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Abstract: Tidal wetlands, widely considered the most extensive reservoir of soil organic carbon
(SOC), can benefit from remote sensing studies enabling spatiotemporal estimation and mapping
of SOC stock. We found that a majority of the remote-sensing-based SOC mapping efforts have
been focused on upland ecosystems, not on tidal wetlands. We present a comprehensive review
detailing the types of remote sensing models and methods used, standard input variables, results,
and limitations for the handful of studies on tidal wetland SOC. Based on that synthesis, we pose
several unexplored research questions and methods that are critical for moving tidal wetland SOC
science forward. Among these, the applicability of machine learning and deep learning models for
predicting surface SOC and the modeling requirements for SOC in subsurface soils (soils without a
remote sensing signal, i.e., a soil depth greater than 5 cm) are the most important. We did not find
any remote sensing study aimed at modeling subsurface SOC in tidal wetlands. Since tidal wetlands
store a significant amount of SOC at greater depths, we hypothesized that surface SOC could be an
important covariable along with other biophysical and climate variables for predicting subsurface
SOC. Preliminary results using field data from tidal wetlands in the southeastern United States and
machine learning model output from mangrove ecosystems in India revealed a strong nonlinear but
significant relationship (r2 = 0.68 and 0.20, respectively, p < 2.2 × 10−16 for both) between surface and
subsurface SOC at different depths. We investigated the applicability of the Soil Survey Geographic
Database (SSURGO) for tidal wetlands by comparing the data with SOC data from the Smithsonian’s
Coastal Blue Carbon Network collected during the same decade and found that the SSURGO data
consistently over-reported SOC stock in tidal wetlands. We concluded that a novel machine learning
framework that utilizes remote sensing data and derived products, the standard covariables reported
in the limited literature, and more importantly, other new and potentially informative covariables
specific to tidal wetlands such as tidal inundation frequency and height, vegetation species, and soil
algal biomass could improve remote-sensing-based tidal wetland SOC studies.

Keywords: belowground soil organic matter; SOC stocks; soil bulk density; Coastal Blue Carbon
Network; SSURGO; machine learning; salt marsh; mangroves

1. Introduction

Wetlands are important transitional ecosystems that remove substantial amounts of
nitrogen and phosphorus from upland runoff [1,2]. They play a critical role in recharging
water tables, retaining nutrients, absorbing pollutants from runoff, filtering sediment, and
sequestering atmospheric carbon [3–6]. Wetlands also support diverse wildlife, fisheries,
and wet-field agriculture around the world. Historically, wetlands were considered unpro-
ductive agricultural lands. They were often drained and manipulated to allow different
agricultural activities to be conducted, but in the late 20th century, the importance of
wetlands and ecosystem services was recognized, triggering wide-ranging mapping ef-
forts [1,2]. The early mapping efforts started with identifying the boundaries of wetlands,
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vegetation mapping, and periodic surveillance and change detection [7–10]. Due to the
rising concentrations of carbon dioxide in the atmosphere, wetlands have become the
focus of a wide range of research studies, due to their ability to sequester carbon in large
amounts [11]. Wetlands are effective in carbon sequestration due to anaerobic conditions,
which lead to the scarcity of oxygen required for efficient carbon decomposition. In the
absence of oxygen, less efficient electron acceptors such as Mn and Fe are used for micro-
bially mediated carbon oxidation, and thus organic matter accumulates and is retained for
longer durations [12,13]. Wetlands store almost 20–25% of the world’s soil organic carbon
(SOC) stock in just 4–6% of the world’s land area [14]. Recent efforts to evaluate the number
of wetlands previously drained have indicated striking losses of wetlands in places such
as North America, where wetland loss is estimated to be 53% in the contiguous United
States, 16% in Canada, and 62% in Mexico [15,16]. This makes mapping and monitoring
changes in SOC in wetlands a critical research area in the broader climate science field.
Even though wetlands are a substantial reservoir for longer retention of SOC, the studies
on SOC mapping using remote sensing data and techniques have been mainly focused on
cropland, grasslands, and forest ecosystems.

We conducted a comprehensive literature review on remote sensing techniques for
tidal or coastal wetland SOC prediction and mapping and synthesized our findings, as
part of this study. Our objectives for this study were: (1) to provide an in-depth review
of existing remote sensing models developed and used to predict SOC in tidal wetlands;
(2) to synthesize the standard environmental covariables and propose novel covariables
needed to develop accurate, remote-sensing-based SOC prediction models; (3) to analyze
the feasibility of modeling subsurface SOC (defined in this review as soils without a remote
sensing signal, i.e., a soil depth greater than 5 cm) from remotely estimated surface SOC;
and (4) to propose future-facing remote-sensing-based research questions to advance the
field of tidal wetland SOC monitoring and mapping. We also include some preliminary
data analysis from tidal wetlands in the United States and mangrove wetlands in eastern
India, to provide a rationale to support the questions raised as part of future research
directions.

2. Past Studies on SOC Modeling and Mapping
2.1. Surface SOC Prediction Modeling across Biomes

Most SOC mapping efforts are based on covariables representing terrain, climate,
remotely sensed spectral data, and soil maps, to predict SOC for depths < 50 cm [17].
Predictions with spectral data are commonly limited to surface soils, with most studies
focused on a depth of <30 cm. These models primarily use data from hyperspectral and
multispectral sensors. For example, data from hyperspectral sensors such as the FieldSpec
4 Hi-Res Spectroradiometer have been used to predict SOC for depths of 0–5 cm [18].
Multispectral sensors such as those of Landsat 8, Sentinel-2, and PlanetScope, and the
UAS Parrot Sequoia have been applied to predict SOC for depths of 0–10 cm [19,20].
Hyperspectral sensors are one of the best ways of predicting SOC, due to their better
spectral resolution [18], but currently, they are mostly drone-mounted, and data can be
expensive to acquire. Multispectral satellite sensors are generally suited for regional-
scale and time series SOC mapping [19]. The spatiotemporal coverage of multispectral
satellites such as Landsat 1–8 (1972–present) offers a significant advantage in mapping
and analyzing the long-term trend in SOC for any given location through a dense time
series. Remote-sensing-based SOC mapping studies in terrestrial ecosystems mainly use
two approaches depending upon the scale (Table 1). The first approach, at the field scale,
uses in situ spectral reflectance and spectral covariables to predict SOC [14,18–21]. At the
field scale, the topographic indices derived from lidar sensors are also very commonly used
to explain soil variability [22,23]. The second approach, commonly used at regional scales,
considers a suite of covariables with or without spectral variables to predict SOC [24–30].
Commonly used spectral covariables in field-scale models include spectral band ratios and
reflectance data from red, red-edge, near-infrared (NIR), and shortwave-infrared (SWIR)



Remote Sens. 2022, 14, 2940 3 of 21

wavelengths. Regional-scale models use environmental, climate, topographic, soil type,
and land-cover-based covariables. There have been numerous studies on the importance of
covariables for terrestrial SOC modeling, and the prediction accuracies of models vary from
region to region (Table 1). The prediction accuracy of such models ranges from 35–70%.
These studies show that land cover and land use have a significant effect on the SOC
stock distribution, which suggests that studying SOC variation within a homogenous type
of land cover could yield better results [24,25,27,29,31]. Direct implementation of these
terrestrial SOC models in tidal wetlands is not likely to produce accurate results due to
the added environmental complexities involving tidal fluctuations, soil saturation with
moisture, soil salinity, and the associated vegetation communities [32]. Tidal wetlands
also tend to be relatively flat landscapes, which reduces the utility of topographic indices,
leaving spectral remote sensing as an obvious predictor for these landscapes [33].

Table 1. Description of common covariables used for SOC predictive models across different SOC
mapping studies, their data sources, and their effects on the SOC distribution.

Covariable
Type Common Covariables Data Source Common Scale Literature Comments

Hyperspectral
sensor
bands

Visible, Near-infrared,
Mid-infrared

Aerial drones, Hyperion
on EO-1, PRecursore
IperSpettrale della

Missione Applicativa
(PRISMA), and

MightySat II

Usually, field
scale, however

sensors for
regional scales

are under
development

[18,20,32,
34,35]

Greater accuracy than multispectral
data, but limited availability for

time series and expensive.

Multispectral
sensor
bands

Thematic bands, Visible,
Near-infrared

Landsat, Sentinel,
PlanetScope data, and

UAS Parrot Sequoia data

Regional scale
and finer

[10,14,19,
25,26,28,31,
32,36–38]

Less accurate than hyperspectral
sensors but good for regional scales.
Provide continuous data collection

for time series analysis.

Vegetation
indices

Normalized difference
vegetation index (NDVI),

Wide dynamic range
vegetation index (WDRVI),

Soil-adjusted vegetation
index (SAVI), Enhanced

vegetation index

Sentinel, Landsat, and
National Agriculture

Imagery Program (NAIP)

Field or regional
scales

[11,26,29,
31,38,39]

NDVI is the most commonly used
vegetative index, suitable for most

study areas.
SAVI is a modified vegetation index

to adjust for soil pixels.
WDRVI and enhanced vegetation

index are more site- and
need-specific.

Climatic
covariables

Normalized moisture index
(NDMI), Temperature (mean

annual temperature),
Precipitation (mean annual

precipitation)

Landsat, PRISM database,
Worldclim

Field or regional
scales

[24,25,27,
28,30,31,36,

39–42]

Temperature and precipitation
control other processes such as

microbial activity and redox
reactions in the soil which further

affect SOC.

Topographic
factors

Digital elevation model
(DEM), Slope, Aspect,

Relative slope position,
Landform, Topographic

wetness index

Numerous

Field or regional
scales,

depending upon
spatial resolution

required

[24–
31,36,38–

40]

DEM-based indices give an idea of
uplands and lowlands.

Slope dictates the water movement
and erosion.

The wetness indices represent
moisture conditions influenced by

topography.

Soil factors

Soil texture, Soil type, Salinity
ratio, Drainage classes,
Erosional classes, Soil

electrical conductivity, Redox
potential, etc.

SSURGO, World
reference base soils

(WRB), Harmonized
world soil database, etc.

Regional-scale
data from data
sources such as

SSURGO or
STTATGO

Field-scale data
from sources

such as CBCN,
NCSS, etc.

[24,26,27,
29,31,38,42,

43]

The proportion of sand and clay in
the soil texture can influence the

retention of SOC.
Various soil types have inherent soil

features that dictate horizon
thickness, parent material, and

major soil processes.
Soil salinity can be a very useful

covariable in wetland SOC
mapping.

2.2. Status of SOC Modeling in Tidal Wetlands

There have been only a limited number of studies on wetland-specific SOC modeling
and mapping, due to the scarcity of surface and subsurface SOC data, the lack of bulk den-
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sity information, and added challenges regarding water-level fluctuations [44]. Estimating
carbon stock is difficult in wetlands because the quantification of net carbon sequestration,
the rate of organic matter decomposition, methanogenic micro-organisms, and fluxes
from the sediments are complex and hard to isolate [45]. Numerous studies calculate
the organic carbon density for subregions and use that to estimate carbon stock across
a region [40,46–52]. The calculated SOC is then correlated to available variables from the
study area to find the reason for the SOC variability in the region. The main goal of these
studies has been to compare carbon stocks between different types of wetlands and find
factors or drivers that affect SOC the most. There have been some efforts to predict SOC us-
ing a digital soil mapping (DSM) approach in wetlands [6,32,53]. One study used VIS/NIR
spectroscopy and EO-1 Hyperion data to compare different machine learning techniques for
the estimation of SOC [6]. They concluded that the model using EO-1 Hyperion data and
using recursive feature elimination and support vector machine (RF-SVM) gave the best
results (r2 of 0.79 for testing data). Using airborne hyperspectral sensors and spaceborne
multispectral sensors such as WorldView-2 and QuickBird to predict soil properties in tidal
wetlands showed that prediction accuracy ranged from 0.52 to 0.80, depending upon the
data source and modeling techniques [32]. Random forest (RF) and support vector machine
(SVM) techniques performed very similarly across the studies [6,32,53]. Other studies
used spectral covariables for SOC estimation in tidal wetlands [6,32,33]. Ren et al. [53]
used covariables widely applied for SOC mapping in wetlands and found that prediction
accuracy reduced with increasing depth. More specifically, they used climatic, remotely
sensed, and terrain covariables to predict SOC to a depth of 100 cm, resulting in r2 values
of 0.82, 0.59, and 0.51 for 0–30, 30–60, and 60–100 cm depths, respectively. Zhang et al. [32]
suggested that the use of other covariables could increase the prediction accuracy of these
models. After reviewing this limited pool of previous studies on remote sensing of wetland
SOC, we theorized that using covariables specific to wetland environments along with
spectral covariables could increase the prediction accuracy for SOC in these ecosystems.

3. Methods for Wetlands SOC Modeling and Mapping

The covariables used for SOC mapping for wetlands were highly generalized, with
no special attention given to the unique environmental factors active in these ecosystems.
Most studies on predicting SOC tend to group wetland ecosystems with other ecosystems
and predict wetland SOC with the same models used for cropland, grassland, and forest
ecosystems [24,27,38]. However, as mentioned earlier, soil composition is greatly influenced
by tides, salinity, and the species present in wetlands [32]. Therefore, there is a need
to investigate SOC mapping in wetlands independently by exploring the utility of all
possible environmental and biophysical covariables. Some models have used the mineral
composition of parent materials, environmental factors, topographic factors [24,28,30],
and geographic locations from point measurements [29,40]. The choice of covariables
for the modeling varies from region to region [24], and the predictive power of a given
variable may vary with depth [26,53]. Overall, topographic and climatic variables are
the most important for most SOC predictive models [24]. Spectral covariables help to
increase the prediction accuracy, and vegetation indices (VIs) such as the normalized
difference vegetation index (NDVI) and normalized difference moisture index (NDMI) can
be important covariables. In the following section, we discuss the relative importance of
covariables for remote-sensing-based wetland SOC modeling.

3.1. Spectral Covariables

Commonly used spectral variables for predicting SOC include reflectance from blue
(450–515 nm), green (525–600 nm), red (630–680 nm), near-infrared (NIR) (845–885 nm),
and short-wave infrared (SWIR-1) (1560–1660 nm) and SWIR-2 (2100–2300 nm) bands,
vegetation indices such as NDVI, and biophysical variables such as NDMI, LAI (leaf area
index) and LST (land surface temperature) [6,25,32,53,54]. The most common ways to
derive these data are with multispectral (Landsat 8, Sentinel-2, or PlanetScope data, and
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UAS Parrot Sequoia data) and hyperspectral sensors (aerial drones, Hyperion on EO-1, and
MightySat II).

Zhang et al. [32] found a negative correlation between SOC and spectral reflectance in
tidal wetlands in coastal Georgia, United States. The correlation of band wavelengths with
SOC varied from r = 0.55 at 932.95 nm to r = 0.34 at 680.5 nm. Ren et al. [53] used spectral
covariables such as Landsat visible and SWIR bands, NDVI, LST, LAI, EVI (enhanced
vegetation index), NPP (net primary productivity), and LSWI (land surface water index) in
the wetlands of western Songnen Plain, China. They reported differences in the importance
of spectral covariables for different depths. At 0–30 cm, the covariables with the greatest
importance were LST and NDVI, whereas at 30–60 cm, LSWI and LST were the most
important and at 60–100 cm, LST and NPP were found to be the most important spectral
covariables [53]. Ding et al. [6] also found a negative correlation between spectral reflectance
and SOC in the Ebinur Lake wetlands of Xinjiang Uyghur Autonomous Region, China.
They observed low reflectance in the visible band (350–780 nm) and high reflectance in
the infrared (780–2500 nm). The spectral absorption increased with SOC in the range of
1850–1950 nm, peaking at 2100 nm. They found that a random forest model produced
better prediction accuracy than ant colony optimization, interval partial least squares,
and recursive feature elimination with support vector machine methods using spectral
covariables with an R-value of 0.92 for the test data. Spectral variables are important
for SOC mapping because they represent the availability of vegetation biomass in the
sensor’s field of view (for example, strong Chl—a signal between 650–675 nm wavelength
in Figure 1), some of which eventually decomposes and converts into SOC, thus correlating
well with the SOC content. One of the challenges of using spectral covariables in wetlands
is the lower magnitudes of the reflectances (Figure 1) compared to the upland condition,
making it necessary to use more precise sensors to capture minute fluctuations over a
relatively small reflectance range. Most wetlands have extensive vegetative cover, and soil
property predictions require the ability to connect vegetative community composition from
the spectral signatures of the phenology to patterns of soil variability. In addition to spectral
patterns, this relationship can also be observed with multi-temporal or hyper-temporal
remote sensing [55]. In conclusion, using spectral variables and their derivatives with
other environmental, climate, and biophysical covariables would be likely to increase the
prediction accuracy of wetland SOC models.
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10–15 cm from the soil surface) of soil (Bohicket soil series) under field conditions.
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3.2. Climatic Covariables

The most common climatic variables used in existing SOC predictive models are
mean annual temperature (MAT) and mean annual precipitation (MAP) [25,40]. Holmquist
et al. [50] used climatic zones as one of the covariables to map wetland SOC for the conter-
minous United States. Usually, the temperature is negatively related to SOC [48,56,57]. Yang
(2019) [48] found that temperature significantly affects SOC at greater depths in the tidal
wetlands of east central China, whereas Yang et al. (for Tibetan grasslands) [58] and Liu
et al. (again for the Tibetan Plateau (northeastern margin of the Qinghai)) [59] found that
temperature effects diminished at greater depths. Yang (2019) [48] found the standardized
path coefficient between MAT and SOC to be 0.24, using path analysis. Standardized path
coefficients are a measure of the effect of MAT on SOC after controlling the other covariable
in the model, much like a linear regression model coefficient [60]. Ren et al. (2020) [53]
found both MAT (importance factors ~11, 10, and 12 for 0–30, 30–60, and 60–100 cm soil
depths, respectively) and MAP (importance factors ~12, 8, and 13 for 0–30, 30–60, and
60–100 cm soil depths) to be in the top five most significant covariables for mapping SOC
at all three depths. The prediction accuracy for the SOC model proposed by Han et al. [40]
was 76.10%, with the variance explained by MAT (23.74%), latitude (18.2%), longitude
(7.12%), and MAP (3.75%). It is important to recognize that climatic variables do not always
have predictive power for SOC [33], and the relationships are likely to be influenced by the
size and environmental setting of the study area.

The mechanisms of SOC dynamics in wetlands are strongly linked to temperature
conditions and water balance. Lower temperatures tend to reduce SOC decomposition
and increase the longevity of SOC in wetlands; however, lower temperatures can also
lead to lower inputs from net primary productivity [61]. Higher temperatures lead to a
reduction in the longevity of SOC due to its more rapid decomposition and conversion to
carbon dioxide [62]. The overall impact of temperature on SOC in wetlands can be studied
by its effect on inputs and decomposition. SOC content usually increases with higher
precipitation, but topographic controls are also important, because landscape position
determines the potential for water redistribution and accumulation (e.g., floodplains or
tidal wetlands). Higher precipitation creates favorable conditions for biomass production,
which leads to eventual decomposition. Latitude is related to tidal amplitude and relative
sea-level rise [50]. Tidal amplitude and frequency affect the carbon flux (CO2 and CH4
emissions). Tidal amplitude and relative sea-level rise affect the stabilization of SOC in
wetlands, and this is discussed thoroughly in later sections. It is also important to recognize
that some wetlands can experience drought (i.e., the combined effect of precipitation and
temperature), making them susceptible to wildfires, thus further complicating the SOC
dynamics [63,64]. Tidal wetlands are climate-sensitive ecosystems, and including climatic
covariables in SOC mapping would improve estimation accuracy.

3.3. Topographic Covariables

Variables derived from digital elevation models (DEM) are commonly used for SOC
predictive models. For example, slope, aspect, elevation, compound topographic index
(CTI), and the System for Automated Geoscientific Analyses (SAGA) wetness index have
all been found to be significant predictors in a variety of locations [24,26,27]. Topographic
variables capture important patterns of soil erosion and retention of SOC and sediments,
making them good predictors of SOC [26].

The relationships of these topographic variables with SOC differ across studies and
geographic locations, but one of the most common findings is that low landscape positions
tend to have more SOC than high landscape positions. Lower areas tend to be wetter and
have more accumulation of organic materials, often concurrently with sediment deposition.
For example, the European CTI and SOC were positively correlated, whereas SOC was
negatively correlated with elevation and slope [24]. Conversely, Yang et al. [25] found
positive relationships of SOC with elevation (r = 0.31 and p = 0.002) and slope (r = 0.22 and
p = 0.026) and a negative relationship with aspect (r = −0.36 and p < 0.001) and topographic
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wetness index (r = −0.21 and p = 0.024) in an alpine ecosystem on the Tibetan Plateau.
Tangen and Bansal [52] found that landscape positions significantly affected SOC, where
significant differences (ndf,ddf = 3,1248; F-value = 153.01; p-value < 0.0001) were found
in SOC concentrations in the upper 30 cm within upland, toe slope, transition, and inner
positions in wetlands of the Prairie Pothole Region of the United States. Wetness index
variables such as CTI and the SAGA wetness index are also useful for SOC prediction at
depth [26,27]. Ren et al. [53] found elevation to be one of the five most important covariables
for all soil depths. They also found that the importance of altitude increased for SOC at
greater soil depths (importance factors ~8, 9, and 16 for 0–30, 30–60, and 60–100 cm soil
depth, respectively). Han et al. [40] found that altitude explained 15% of the variance and
was negatively correlated with SOC in palustrine wetlands in China.

DEM-based covariables such as elevation, slope, relative slope position, and landform
are important as they carry information about relative upland or lowland conditions and
hence erosional versus depositional areas. Although the variabilities in these factors are
expected to be low in tidal wetlands, which are mostly near sea level, they will affect
the variability of SOC across depths and are likely to be important covariables for SOC
mapping in wetlands. Subtle variations in topography at local and regional scales can
have significant impacts on soil property variability and the processes that control SOC
dynamics; therefore, detailed DEMs hold great promise for improving predictions of SOC.
Given that most wetlands, especially tidal wetlands, have low relief, the best potential for
topographic covariables lies in using those from the most detailed digital elevation models
(e.g., lidar).

3.4. Soil Covariables

The spatial distribution of other soil properties such as soil types [27,50], soil texture,
parent material of soils [28], and soil pH [40] can also be useful for predicting SOC. This
concept is recognized in the soil science discipline and has been incorporated conceptually
into recent digital soil mapping models [23]. In wetland landscapes, other properties such
as soil salinity can be important covariables for SOC mapping [32,50,65].

Holmquist et al. [50] classified soil types into two broad groups, i.e., organic (>13.2%)
and inorganic (<13.2%) and found the classification to be the best predictor of SOC (the
adjusted effect size (ω2) for soil type was ~0.8). However, we propose using taxonomy
or ecology-based soil classes rather than two broad classes as covariables because of the
complex interactions and relationships between environmental variables and soil properties
in wetland ecosystems. Soil salinity negatively affects the rate of decomposition of organic
matter, due to its effect on SOC organic carbon mineralization [50,65]. We also know that
for wet soils, other chemical properties such as pH and the iron and aluminum chemistry
affect the stability of SOC [66], and this is unique to soils in and adjacent to wetlands.
Han et al. [40] used soil pH to predict SOC, and Macreadie et al. [67] found that soil grain
size may also affect SOC [66]. Zhang et al. [32] found a correlation between soil organic
matter and soil salinity (r2 = 0.14). Yang [48] explored the influence of soil properties,
including pH, salinity, bulk density, and clay content, on SOC. They found that clay was
significantly and positively linked to SOC storage with a standardized path coefficient of
0.68. Bulk density (BD) was also significant in influencing the vertical distribution of SOC,
with a standardized coefficient of 0.23. BD is not usually used for predicting SOC stocks
in terrestrial ecosystems, due to the interdependency or cross-correlation between both
soil properties, but the relationship between BD and SOC in wetlands is unique and is
discussed in detail in later sections.

4. Future Directions for Remote-Sensing-Based Tidal Wetland SOC Studies

In this section, we propose and discuss two important hypotheses and future research
avenues, including potential open-sourced novel covariables for future research studies
focused on remote-sensing-based tidal wetland SOC modeling and mapping. Consolidating
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the findings from our literature review, we propose two testable hypotheses for future
remote sensing research on wetland SOC estimation and mapping. We hypothesize that:

Hypothesis 1. Surface SOC is correlated with SOC at depth in tidal wetlands, and the degree of
correlation depends on the types of wetlands, depth intervals, species present, environmental factors
and gradients, and nature of the active disturbance (natural and anthropogenic) regime.

Hypothesis 2. SOC at depth can be predicted using remotely estimated surface SOC in combination
with a suite of open-source or satellite-derived biophysical, climatic, and hydrogeomorphic variables
for wetlands.

4.1. Subsurface SOC Estimation in Wetlands

The main limitation for SOC mapping in tidal wetlands has been the inability to
predict SOC below the surface layers or subsurface soil due to the limited SOC data at
depth. Remote sensing studies that have attempted to predict SOC at depth for tidal
wetlands are rare. Köchy et al. [13] mentioned that the scarcity of SOC data at depth leads
to a lack of precision in SOC stock estimates in wetlands. Studies such as that of Holmquist
et al. [50] had to eliminate numerous SOC point measurements because of the unavailability
of data for subsurface soils, which decreased the number of points used for model training
from 1959 (0–10 cm SOC point measurements available) to 231 (90–100 cm SOC point
measurements available). SOC up to a depth of 0–15 cm is commonly predicted by remote
sensing techniques with reasonable accuracy and can be used to gain valuable insights into
agricultural systems. However, significant amounts of SOC reside in subsurface soils in
wetlands (Table 2), and surface SOC captures only a small proportion of the overall SOC
stock. The unique saturated conditions in wetlands enable soils to capture and retain SOC
in surface and subsurface layers for a long period. Ren et al. [53] make one of the rare
efforts to try to predict SOC within 0–100 cm in wetlands (Western Songnen Plain, China),
but the predictive power of the used covariables decreased three-fold from 0.72 r2 (SOC at
0–30 cm) to 0.25 r2 (SOC at 60–100 cm), when the inverse distance weighting technique was
used. SOC does not vary in the same way with depth in tidal wetlands as in other land
covers. In almost all land covers except wetlands, SOC reduces with depth; however, in
wetlands and other soils affected by high water tables, it can even increase with depth, at
least up to certain depths [68]. Although the SOC distribution across depth in wetlands has
been well recognized by several studies, SOC stock prediction studies have not attempted
to predict SOC for subsurface soils.

Table 2. Comparison between Coastal Blue Carbon Network data and SSURGO data for the south-
eastern coastal United States for various soil depths using Wilcoxon matched pairs signed exact test
for non-parametric datasets.

SOC Depths CBCN Data (kg/m2) SSURGO (kg/m2) 95% Confidence Interval (kg/m2) p-Value

0–5 cm 1.5 3.3 1.4–2.4 4.77 × 10−9

5–20 cm 4.6 9.4 3.5–6.3 7.19 × 10−9

20–50 cm 8 14.8 3.5–9.6 1.36 × 10−5

50–100 cm 11.1 20.6 3.8–15.4 1.81 × 10−3

100–150 cm 16.4 17.5 (−15.1)–22 0.43

We propose that future remote-sensing-based wetland SOC estimation models should
focus on both surface SOC and subsurface SOC. Remote sensing data may carry some
information about surface SOC depending on the wetland vegetation density and canopy
structure. Therefore, remote-sensing-based empirical, semi-analytical, or data-centric mod-
els can be used directly to estimate surface SOC. Although limited, there have been remote
sensing studies (discussed here previously) that have demonstrated success in mapping
surface SOC in wetlands. Remote sensing data, however, do not contain any signals from
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subsurface soil. To estimate SOC at depths, one can utilize machine learning (ML) or
deep learning (DL) models with all possible biophysical, climatic, and hydrogeomorphic
covariables, which might carry some information on SOC at depth by reflecting the spatial
patterns of soil properties and important processes that control SOC variability. In that
scenario, surface estimates of SOC would be one of the most important covariables, as-
suming there is a significant correlation between surface and subsurface SOC in wetlands.
This is very similar to the soil prediction model introduced by McBratney et al. [23], which
proposed the use of existing or attainable soil property information as a complement to
other common predictors, for improving estimates of desired soil properties. Consequently,
accurate prediction of surface SOC is crucial for subsurface SOC modeling. One caveat is
that such data-centric modeling would require extensive training datasets, representing
a wide range of wetland types, species, and conditions, with all possible covariables and
with ground-truth soil core data acquired coincidentally. That is not a trivial effort. To
the best of our knowledge, such a comprehensive dataset either does not exist or must
be derived or put together piecemeal if it does exist for certain well-studied sites. In the
absence of such a dataset, using limited available ground-truth and model output data, in
the following sections we have provided our rationale and preliminary results justifying
the scientific basis behind these hypotheses regarding future research directions for remote
sensing studies focused on wetland SOC modeling and mapping.

4.2. Relation between Surface and Subsurface SOC in Wetlands: A Case Study

In this section, we present a research case study demonstrating the relationship be-
tween surface and subsurface SOC. Since remote sensing studies on subsurface SOC are
nonexistent, through the presentation of this case study we aim to provide preliminary
results as a justification for our Hypothesis 1. To test Hypothesis 1, we examined the
relationship between surface SOC (0–5 cm) and SOC at depth by using SOC data from two
sources: first, model output from a mangrove wetland site in eastern India and second,
field measurements from tidal wetlands in the southeastern United States.

Method: The mangrove SOC data were obtained from efforts in India and contain
model outputs covering approximately 2400 pixels (496 m) from Bhitarkanika National Park,
India (Figure 2) [69,70]. This is a Ramsar site (one of the 2424 internationally important
wetland sites recognized by UNESCO) located in the eastern state of Odisha in India,
covering 145 sq. km of mangrove forests [71]. The model explained 89%, 85%, 79%, 77%,
76%, and 67% of the variability of the training data for soil depths of 0–5 cm, 5–15 cm,
15–30 cm, 30–60 cm, 60–100 cm, and 100–200 cm, respectively, with RMSE values ranging
from 0.23–0.32 and explained 33%, 30%, 20%, 17%, 14%, and 10% of the variability for
the validation data for soil depths in same order with RMSE values ranging from
0.1–0.33. The SOC data for tidal wetlands in the southeastern United States were retrieved
from the Coastal Blue Carbon Network (CBCN) database maintained by the Smithsonian
Environmental Research Center (SERC), Edgewater, Maryland, United States. The dataset
consisted of 262 point locations for the southeastern tidal wetlands of the United States,
and the data were collected between 2007 and 2018 (Figure 3). The CBCN database is a
data consortium for wetland SOC point measurements from various research studies in the
coastal areas of the United States [50,72–108]. Studies contributing to the CBCN database
follow the National Wetland Condition Assessment guidelines for field sampling [72].
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SOC data from both the datasets were standardized for specified depths using the AQP
package in R, where 0–5 cm represented the soil surface and 5–15 cm, 15–30 cm, 30–60 cm,
60–100 cm, and 100–200 cm depths were considered subsurface depths. For the mangrove
SOC data from India, all 2400 pixels had modeled SOC data for all SOC depths; however,
the number of points having SOC data for various depths differed for the CBCN database.
A total of 261 points for the surface (0–5 cm) had data. Comparison between surface and
subsurface SOC was constrained by SOC data from subsurface depths. A total of 248 points
from 5–15 cm, 244 points from 15–30 cm, 185 points from 30–60 cm, 106 points from 60–100 cm,
and 52 points from 100–200 cm were used for the comparison. As the SOC data were
positively skewed or non-parametric, the correlations between surface and subsurface
depths were computed using the Spearman’s rank correlation rho coefficient [109] (called
the Spearman’s coefficient from now on). The correlation coefficients between surface
(0–5 cm) and subsurface depths are shown in Figure 4.

Results and Discussion: Our initial analysis using the SOC data from the mangrove
site in Bhitarkanika National Park, India and the United States tidal wetlands showed
that surface SOC was significantly correlated with SOC at depth up to a certain depth.
The correlation generally decreased with depth (Figure 4), and there was no relationship
below 60 cm soil depth for the Indian mangrove site. However, the correlation between
surface SOC (0–5 cm) and SOC in the whole soil pedon (0–200 cm) was also significant
(p < 2.2 × 10−16), with a Spearman’s coefficient of 0.20 for the mangrove site and 0.68
for the United States tidal wetlands. Although this result is preliminary, it supports our
hypotheses that a correlation between surface and subsurface SOC exists in wetlands and
the strength of the correlation is dependent on species, site, and a host of active covariables.
The Spearman’s coefficients for the Indian mangroves and United States salt marshes were
notably different from each other for the same depth ranges (Figure 4). We propose some
possible explanations for these differences in the strength of the correlation between surface
and subsurface SOC. First, the nature of the correlation varies based on wetland types,
which would support our hypotheses. Second, SOC data from the southeastern coastal
United States tidal wetlands were derived from soil cores taken in the field, so these can be
treated as verifiable ground-truth data. SOC data from the Indian mangrove site, in contrast,
were model outputs from a deep learning model, and there was greater uncertainty (10–30%
uncertainty for different depths based on Lin’s concordance correlation between predicted
and actual SOC concentrations for training data) associated with the model [70]. This would
need further field investigation to verify. However, examining the results obtained in this
analysis, surface SOC was more strongly correlated to SOC at depth in the tidal wetlands of
the United States than in the mangrove wetlands studied in India. Tidal wetlands observed
in the United States are mainly salt marshes, and wetlands evaluated in the Bhitarkanika
region of India are completely dominated by mangroves [110]. Mangroves store a greater
C density deeper in the profile (e.g., 30–60 cm) due to their root structure, in contrast to
marshes where the majority of roots are closer to the surface [111]. Additionally, predicting
SOC in mangroves carries a standard error almost twice as large as in salt marshes [112]
and, perhaps because of their unique carbon-storing mechanism, there are differences
between surface and subsurface SOC. This could explain the relatively lower correlation of
surface SOC observed in mangroves compared to salt marshes.
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Figure 4. The Spearman’s coefficients between surface SOC percent (0–5 cm) and SOC percent in
various depths of soil for the tidal wetlands in the southeastern coastal United States (shown in blue)
and mangrove wetlands in the Odisha state of India (shown in orange) [69,113]. Data for Bhitarkanika
National Park mangrove site were used with permission from Chakraborty et al. [69].

4.3. Comparison of SSURGO Data with CBCN Database

We also compared the Soil Survey Geographic Database (SSURGO) distributed by
the Natural Resources Conservation Service (NRCS) [114] with the CBCN database for
the southeastern coastal United States wetlands. Our goal was to determine whether the
SSURGO data could be used with the SOC point database to generate extra training data
to be used in a future ML or DL modeling frameworks for predicting SOC distribution in
wetlands. Point data from the CBCN database were used to extract the mukey (SSURGO
polygon ID) from gridded SSURGO, also known as gSSURGO (raster version of SSURGO
data with pixel size 10 m). The mukey extracted from gSSURGO was used to connect data
points to the SSURGO database for obtaining SOC stock measurements. A total of 261
CBCN database SOC points (Figure 3) were spread across 100 gSSURGO clusters with a
unique mukey. The SOC values from the CBCN database were averaged for points with an
identical mukey to make the comparison. The SOC data from the CBCN database were
standardized for depths (Table 2) to match the SSURGO SOC data. The SOC data from both
sources were neither normal nor non-parametric, and SOC data represent the same mukey
(SSURGO polygon). Therefore, a paired Wilcoxon matched pairs signed exact test [115]
was used. Unlike Zhong and Xu [116], who observed a weak positive correlation between
organic matter reported in the SSURGO dataset and independently collected soil cores
from tidal wetlands in Louisiana, United States, we found that SOC values from SSURGO
data and CBCN data were significantly different from each other (except at the 100–150 cm
depth; Table 2). SSURGO data were mostly extracted in 2018, with some data from 2007,
whereas CBCN data were from 2007–2018 with most data points from 2011, followed by
points from 2017–2018. SSURGO data consistently yielded higher SOC stocks compared to
CBCN data for different depth ranges, as reported in Table 2. The inconsistencies between
the two data types could be due to temporal differences or (most probably) the scale
differences between the datasets. SSURGO records averaged SOC values for each soil map
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unit, whereas Coastal Blue Carbon Network data are point-based data. The density of
CBCN points was not the same for each SSURGO polygon, creating a spatial scale mismatch
which, according to us, is the major reason for the mismatch in SOC values between the
two datasets, given that there were not enough point data for each SSURGO polygon to
make a comprehensive comparison. Another reason for the higher SOC stock prediction by
SSURGO data than by CBCN data could be the lack of accurate bulk density data for tidal
wetlands, and the bulk density values listed in the SSURGO database could be higher for
organic-rich tidal wetland soils. We conclude that the SSURGO database can be used in
conjunction with other point data if soil map-unit-based SOC stock predictions are needed;
however, the scale and methodology of data collection for the two datasets should be given
proper thought. Since NRCS is presently expanding its data collection in coastal and marine
environments, this will remain another avenue for future research [117].

4.4. Remote-Sensing-Based Subsurface SOC Prediction Model Framework with Standard and
Proposed Novel Covariables

For Hypothesis 2, we developed an expanded set of standard and novel covariables
that could be used in a future data-centric modeling framework. The uniqueness of
the wetland ecosystem allows for the usage of some potentially novel covariables or
wetland-specific environmental, climatic, and hydrogeomorphic drivers for SOC modeling
and mapping that have not been explored or fully utilized in the existing studies. The
covariables provided in Table 1 have been well studied and can be used to explain SOC stock
variability in wetlands. For example, Holmquist et al. [50] used covariables such as climate
zones (based on the EPA’s greenhouse gas inventory), salinity, vegetation, and soil classes
in their study and concluded that these variables together were not sufficient for predicting
carbon density in wetlands. There is a need for studies exploring additional wetland-
specific covariables, especially covariables derived from spectral remote sensing [33]. We
developed a modeling framework that integrates techniques commonly used in the SOC
modeling literature with a suite of covariables we believe are important for wetlands
(Figure 5). We grouped the standard and proposed novel covariables separately as a list
of input variables to be considered in future wetland SOC modeling studies. All listed
covariables can either be remotely sensed, derived from remote sensing data, or are already
available in open-source databases, which is an important consideration to ensure the
broad applicability of these models to sites where field data are lacking or collection is not
possible.

Vegetation plays an important role in providing biomass for SOC [32]. Yang [48]
discussed how a single invasive species Sporobolus alterniflorus (formerly Spartina alterniflora)
increased the SOC storage by 0.0078 kg m−2 per year (r2 = 0.66 and p < 0.001) at a depth
of 0–30 cm and 0.134 kg m−2 per year (r2 = 0.29 and p < 0.05) at a depth of 0–100 cm in
the tidal wetlands of China where it was introduced. Holmquist et al. [50] also recognized
vegetation species as a significant covariable affecting SOC in wetlands in the conterminous
United States. Most studies use NDVI, which is a vegetation index with some information
about aboveground biomass that eventually gets converted into SOC. Although not a great
proxy for biomass, NDVI may provide an idea about the source of SOC. However, it fails
to capture the biogeochemical effects that vegetation type has on gross production and
regulation of SOC in wetlands. Therefore, a vegetation species map could be an important
covariable along with traditional vegetation indices for SOC predictions in wetlands. A
vegetation species map can be derived using high-resolution open-source satellite data
such as Sentinel-2 (10 m) or Planet (3 m) datasets. Vegetation can also be a good indicator
of soil differences, which might also affect SOC throughout the profile.
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As well as vegetation species, it might also be useful to consider biogeochemical
processes, which are controlled by microbial and fungal communities in wetlands. Pei
et al. [118] found that arbuscular mycorrhizal fungi (AMF) affected the carbon sequestration
in wetlands in the northeast region of China. Remote sensing of AMF is a very new research
field with some initial effort (e.g., [119]). Biotic factors such as AMF with a signal emitting
potential can be used as a potential covariable for SOC modeling. Soil algal content, with soil
chlorophyll-a as a proxy, is another such biotic covariable that can increase the predictability
of SOC modeling in wetlands. Algae tracking is not only important for the environment
but can also be related to SOC variability across wetlands. Algal concentration has a large
impact on light penetration and controls other environmental factors that can affect SOC.
The surface algae in wetlands can potentially influence the soil properties and the microbial
activities that affect SOC. Algal concentration as a covariable has not been explored in
any SOC modeling studies to the best of our knowledge, but there have been some recent
efforts to estimate algal concentrations using remote sensing techniques [120,121].

Soil bulk density (BD) as a covariable could be uniquely used in wetlands. Numerous
studies have explained the effect of SOC on BD, but in wetlands, SOC might have a complex
relationship with BD, and thus BD could be a covariable for predicting SOC in wetlands. In
wetlands, BD is affected by tidal inundation and sediment deposition rather than just plant
root growth [122]. BD affects the stabilization of both surface and subsurface carbon in tidal
wetlands [48]. However, the use of bulk density must be checked for bias, as SOC percent
and bulk density are both used to obtain SOC stock-per-unit-area values, and the usage
of bulk density in the model can create a bias in predicting SOC stock. Additionally, field
measurements of bulk density are scarce, and most of the machine learning models used
to predict BD use SOC as covariables. There are some recent efforts to develop predictive
models for wetland soil bulk density using remote sensing, with accuracies ranging from
50–88% [123–125].

Other important covariables in wetland SOC modeling are tidal inundation (mag-
nitude and extent) and soil salinity. Tides in marine wetlands control soil salinity, algal
deposition, vegetative species, decomposition of SOC, and microbial activities. The am-
plitude and frequency of tides control the spatial distribution of soil salinity that affects
CO2 and CH4 emission fluxes [4,32,126]. Mueller et al. [127] found a 29% reduction in
the stabilization of organic matter in frequently flooded areas compared to less frequently
flooded areas. Wang et al. [128] found that increasing marsh salinity from 6 to 9 ppt resulted
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in 50–80% more CO2 emissions and typically decreased CH4 emissions, whereas decreasing
marsh salinity from 26 to 19 ppt did not affect CO2 and CH4 emissions. Tidal inundation
detection models have already been developed using remote sensing data. For example, the
Tidal Marsh Inundation Index (TMII) was developed, which implements MODIS (250 m)
images in the salt marsh ecosystems of Georgia and the United States Gulf Coast [129].
Similarly, a model (Flooding in Landsat Across Tidal Systems (FLATS)) has been developed
to detect flooding using Landsat (30 m) images in a salt marsh ecosystem [130].

5. Conclusions

Tidal wetland ecosystems are unique, highly diverse, and effective sequesters of
atmospheric carbon. SOC modeling studies using remote sensing techniques in tidal wet-
lands are surprisingly scarce. We conclude that SOC mapping techniques used for other
ecosystems need to be modified when applied to tidal wetlands, and tidal wetland-specific
covariables should be incorporated into the list of standard covariables to capture the
diversity and unique environmental conditions. We found a significant correlation between
surface SOC and SOC at various depths up to 2 m, but the strength of this correlation
varied across soil depths and approached 0 below a 60 cm soil depth for the Bhitarkanika
mangroves. However, based on the significant correlation between surface SOC and SOC
in the whole soil pedon (0–200 cm), we conclude that the relationship between surface and
subsurface SOC can be used in subsurface SOC modeling studies in tidal wetlands. How-
ever, this is one of many covariables which, when used in combination, could enhance the
final modeling outcome. The strength of the final model will be dependent upon wetland
type, depth interval, vegetative species, and other environmental factors. Vegetation species
and tidal inundation are underutilized in SOC modeling and mapping studies, but they
could be important factors affecting SOC distribution in tidal wetlands. The uniqueness of
tidal wetlands allows the exploration of other less commonly used covariables that could
be significant for tidal wetland SOC studies. For example, soil algae distribution should be
explored further as a potential covariable. The development of accurate SOC models using
remote-sensing-data-based machine learning or deep learning techniques will advance
SOC mapping in tidal wetlands in the near future. Developing a machine learning or
deep learning model based on remotely sensed data from legacy satellite sensors such
as the Landsat series, MODIS, VIIRS, or AVHRR would provide us with a multi-decadal
time-series trend for SOC distribution in many tidal wetlands. Collectively, this powerful
dataset could be used to answer various unexplored questions related to wetland carbon
dynamics and the role of tidal wetlands in the global blue carbon budget, such as:

• What are the spatiotemporal trends in tidal wetland soil carbon dynamics over the
past 50 years?

• How does climate change impact the carbon-storing capacity of wetlands?
• What other factors (such as vegetation and soil properties) control the distribution of

carbon in wetlands in space and time?
• What are the impacts of the press (sea level rise, increasing atmospheric CO2) vs. pulse

(hurricanes, flash droughts, freshwater fluxes associated with extreme precipitation
events) disturbances on wetland SOC?

There is a significant gap in the research and a clear need for remote-sensing-based
modeling studies on tidal wetland SOC mapping. Tidal wetlands cannot be treated the
same way as terrestrial ecosystems and need to be given special attention in SOC prediction
and mapping. Remote-sensing-based modeling techniques could be the only viable method
of large-scale spatiotemporal mapping of surface and at-depth SOC in tidal wetlands.
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