255

than kurtosis data at low SNR values. However, the classification performance of kurtosis data is256

better than skewness data at high SNR values.257

In addition, a 3D statistical feature space of variance, skewness and kurtosis is devised as in258

Figure 9. The scattered plots in Figure 9 provide first, second and third harmonics of the statistical259

Figure 7. Scatter plots of variance, skewness, and kurtosis data in 3D harmonic space, SNR = 14 dB.

We used the 3-nearest neighbor algorithm to classify the ECUTs, which are represented
in 3D harmonic space by the variance, skewness, and kurtosis of the received signal power
curves of the first three harmonics with respect to the transmitted frequency. Here, we
present the classification performance via confusion matrices, which are shown in Table 1
for a noise level of SNR = 8 dB. In this manuscript, we only present confusion matrices for
a noise level of SNR = 8 dB; however, it can be observed that the confusion matrices for
each statistical feature show successful classification performances at various SNR levels.
Thus, at various SNR levels the performance results of 3-nearest neighbor classification via
statistical features (variance, skewness, and kurtosis) of the received signal power curves of
first three harmonics is plotted in Figure 8. The percentage of the classification performance
in Table 1 and Figure 8 are calculated by dividing the number of true positives in each
circuit type to the total number of ECUTs. The variance of the harmonic power curves
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has the highest classification performance. It is further observed that the classification
performance for skewness and kurtosis data increases with increasing SNR levels, as
expected. It can be seen that the classification performance of the skewness data is better
than the kurtosis data at low SNR values. However, the classification performance of the
kurtosis data is better than the skewness data at high SNR values.

Table 1. Confusion matrices for statistical features in first, second, and third harmonic space for
SNR = 8 dB.

SNR = 8 dB

Variance

Device 1 Device 2 Device 3

Device 1 100% 0% 0%

Device 2 0% 100% 0%

Device 3 0% 0% 100%

Skewness

Device 1 Device 2 Device 3

Device 1 74% 25.8% 0.2%

Device 2 19.1% 80.7% 0.2%

Device 3 0% 0% 100%

Kurtosis

Device 1 Device 2 Device 3

Device 1 88.7% 9.8% 1.5%

Device 2 13.8% 84.3% 1.9%

Device 3 0.1% 0% 99.9%
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Figure 9. Statistical feature space representation of second and third harmonics data, SNR=2 dB.
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One can observe that scattered data of different classes of ECUTs in Figure 9 are well clustered.261

However, it is necessary to perform the classification of ECUTs through the knn algorithm, which we262

used above, in order to assess their effectiveness of the aforementioned representation in 3D statistical263

feature space in a quantitative manner.264

Table 2. Confusion matrices for each harmonic in 3D statistical space for SNR=8 dB.

SNR = 8 dB

2nd Harmonic

Device 1 Device 2 Device 3
Device 1 54.8% 40.2% 5%
Device 2 31.3% 67.8% 0.9%
Device 3 0.5% 0.3% 99.2%

3rd Harmonic

Device 1 Device 2 Device 3
Device 1 83.3% 15.5% 1.2%
Device 2 14.6% 77.2% 8.2%
Device 3 0.7% 2.9% 96.4%

The performance assessment for the classification of ECUTs, which are represented in 3D statistical265

feature space, with the 3-nearest neighbor algorithm is presented in Table 2 and Figure 10. The data266

for second and third harmonics are presented in Table 2 and Figure 10 since harmonic frequencies267

of the transmitted signal are of interest more in harmonic radar phenomena. Namely, Table 2 shows268

the confusion matrix results for the second and third harmonic received signals with a noise level of269

Figure 8. Classification performance of the statistical features for varying SNR values.

In addition, a 3D statistical feature space of variance, skewness, and kurtosis is shown
in Figure 9. The scatter plots in Figure 9 provide the first, second, and third harmonics
of the statistical features. We present scatter plots with a noise level of SNR = 2 dB, as
before, for comparison purposes. It can be seen that the scattered data of different classes
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of ECUTs in Figure 9 are well clustered. However, it is necessary to perform classification
of ECUTs through the same algorithm used above in order to assess the effectiveness of the
aforementioned representation in 3D statistical feature space in a quantitative manner.

The performance assessment using the 3-nearest neighbor algorithm for the classi-
fication of the ECUTs represented in 3D statistical feature space is presented in Table 2
and Figure 10. The data for the second and third harmonics are presented in Table 2 and
Figure 10, as the harmonic frequencies of the transmitted signal are of greater interest in
harmonic radar phenomena. Specifically, Table 2 shows the confusion matrix results for
the second and third harmonic received signals with a noise level of SNR = 8 dB. It can be
seen from Table 2 that third harmonic in the variance, skewness, and kurtosis feature space
yields better performance than the second harmonic. In Figure 10, the classification perfor-
mance for the second and third harmonic data with varying SNR values is presented. The
classification performance improves with increasing SNR, as expected. It can be observed
that the classification performance of the third harmonic data is higher than that of second
harmonic data. The classification performance for both second and third harmonic data is
above 95% at high SNR values, i.e., above 12 dB.
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SNR=8 dB. One can observe in Table 2 that third harmonic in variance, skewness and kurtosis feature270

space yields better performance than second harmonic. In Figure 10, the classification performance for271

second and third harmonic data with varying SNR values is presented. The classification performance272

is improving with the increasing SNR as expected. It is observed that the classification performance of273

the third harmonic data is higher than that of second harmonic data. The classification performance274

for both 2nd and 3rd harmonic data is above 95% at high SNR values, i.e. above 12 dB.

Figure 10. Classification performance of the harmonics in statistical feature space for varying SNR
values.
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It is also observed that classification performance of the data in harmonic space, which is presented276

in Table 1 and Figure 8, are better than the ones in statistical space, which are presented in Table 2 and277

Figure 10, at both high and low SNR levels. Thus, in this study, we observe that exploiting the statistical278

data in 3D harmonic space gives better results rather than the statistical data of each harmonic alone279

by using the FSHR approach.280

In addition, we compare the classification performance with existing studies in the literature.281

There are two main relevant studies that exploits harmonic radar concept to classify electronic devices.282

First, in [41] classification performance of five electronic devices is presented as in Table 3. In [41],283

received powers with respect to frequency are collected by deploying sixteen receive antennas to284

obtain different realizations from different angles. Statistical features such as mean, standard deviation,285

minimum and maximum values of the received signal powers are derived and kNN algorithm is used286

to classify the targets.

Table 3. Classification performance of five electronic targets in [41].

Device 1 2 3 4 5
Mean 100% 99.4% 88.7% 99% 89.6%

Std. Dev. 0% 1.1% 4.6% 1.4% 4.8%
Min 100% 95.2% 73.8% 92.9% 71.4%
Max 100% 100% 100% 100% 100%

287

Later, in [9], electronic circuits are classified by exploiting higher order statistical features of the288

received harmonic power curves of received signals due to single-tone power swept transmitted signals.289

In [9], instead of using multiple receiver antennas, which provides spatial diversity, a single-tone power290

swept signal is transmitted to the electronic devices under test in order to exploit power diversity,291

which is essential to characterize I-V relation. In [9], classification performance of three types of292

electronic devices is presented as in Figure 11.293

Unlike [41] and [9], frequency swept signals are transmitted to the ECUTs in this study, and294

exploit the harmonic responses based on frequency diversity rather than spatial and power diversity295

Figure 10. Classification performance of the harmonics in statistical feature space for varying
SNR values.
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It is further observed that the classification performance of the data in harmonic
space, presented in Table 1 and Figure 8, is better than the performance in statistical space,
presented in Table 2 and Figure 10, at both high and low SNR levels. Thus, in this study,
we observe that exploiting the statistical data in 3D harmonic space provides better results
compares to the statistical data of each harmonic alone when using the FSHR approach.

Table 2. Confusion matrices for each harmonic in 3D statistical space for SNR = 8 dB.

SNR = 8 dB

2nd Harmonic

Device 1 Device 2 Device 3

Device 1 54.8% 40.2% 5%

Device 2 31.3% 67.8% 0.9%

Device 3 0.5% 0.3% 99.2%

3rd Harmonic

Device 1 Device 2 Device 3

Device 1 83.3% 15.5% 1.2%

Device 2 14.6% 77.2% 8.2%

Device 3 0.7% 2.9% 96.4%

In addition, we compared the classification performance with existing studies in the
literature. There are two main relevant studies that exploit the harmonic radar concept to
classify electronic devices. First, in [41], the classification performance of five electronic
devices was presented as in Table 3. In [41], received powers with respect to frequency
were collected by deploying sixteen receive antennas to obtain different realizations from
different angles. Statistical features such as mean, standard deviation, and the minimum
and maximum values of the received signal powers were derived and a kNN algorithm
was used to classify the targets.

Table 3. Classification performance of five electronic targets in [41].

Device 1 2 3 4 5

Mean 100% 99.4% 88.7% 99% 89.6%

Std. Dev. 0% 1.1% 4.6% 1.4% 4.8%

Min 100% 95.2% 73.8% 92.9% 71.4%

Max 100% 100% 100% 100% 100%

Later, in [9], electronic circuits were classified by exploiting higher order statistical
features of the received harmonic power curves of signals re-received from to single-tone
power-swept transmitted signals. In [9], instead of using multiple receiver antennas,
which provides spatial diversity, a single-tone power-swept signal was transmitted to
the electronic devices under test in order to exploit power diversity, which is essential to
characterize the I–V relation. In [9], classification performance of three types of electronic
devices is presented as in Figure 11.

Unlike [9,41], in this study frequency-swept signals were transmitted to the ECUTs,
and the harmonic responses were exploited based on frequency diversity, rather than
spatial or power diversity as in [9,41], respectively. It can be seen that the classification
performance of the statistical features, such as variance, skewness, and kurtosis, in 3D
harmonic space is improved here with respect to the results in [9], particularly at low SNR
values, as shown in Figures 8 and 11a.
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Figure 12. Scattered plots of Fourier features in 3D harmonic space, SNR=2 dB.

The performance assessment for the classification of ECUTs, which are represented via Fourier309

features in 3D harmonic space as in Figure 12 and Figure 13, with the 3-nearest neighbor algorithm is310

presented in Table 4 and Figure 15. In Table 4, the confusion matrices for SNR=8 dB data is presented311

that Fourier features at low, mid, and high frequency levels in first, second and third harmonic space312

Figure 11. Classification performance presented in [9]: (a) Classification performance via statistical
features [9] and (b) classification performance via each harmonic [9].

5.2. Fourier Feature Results

In this section, we present the classification performance of ECUTs based on the Fourier
features defined in Section 3.2. The energy values of the Fourier transforms in terms of total
energy at different frequency levels were utilized to classify the electronic circuits under
test. The whole frequency range of the Fourier transform of the received power values
were divided into three equally sized sub-bands. Fourier features indicating how much
of the total energy of the Fourier transform was in low, middle, and high frequency levels
were obtained. Scattered data at different frequency levels represented in 3D harmonic
space with SNR levels of 2 dB and 14 dB, respectively, are presented in Figures 12 and 13. In
Figures 12 and 13, it can be clearly observed that the scattered data reveal better clustering
as SNR increases.

The performance assessment for the classification of ECUTs with the 3-nearest neighbor
algorithm, represented via Fourier features in 3D harmonic space as in Figures 12 and 13,
is presented in Table 4 and Figure 14. In Table 4, the confusion matrices for SNR = 8 dB
data are presented, indicating that the Fourier features at low, middle, and high frequency
levels in first, second and third harmonic spaces have similar classification performance.
However, it can be seen that the performance at low and middle frequencies is slightly
better than at the higher frequency.
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(a) Low frequency data (b) Mid frequency data (c) High frequency data

Figure 13. Scattered plots of Fourier features in 3D harmonic space, SNR=14 dB.

indicate similar classification performance. However, one can observe that low and mid frequency313

performances are slightly better than those at high frequency.314

Table 4. Confusion matrices for Fourier features in first, second and third harmonic space for SNR=8
dB.

SNR = 8 dB

Low Frequency

Device 1 Device 2 Device 3
Device 1 63.6% 36.2% 0.2%
Device 2 40.5% 59.3% 0.2%
Device 3 1% 0.2% 98.8%

Mid Frequency

Device 1 Device 2 Device 3
Device 1 63.4% 36.3% 0.3%
Device 2 39% 60.3% 0.7%
Device 3 1.1% 0.4% 98.5%

High Frequency

Device 1 Device 2 Device 3
Device 1 60.1% 36.9% 3%
Device 2 44.5% 52.4% 3.1%
Device 3 9.3% 5.8% 84.9%

Classification performance via exploiting Fourier features of data for varying SNR values is315

presented in Figure 14. Figure 14 shows that low frequency Fourier feature yields better classification316

performance than other frequency levels. Besides, low and mid frequency Fourier features in first,317

second and third harmonic space show similar performance at higher SNR values.

Figure 14. Classification performance of the Fourier features in harmonic space for varying SNR values.

Figure 13. Scatter plots of Fourier features in 3D harmonic space, SNR = 14 dB.

Table 4. Confusion matrices for Fourier features in first, second, and third harmonic spaces for
SNR = 8 dB.

SNR = 8 dB

Low Frequency

Device 1 Device 2 Device 3

Device 1 63.6% 36.2% 0.2%

Device 2 40.5% 59.3% 0.2%

Device 3 1% 0.2% 98.8%

Mid Frequency

Device 1 Device 2 Device 3

Device 1 63.4% 36.3% 0.3%

Device 2 39% 60.3% 0.7%

Device 3 1.1% 0.4% 98.5%

High Frequency

Device 1 Device 2 Device 3

Device 1 60.1% 36.9% 3%

Device 2 44.5% 52.4% 3.1%

Device 3 9.3% 5.8% 84.9%

Classification performance when exploiting Fourier features of the data is presented
in Figure 14 for varying SNR values. Figure 14 shows that low-frequency Fourier features
yield better classification performance than other frequency levels. In addition, low and
middle frequency Fourier features in the first, second, and third harmonic spaces show
similar performance at higher SNR values.

Moreover, a 3D space of the Fourier features was defined with each harmonic power
curve represented in this Fourier feature space in order to classify the ECUTs via the
3-nearest neighbor algorithm. The scattered data for the received signal harmonic power
curves at SNR = 2 dB and SNR = 14 dB, respectively, are presented in Figures 15 and 16.
It is notable that in this Fourier feature space the scattered data reveal good clustering as
SNR increases.
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Moreover, a 3D space of Fourier features is defined and each harmonic power curve is represented318

in this Fourier feature space to perform the classification of ECUTs with the 3-nearest neighbor319

algorithm. The scattered data for the received signal harmonic power curves at SNR=2 dB and SNR=14320

dB are presented in Figure 15 and Figure 16, respectively. It is also notable in this Fourier feature space321

that scattered data reveal good clustering as SNR increases.

(a) 2nd harmonic data (b) 3rd harmonic data

Figure 15. Fourier feature space representation of second and third harmonics data, SNR=2 dB.

(a) 2nd harmonic data (b) 3rd harmonic data

Figure 16. Fourier feature space representation of second and third harmonics data, SNR=14 dB.
322

The performance analysis of classification of ECUTs with Fourier feature space is presented as a323

confusion matrix at SNR=8 dB and a chart for varying SNR values in Table 5 and Figure 17, respectively.324

In Figure 17, it is observed that performance for second harmonic reaches 70% maximum while third325

harmonic performance approaches 100% with increasing SNR values. Even though the classification326

performance of the third harmonic shows better results than second harmonic in simulations, the327

SNR value of the third harmonic might be observed much lower than the one of second harmonic.328

Weak signal return is a common drawback in harmonic radar applications. However, highly sensitive329

receivers may overcome this issue.

Table 5. Confusion matrices for the harmonics in the Fourier feature space for SNR=8 dB.

SNR = 8 dB

2nd Harmonic

Device 1 Device 2 Device 3
Device 1 50.8% 47.3% 1.9%
Device 2 47.5% 47.8% 4.7%
Device 3 4.7% 7.1% 88.2%

3rd Harmonic

Device 1 Device 2 Device 3
Device 1 48.5% 39.9% 11.6%
Device 2 36.3% 61.4% 2.3%
Device 3 9.4% 2.7% 87.9%

330

Figure 15. Fourier feature space representation of second and third harmonics data, SNR = 2 dB.
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Weak signal return is a common drawback in harmonic radar applications. However, highly sensitive329
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Figure 16. Fourier feature space representation of second and third harmonics data, SNR = 14 dB.



Remote Sens. 2022, 14, 2953 16 of 20

The performance analysis of ECUT classification via Fourier feature space is presented
as a confusion matrix at SNR = 8 dB and a chart for varying SNR values in Table 5 and
Figure 17, respectively. From Figure 17, it can be observed that performance for the second
harmonic reaches a maximum of 70%, while performance for the third harmonic approaches
100% with increasing SNR values. Even though the classification performance of the third
harmonic shows better results than the second harmonic in our simulations, the observed
SNR value of the third harmonic might be much lower than that of the second harmonic, as
weak signal return is a common drawback in harmonic radar applications; however, highly
sensitive receivers can overcome this issue.

Table 5. Confusion matrices for the harmonics in the Fourier feature space for SNR = 8 dB.

SNR = 8 dB

2nd Harmonic

Device 1 Device 2 Device 3

Device 1 50.8% 47.3% 1.9%

Device 2 47.5% 47.8% 4.7%

Device 3 4.7% 7.1% 88.2%

3rd Harmonic

Device 1 Device 2 Device 3

Device 1 48.5% 39.9% 11.6%

Device 2 36.3% 61.4% 2.3%

Device 3 9.4% 2.7% 87.9%
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Figure 17. Classification performance of the harmonics in Fourier feature space for varying
SNR values.

The frequency content of harmonic power curves was previously utilized to classify
ECUTs in [9]. In [9], the classification performance of ECUTs with Fourier features is
presented as in Figure 18. In comparison with Figure 14, in this study we found performance
improvement at SNR = 2 dB for the classification of ECUTs via low, middle, and high
frequency Fourier features. However, the classification performance using harmonics in
Fourier feature space is better in [9].

Table 6 provides the classification performance results for harmonic and feature spaces
at SNR = 8 dB. According to Table 6, statistical features show better classification perfor-
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mance than Fourier features in 3D harmonic space at SNR = 8 dB. In addition, the third
harmonic yields better results than the second harmonic in both statistical and Fourier
feature spaces at SNR = 8 dB.
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Figure 18. Classification performance via Fourier features in [9]: (a) classification performance via
Fourier features for each frequency level in harmonic space [9] and (b) classification performance via
Fourier features for each harmonic [9].

Table 6. Comparison table for all classification performances at SNR = 8 dB.

SNR = 8 dB

Harmonic Space

Variance 100%

Skewness 84.90%

Kurtosis 90.97%

Low Frequency 73.90%

Mid Frequency 74.07%

High Frequency 65.80%

Statistical Feature Space Fourier Feature Space

2nd Harmonic 73.93% 62.27%

3rd Harmonic 85.63% 65.93%

In real-life scenarios, harmonic signals may occur due to either nonlinear targets or
nonlinear components in the transmitter and receiver. It is critical to acquire harmonic
signals only from the ECUTs in order to obtain a reliable classification. Thus, high and
low pass filters should be utilized accordingly in the transmitter and receiver during any
experimental study [5,11,32,41].

6. Conclusions

In this article, a novel method for classifying non-linear electronic circuits is presented.
Various types of electronic circuits such as cascaded amplifiers, common emitter amplifiers,
and sawtooth oscillators are classified using a Frequency-Swept Harmonic Radar (FSHR)
approach. Unlike prior studies, signals with constant power are sequentially transmitted
to the Electronic Circuits Under Test (ECUT) at frequency values which are swept across
a wide range. The first, second, and third harmonic responses of the ECUTs are collected
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to derive statistical and Fourier features, and a k-Nearest Neighbors (kNN) algorithm is
utilized to classify the ECUTs. Scatter plots of the harmonic responses are derived in both
feature space and harmonic space and for different SNR values.

The nonlinear characteristics of each ECUT were captured by statistical features such
as the variance, skewness, and kurtosis of the received powers at the first three harmonic
frequencies. These statistical features are useful for characterizing the received signal power
curves at each harmonic, which are unique for each type of ECUT. In addition, Fourier
features provide the frequency content of the received powers at harmonic frequencies, and
can thus be utilized to characterize the ECUTs. The energy values of the Fourier transform
at different frequency levels of the received powers are assessed at the first three harmonic
frequencies. Fourier features, which indicate how much of the total energy is at the relevant
frequency level, are devised as distinguishing features as well.

Through Monte Carlo simulations, we apply complex white Gaussian noise (CWGN)
to the harmonic responses of the ECUTs for performance assessment of the FSHR approach
in real life scenarios. The classification performance of both statistical and Fourier features
is presented with confusion matrices and correct classification rates with varying SNR
values. We observed that the proposed techniques using frequency-swept transmitted
signals are promising for classifying nonlinear electronic circuits using harmonic radar.
However, classification of ECUTs via harmonic radar is an emerging technique that requires
broader attention in research studies. Therefore, a brief comparison between the proposed
method and previous methods of nonlinear electronic circuit classification using harmonic
radar found in the literature is presented in this article.

Our future work plans include transmitting different types of waveforms to the
electronic circuits. In addition, our research study into acquiring the harmonic data of
electronic devices using an experimental setup to test and validate our approach with
real data continues. The present study can represent an inspiring reference for other
researchers to further analyze the classification performance of nonlinear electronic devices
with different features and classification techniques in order to enhance the classification
performance in future work.
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