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Abstract: In high-frequency surface wave radar (HFSWR) systems, clutter is a common phenomenon
that causes objects to be submerged. Space-time adaptive processing (STAP), which uses two-
dimensional data to increase the degrees of freedom, has recently become a crucial tool for clutter
suppression in advanced HFSWR systems. However, in STAP, the pattern is distorted if a clutter com-
ponent is contained in the main lobe, which leads to errors in estimating the target angle and Doppler
frequency. To solve the main-lobe distortion problem, this study developed a clutter-suppression
method based on beam reshaping (BR). In this method, clutter components were estimated and
maximally suppressed in the side lobe while ensuring that the main lobe remained intact. The
results of the proposed algorithm were evaluated by comparison with those of standard STAP and
sparse-representation STAP (SR-STAP). Among the tested algorithms, the proposed BR algorithm
had the best suppression performance and the most accurate main-lobe peak response, thereby
preserving the target angle and Doppler frequency information. The BR algorithm can assist with
target detection and tracking despite a background with ionospheric clutter.

Keywords: high-frequency radar; space-time adaptive processing; clutter suppression; beam reshaping;
sparse representation; signal processing

1. Introduction

High-frequency surface wave radars (HFSWRs) exhibit high performance in over-
horizon detection, and have become crucial tools to monitor maritime targets by using
the high-frequency (HF) band of 3–30 MHz [1–4]. In the HF band, echoes are highly
complex and contain space-spread clutter, such as sea clutter and ionospheric clutter [5].
Ionospheric clutter includes echoes originating from single or multiple ionospheric layers,
and the resulting propagation strongly depends on the HF radar signals [6,7]. This clutter
is typically nonhomogeneous and has higher energy than those of general targets, which
can seriously affect target detection [8]. Thus, methods to suppress ionospheric clutter and
guarantee submerged target detection have been topics of interest [9–11].

In particular, for space-spread clutter, one-dimensional processing is not applicable in a
complex environment due to the low degrees of freedom (DOF). In [12,13], one-dimensional
processing was converted to two-dimensional processing via space-time adaptive process-
ing (STAP) to increase the DOF of the system. A joint domain localised (JDL) method was
proposed in [14] to enhance the applicability of STAP to HFSWR to reduce the compu-
tational cost. Many methods have been proposed to improve the STAP performance in
nonhomogeneous environments, such as the generalised inner product (GIP) algorithm [15],
power selected training (PST) algorithm [16], and sparse-representation STAP (SR-STAP)
algorithm [17].
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The key step of STAP is to estimate the covariance matrix by utilizing selected inde-
pendent, identically distributed training samples with the clutter components. However,
during the covariance matrix estimation, clutter components in the main lobe of the adap-
tive weight vector can lead to its deformation, resulting in a loss of the target’s angle and
Doppler frequency information after STAP processing. To solve this problem, this paper
proposes a clutter-suppression method based on beam reshaping (BR) that estimates and
maximally suppresses the clutter components in the side lobe while ensuring that the main
lobe remains intact, thereby preserving the target angle and Doppler frequency information.

The main contributions are described as follows:
1. The influence of main-lobe clutter on STAP was analysed by formula derivations and

simulation results. The results confirmed that main-lobe clutter could seriously influence
the adaptive weight vector beam pattern of STAP by distorting the beam pattern and
reducing the spatial gain.

2. A sparse-representation algorithm was used to estimate the clutter principal com-
ponents, and the main and side lobe were classified for subsequent calculation. Then, a
clutter-suppression method was proposed based on BR that maximally suppressed the
clutter components in the side lobe while ensuring that the main lobe remained intact,
thereby preserving the target angle and Doppler frequency information.

3. In addition, compared to standard STAP and SR-STAP, the proposed algorithm
provided a more accurate angle–frequency response, which met the requirements of a
maximum target response and a notch response with side-lobe clutter, particularly in the
angle domain.

The remainder of this paper is organised as follows: Section 2 introduces the data
model and conventional STAP algorithm principle for HFSWR and explains the cause of
the main-lobe target information distortion and loss that are caused by clutter components
during STAP processing. Section 3 presents a method to estimate the space-time spectrum
of HFSWR based on sparse representation [16]. Section 4 presents a clutter-suppression
algorithm based on BR to solve the main-lobe distortion problem in conventional STAP.
Section 5 describes the simulation results of the proposed algorithm based on measured
data from ionosphere clutter data, and presents an analysis of the experimental results.
Finally, Section 6 presents the conclusions of this study.

2. STAP Algorithm in HFSWR
2.1. Signal Model and Basic Principle of STAP in HFSWR

The HFSWR system is assumed to comprise a uniform linear array consisting of Ne
elements with a spacing of d between the array elements. The coherent integration time
contains Np signal pulses with a sampling frequency fs. Hence, a data vector Xl ∈ CM×1

of M = NeNp dimensions can be obtained for the lth range bin as follows:

Xl = [x1 x2 . . . xNe ]
T, (1)

xq =
[

xq,1 xq,2 . . . xq,Np

]
, q = 1, 2, . . . , Ne (2)

The space-time steering vector of the target echo is defined as follows:

v( ft, φt) = b( ft)⊗ a(φt), (3)

where a(φt) =
[
1 Zs · · · ZNe−1

s

]T
is the space steering vector, b( ft) =

[
1 Zt · · · Z

Np−1
t

]T

is the time steering vector, and ⊗ is the Kronecker product. Thus, v ∈ CM×1. Additionally,
Zs = ej2π(d/λ) sin φt and Zt = ej2π( ft/ fR), where λ is the wavelength of the transmitting
signal, φt is the target direction of arrival, ft is the target Doppler frequency, fR = 1/tm is
the signal pulse repetition frequency, and tm coherent integration time.
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Subsequently, the received data can be expressed as the sum of the target signal, clutter,
and noise as follows:

Xl = ξtv( ft, φt)+c+n, (4)

where ξt is the amplitude of the target, c is the ionospheric clutter, and n is noise.
The principal step of the STAP method involves the determination of an optimal

weight vector vstap to suppress clutter:

y = vstap
HXl , (5)

where [•]H is the conjugate transpose and y is the STAP output.
In the optimised STAP method, the adaptive weight vector can be calculated as follows:

vstap = R−1v, (6)

where R is the covariance matrix of the clutter and noise. For a real system, R must be
provided as prior information or estimated using sample data as follows:

R =
1
L

L

∑
1

XlX
H
l , (7)

where L is the number of training samples and l = [1, 2, . . . , L]. The training sample Xl
used here should not contain the target component. It is difficult to collect enough training
samples that conform to the independent identical distribution in a complex ionospheric
clutter background.

2.2. Performance Analysis of STAP with Main-Lobe Clutter Component

Assuming the training sample has one clutter component, the covariance matrix R
can be expressed as follows:

R = σ2
nI + Rc, (8)

where σ2
n is the variance of the noise and I is the identity matrix. Thus, the covariance

matrix of the clutter is expressed as follows:

Rc = Pcv( fc, φc)vH( fc, φc), (9)

where Pc is the power of the clutter and v( fc, φc) is the space-time steering vector of the
clutter component. Because Rc is a Hermite matrix, the inverse of R is expressed as follows:

R−1 =
1
σ2

n

I−
1

σ2
n

Pcv( fc, φc)vH( fc, φc)

1 + Pc
σ2

n
vH( fc, φc)v( fc, φc)

 =
1
σ2

n

I−
1

σ2
n

Pcv( fc, φc)vH( fc, φc)

σ2
n + MPc

 (10)

According to Equation (6), the target adaptive weight vector vstap can be represented
as follows:

vstap = R−1v( ft, φt) =
1
σ2

n

v( ft, φt)−
1

σ2
n

Pcv( fc, φc)vH( fc, φc)v( ft, φt)

σ2
n + MPc

, (11)

where 1
M vH( fc, φc)v( ft, φt) can be regarded as the correlation between the space-time

steering vectors of the target and the clutter component ρtc. Thus, vstap is represented
as follows:

vstap =
1
σ2

n

v( ft, φt)−
M
σ2

n
Pcv( fc, φc)ρtc

σ2
n + MPc

. (12)
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It can be inferred that vstap is influenced by the clutter-to-noise ratio (CNR) and ρtc.
When the CNR is fixed, the performance of vstap worsens as the correlation ρtc increases.
Consequently, when the energy of clutter components and the correlation with the target
are high, the angle and Doppler frequency information of the target after STAP processing
will be strongly influenced. The following simulation shows the effect in detail.

The system simulation parameters are listed in Table 1; the main-lobe widths of the
angle and Doppler frequency were 23.5◦ and 0.0242 Hz, respectively. The target was
located at 0◦ with a Doppler frequency of 0 Hz. Figure 1a,b show the correlation between
the target and clutter components in the angle and Doppler frequency domains as the
clutter component stepped away from the target. The red vertical lines represent the main
lobe. When the clutter component was in the main lobe of the target, the correlation
coefficient was greater than 0.7 in the angle domain and 0.65 in the Doppler frequency
domain, respectively. The effect was even more severe in the angle domain due to the high
probability of clutter components in such a wide main lobe.

Table 1. System parameters.

Parameter Value

λ 53.5 m
d 14.5 m

Ne 8
Np 512
tm 20.6 s
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Figure 1. (a) Correlation between target and clutter components in the angle domain. (b) Correlation
between target and clutter components in the Doppler frequency domain. (c) Spatial gain in the target
direction via the correlation between the clutter component and target for different CNRs. (d) Partial
enlargement of (c).
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Figure 1c shows the spatial gain in the target direction via the correlation between
the clutter component and the target for different CNRs. The spatial gain here represents
the gain in Doppler frequency domain and angle domain. Figure 1d shows a partial
enlargement of Figure 1c. The horizontal coordinates in Figure 1d are logarithmic, and
the gain of vstap to the target decreased with an increase in the correlation between the
target and clutter components, whereas the increase in CNR led to a lower spatial gain.
In conclusion, the results of the simulation indicated that the main-lobe clutter seriously
influenced the adaptive weight vector vstap response beam pattern of STAP by distorting
the beam pattern and reducing the spatial gain.

3. Sparse Representation of the Space-Time Clutter Spectrum

The clutter component should be recognised and separated to avoid its effects in the
main lobe. The following content is an algorithm described in our previous work [16]
to solve the sparse representation of clutter components, and the results can be used for
subsequent calculations.

The space-time plane can be discretised as uniformly integrated points K = NsNd,
where Ns and Nd represent the numbers of spatial and Doppler frequency bins, respectively.
Each grid point is associated with a space-time steering vector vk, k = [1, 2, . . . , K]. The
STAP dictionary Φ ∈ CM×K represents a combination of all these space-time steering entities:

Φ = [v1, . . . , vK]. (13)

The training samples can then be represented as follows:

Xl = Φγl + n, (14)

where γl ∈ CK×1 is the space-time profile. Equation (14) is the canonical signal form of the
sparse-representation problem, which can be interpreted as estimating a sparse vector γl
with as few nonzero elements as possible.

An iterative compressed sensing method has been developed using the sparse repre-
sentation of the clutter spectrum without prior information on the sparseness degree [18].
The l0-norm is expressed as follows:

‖γl‖0 =
K

∑
k=1

Γ(‖γl(k)‖2). (15)

where ‖•‖0 denotes the l0-norm, which measures the number of nonzero elements in a
vector; and ‖•‖2 represents the l2-norm. Because γl satisfies sparsity, Γ(·) can be defined
as follows:

Γ(t) =
{

0, t = 0
1, otherwise

. (16)

A method for solving this nonsmooth problem has been devised. We also considered
that the clutter conformed to the Gaussian law [19]. Hence, we used a Gaussian equation
to estimate ‖γl‖2. The Gaussian law is expressed as follows:

fσ(α) = e−α2/2σ2
, (17)

where α is the expectation representing the centre of the clutter distribution and σ is the
variance in the distribution. When α 6= 0 and σ→ 0 , we can determine the minimum
solution of l0-norm ‖γl‖0 = K− Fσ(γl) using:

Fσ(γl) =
K

∑
k=1

fσ(‖γl(k)‖2). (18)
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Here, the result of γl can be formulated as the following optimisation problem:{
γ̂l(σ) = argminLσ(γl)

Lσ(γl) = −Fσ(γl) + ‖Xl −Φγl‖2
2

. (19)

defining the following equation:

ς(γl) = 2λ

[
W(γl)

σ2 + 2λΦHΦ

]−1
ΦHXl , (20)

where W(γl) = diag[ fσ(‖γl(k)‖2)] represents the main components of the clutter and
diag[•] represents the transformation of data into a diagonal matrix.

This method gradually reinforces some of the already prominent entries in the pseudo-
inverse operation of the corresponding sparse solution while diminishing the remaining
elements until they approach zero and converge. For each γl , the real number β satisfies
the following expression:

Lσ{βς(γl) + (1− β)γl} ≤ Lσ(γl). (21)

If Equation (21) is satisfied, we can obtain the optimal γl through iterations, where the
relationship between iterations (j) and (j + 1) can be expressed as follows:

γl
(j+1) = ς

(
γl

(j)
)

. (22)

The result of this iteration can separate the target component from the clutter compo-
nents, and the clutter components can be used for the subsequent BR calculation.

4. Proposed Method

In this study, the main- and side-lobe clutters of the two-dimensional space-time
system were processed separately. The main-lobe clutter was processed via eigen-projection
matrix preprocessing (EMP), whereas beam pattern reshaping was used to suppress the
side-lobe clutter with strong energy. The principal clutter components obtained using the
sparse-representation method, presented earlier, can be divided into the components of the
main lobe Cm and the side lobe Cs.

4.1. Eigen-Projection Matrix Preprocessing Method

The principal component Cm of the clutter in the main lobe is eigen-decomposed
as follows:

Ĉm =
M

∑
j

λjujuj
H = UmΛmUm

H + UnΛnUn
H, (23)

where λ1 ≥ λ2 ≥ . . . ≥ λp ≥ . . . ≥ λM are the eigenvalues in descending order, and λj uj

denote the jth eigenvalue and eigenvector, respectively, of the principal component Ĉm
of the clutter in the main lobe. The notation Um = [u1, . . . , uP] represents the main-lobe
clutter subspace. Moreover, Λs = diag[λ1, . . . , λP] represents the eigenvalues, whereas
Un = [uP+1, . . . , uM] denotes the noise subspace and Λn = diag[λP+1, . . . , λM].

The adaptive space-time vector pattern can be shaped as the subtraction of eigen beams
from the quiescent space-time vector pattern, which can be expressed as follows [20]:

Ga( ft, φt) = Gq( ft, φt)−
M

∑
m=1

λm − λmin

λm
· (vH

q um) · Gm( ft, φt), (24)

where Gq( ft, φt) = vH
q v( ft, φt) is the quiescent space-time vector response pattern, vq is

the quiescent space-time vector, Gm( ft, φt) = uH
mv( ft, φt) is the eigen beam of the mth
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eigenvector, and λmin denotes the smallest eigenvalue of Ĉm [21]. The eigenvector of the
two-dimensional main-lobe clutter components um is estimated as follows:∣∣∣um

Hv( ft, φt)
∣∣∣2 = ds

∣∣vq
∣∣2, (25)

where ds denotes an appropriate scalar factor. Thus, the eigen-projection matrix is obtained
as follows:

B = I− um(uH
mum)

−1
uH

m , (26)

where I is the identity matrix. The projection of the training data onto the orthogonal
subspace of the clutter components can be expressed as follows:

Y = BX. (27)

According to the minimum variance principle, the adaptive weight vector can be
calculated as follows:

vMV =
R̂
−1
Y v( ft, φt)

vH( ft, φt)R̂
−1
Y v( ft, φt)

, (28)

where R̂Y denotes the sample covariance matrix of the processed data Y. The Doppler
frequency and azimuth of the desired signal correspond to ft and φt, respectively. Thus,
v( ft, φt) is the space-time vector of the desired signal.

4.2. Space-Time Beam Pattern Reshaping

The adaptive space-time vector based on the minimum variance principle is typically
defined as the solution to the following linearly constrained minimisation problem [22]: v = argmin

w
(vHRv)

s.t. vHv( ft, φt) = 1
, (29)

where v represents the space-time vector and vHv( ft, φt) = 1 denotes the distortionless
constraint applied to the desired signal. However, this result becomes inconsistent when
clutter is present in the main lobe. To shape the two-dimensional beam pattern, the main
lobe of the adaptive space-time and quiescent space-time patterns should be as similar as
possible. The space-time vector of the main lobe vm is expressed as follows:

vm = argmin
v
‖v− vq‖2. (30)

In addition, high side-lobe levels are a significant disadvantage of beamforming. Thus,
the following cost function was proposed to minimise the side lobe:

vs = argmin
v
‖vHΦs‖

2
, (31)

where vs denotes the space-time vector of the side lobe, Φs = [vs1, . . . , vsKs ] denotes the set
of all side-lobe space-time vectors, and Ks is the number of side-lobe space-time vectors.
To suppress the side-lobe clutter, the objective function to shape the beam pattern can be
constructed as follows:  v = argmin

v
‖v− vq‖2 + µs‖vHΦs‖

2

s.t.Cs
Hv = f

, (32)

where Cs = [v( ft, φt), v( fc1, φc1), . . . , v( fcQ, φcQ)] and v( fc1, φc1), . . . , v( fcQ, φcQ) denote
the space-time vectors of the side-lobe clutter components, whereas Q is the number of
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clutter components in the side lobe. Exact clutter components can be obtained from the
sparse-representation results. In addition, µs is a weighting factor that balances similarity
constraints. Here, f =

[
gt, g1, . . . , gq, . . . , gQ

]
is a constraint vector, where gt is the gain

coefficient of the target space-time vector, which is usually 1. In contrast, gq is the gain
coefficient of the qth clutter component, which can be calculated based on the magnitudes
of the clutter components:

gq =
µc

Acq
, (33)

where gq is inversely proportional to the magnitude of the estimated clutter components Acq
and gs < 1, whereas µc is a weighting factor that controls clutter-suppression performance.
The proposed optimisation model is a convex objective function that can be solved using a
convex optimisation solver. The adaptive weight vector can be obtained using the Lagrange
multiplier method, which is expressed as follows:

J(v) = ‖v− vq‖2 + µs‖vHΦs‖
2
+<

{
ηs

H(Cs
Hv− f)

}
, (34)

where <{•} denotes the real part of the operator and ηs is the Lagrange multiplier vec-
tor. Thus:

∇J(v) = 2v− 2vq + µsΦsΦs
Hv + 2Csλ. (35)

When ∇J(v) = 0,

v = (ΦsΦs
H + I)

−1
(vq −Csλ), (36)

When (36) is substituted into Cs
Hv = f:

Cs
H(ΦsΦs

H + I)
−1

(vq −Csλ) = f. (37)

Thus, the λ can be expressed as:

λ = (Cs
H(ΦsΦs

H + I)
−1

Cs)
−1

(Cs
H(ΦsΦs

H + I)
−1

vq − f). (38)

When (38) is substituted into (37):

vopt = Ξ−1((I−Cs(Cs
HΞ−1Cs)

−1
Cs

HΞ−1)vq −Cs(Cs
HΞ−1Cs)

−1
f), (39)

where
Ξ = µsΦsΦs

H + I. (40)

Thus, we obtain the result for vopt, which is the optimal adaptive space-time vector
of the proposed method. Finally, the output of the clutter suppression was calculated
as follows:

Z = vopt
HY. (41)

This result ensured that the main lobe of the desired Doppler frequency and direction
produced the least distortion and was not influenced by the clutter components in the
side lobe.

4.3. Algorithm

The algorithm flow can be summarised as follows (Algorithm 1):
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Algorithm 1. Beam Reshaping

1: Sparse representation algorithm
2: Initialization process:

3: γl
(0) = ΦH(ΦΦH)−1Xl

4: σ(0) = max‖γl
(0)‖1

5: σ0 ∈
[
0.1, 10−4]

6: where µ and η are coefficients of convergence.
7: for each j-th iteration process:

8: When Lσ

{
βς
(

γl
(j)
)
+ (1− β)γl

(j)
}
> Lσ

(
γl

(j+1)
)

,

9: Update β = ηβ and γl
(j+1) = βς

(
γl

(j)
)
+ (1− β)γl

(j)

10: When ‖γl
(j+1) − ς

(
γl

(j)
)
‖

2
< ησ

11: Update σ = µσ

12: end if
13: σ < σ0
14: obtain γl .
15: Divide the principal components γl of the clutter into the main lobe clutter Cm and

side-lobe clutter Cs.
16: Use Cm to construct the covariance matrix for eigen decomposition to obtain

Um =
[
u1, . . . , up

]
.

17: Calculate the weight vector vMV .
18: Use vMV as the quiescent space-time vector vq in the following calculation.
19: Construct the constraint vector f based on Cs.
20: Calculate the adaptive space-time steering vector vopt.

5. Simulation Results

Two approaches were used to evaluate the performance of the proposed algorithm.
The first approach used simulation data for the algorithm evaluation, whereas the second
approach injected simulation targets into the measured data. The proposed algorithm
results were compared and evaluated against the quiescent space-time vector, standard
STAP, and SR-STAP in terms of performance. To improve the accuracy of the Doppler
frequency, a second-order polynomial fitting was used to calculate the peak value. The SR-
STAP used here was STAP processing based on space-time training samples processed by
the sparse-representation algorithm in Section 3. In cases involving clutter components that
included both the main lobe and side lobe, the performance of the algorithm in preventing
the main-lobe distortion of the target was based primarily on the response pattern of the
adaptive weight vector v in the target direction. That is, the adaptive weight vector vopt
was matched with all space-time vectors.

5.1. Simulation Data

For the simulation, we set the system parameters as summarised in Table 1. The grid
density in the spatial and Doppler frequency domains were 3◦ and 0.0970 Hz, respectively.
We set the sparse-representation algorithm parameters as: Nd = 151, Ns = 91, β = 1,
η = 0.5, µ = 0.3, σ0 = 0.01, and L = 2. Furthermore, we set the BR algorithm parameters
as: µs = 1, µc = 0.01 and ηs = 1.

Because principal clutter components could be estimated using the sparse-representation
algorithm, several space-time vectors were set as principal clutter components during the
simulation. The parameters of the clutter components and target are shown in Table 2.
The width of the main lobe was approximately 23.5◦ under the system parameters. Thus,
components 1 and 2 in Table 2 denote the main-lobe clutter in both the angle and Doppler
frequency domains, whereas components 3 to 7 denote the side-lobe clutter. Gaussian
noise with a signal-to-noise ratio (SNR) of 20 dB was added as the background. The clutter
amplitude was measured using the CNR.
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Table 2. Clutter components and target simulation parameters.

Doppler Frequency (Hz) Angle SNR/CNR (dB) Main/Side Lobe

Target −1.116 0◦ 20
Clutter component 1 −1.116 9◦ 23 Main lobe
Clutter component 2 −1.099 0◦ 23 Main lobe
Clutter component 3 −1.116 −39◦ 20 Side lobe
Clutter component 4 −1.116 30◦ 23 Side lobe
Clutter component 5 −0.825 −39◦ 20 Side lobe
Clutter component 6 −0.825 30◦ 23 Side lobe
Clutter component 7 −1.309 −6◦ 23 Side lobe

Figure 2a shows the angle–Doppler map of data under the simulation conditions. It
can be observed that the target was drowning in clutter. Figure 2b,c show the target angle
and Doppler frequency domains, respectively. The red dotted line is the target location.
Because strong clutter components existed in the main and side lobe, the peak of the target
in the angle domain deviated. The peak of the target was also at the inaccurate Doppler
frequency. These deviations seriously influenced the estimation of target information.
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Figure 3a,b show comparisons between the response patterns of the weight vector in
the angle and Doppler frequency domains for different algorithms using the simulated
data shown in Figure 2. As shown in Figure 3a, in the response of the STAP algorithm, the
main lobe was offset by −2.9◦, resulting in poor performance in suppressing the side-lobe
clutter components. In contrast, the response of the SR-STAP algorithm had the narrowest
main-lobe width, which had the best gain for the target direction. However, the resulting
angle was inaccurate, and was offset by −3◦. The main-lobe pattern from the BR method
proposed in this study was highly similar to the result of the quiescent space-time vector,
and the peak was accurate. Moreover, deep notches existed at −39◦ and 30◦ at the angles
of the clutter components due to the BR.
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According to Figure 3b, the standard STAP algorithm exhibited no evident suppression
in the Doppler frequency domain, whereas the offset of the peak was −0.020 Hz by second-
order polynomial fitting. The SR-STAP algorithm had a certain suppression effect in the
Doppler frequency domain. Nevertheless, the peak frequency was inaccurate; that is, it
was offset by −0.0912 Hz. In contrast, the BR algorithm had a good suppression effect on
clutter components, with the lowest offset of 0.001 Hz, and it had the highest gain, which
was 30.9 and 45.5 dB higher than that of SR-STAP and STAP, respectively. The BR algorithm
proposed in this study had a better performance than the quiescent space-time vector.

To fully illustrate the effect of the main-lobe clutter on the angle offset of the response
pattern, the following experiments were performed. We set clutter component 1 with
different energies and angles (10−40 dB and 0−12◦, respectively), and the Monte Carlo
experiment was run 1000 times. The results of the angle offset varying with the energy and
angle of the main-lobe clutter are shown in Figure 4a,b, respectively. As shown in Figure 4a,
the angle offset of the beam pattern from the STAP and SR-STAP algorithms increased
with an increase in the main-lobe clutter amplitude. As shown in Figure 4b, the angle
offset increased with the clutter angle, but decreased after it increased to a certain angle. In
contrast, the response pattern of BR was not influenced by the change in amplitude and
angle of the main-lobe clutter, and was always accurate.
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Figure 4. Result of the angle offset varying with (a) the energy of the main-lobe clutter and (b) the
angle of the main-lobe clutter.

5.2. Measured Data

The experimental parameters for the measured data are outlined in Table 3. In this
section, a simulation target was injected into the measured data. The target was set at the
No. 94 range bin, the angle was 21◦, and the Doppler frequency was set to 0.279 Hz. The
signal-to-clutter ratio of the target was 0 dB. The grid density in the spatial and Doppler
frequency domains were 3◦ and 0.0485 Hz, respectively. We set the sparse-representation
algorithm parameters as: Nd = 251, Ns = 61, β = 1, η = 0.5, µ = 0.3, σ0 = 0.01, and L = 2.
Furthermore, we set the BR algorithm parameters as: µs = 1, µc = 0.01, and ηs = 1.

Table 3. System parameters of measured data.

Parameter Value

λ 53.5 m
d 14.5 m

Ne 8
Np 1024
tm 41.2 s

Figure 5a shows the range–Doppler map of the measured data. The ionospheric
clutter and sea clutter are also labelled. It can be seen that the ionospheric clutter had a
high intensity and was widely distributed over the Doppler frequency domain and range
domain. The ionospheric clutter near the No. 94 range bin was used in this experiment.
The angle–Doppler map of the No. 94 range bin is shown in Figure 5b. The target was
obscured by the clutter. In this case, the ionospheric clutter seriously affected the accuracy
of target detection. Figure 5c,d show the target angle and Doppler frequency domains,
respectively. The red dotted line is the target location. Three pairs of vertical lines indicate
the range of clutter, and can be seen from −78◦ to −42◦, from −20◦ to 40◦, and from 57◦ to
78◦ in the angle domain. In the Doppler frequency domain, the clutter spread from 0.09 to
0.450 Hz. The angle and Doppler frequency of the target shifted due to the clutter, making
it difficult to detect the target information.
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the angle of the target.

Figure 6a shows the angle–Doppler map of the No. 94 range bin using the sparse-
representation algorithm mentioned in Section 3, which contained target and clutter com-
ponents. The target is marked with red lines. Compared to Figure 5c, the sparse principal
component could separate the target from the clutter. Figure 6b shows the angle–Doppler
map of the No.95 range bin as an example of adjacent range bins, which contained only
clutter components. The components with the same distribution in adjacent distance ele-
ments were selected as clutter components. The clutter was contained in the main and side
lobe, which could be used as clutter space-time vectors in the BR algorithm. The main-lobe
clutter was distributed around 12◦, and the side-lobe clutter was distributed around −57◦

and 51◦. These components were used in subsequent BR calculation.
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Comparison of response patterns for the weight vector in (c) the angle domain and (d) Doppler
frequency domain for different algorithms for the measured data.

Figure 6c,d show a comparison between the response patterns of the weight vector in
the angle and Doppler frequency domains for the different algorithms for the measured
data. As shown in Figure 6c, the response pattern of the STAP was similar to those obtained
in the simulation experiment. This could not guarantee the accuracy of the main-lobe
peak, which was offset by −2.8◦, nor the suppression of the side-lobe clutter components.
The SR-STAP algorithm could have a narrow main-lobe width; however, the peak angle
was incorrect, and was offset by −4.9◦. Moreover, there was no clear suppression of the
side-lobe clutter area. However, the beam pattern of the main lobe from the BR was similar
to that of the quiescent space-time vector, and the peak was accurate. In addition, there
were notches at−57◦ and 51◦, which were consistent with the estimated clutter distribution,
and could suppress the clutter component of the side lobe.

According to Figure 6d, the peak of STAP was offset by 0.021 Hz. In addition, the
peak of SR-STAP was offset by 0.011 Hz. Nonetheless, the BR algorithm better suppressed
the clutter components, with the lowest offset of 0.001 Hz, and it had the highest gain of
26.0 and 37.6 dB higher than that of SR-STAP and STAP, respectively. Among the tested
algorithms, the proposed BR algorithm had the best suppression performance and the most
accurate main-lobe peak response.
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6. Conclusions

This study analysed and confirmed that the clutter components in the main lobe of
the target caused its deformation during STAP processing, resulting in a loss of the angle
and Doppler frequency information of the target after clutter suppression. Then, a STAP
clutter-suppression method was proposed based on BR for HFSWR. The algorithm could
maximally suppress the clutter components of the side lobe while ensuring that the main-
lobe beam pattern was not deformed by the main-lobe clutter component. Compared with
the quiescent space-time vector, standard STAP, and SR-STAP, the proposed BR algorithm
provided a more accurate angle–frequency response, which met the requirements of the
maximum target response and a notch response with side-lobe clutter, especially in the
angle domain. Two approaches were used to evaluate the performance of the proposed
algorithm. The first approach used simulation data for the algorithm evaluation, whereas
the second approach injected simulation targets into the measured data. In HFSWR,
the proposed BR clutter-suppression algorithm could effectively remove the effect of
ionospheric clutter and protect the information of the target, which can assist with target
detection and tracking despite a background with ionospheric clutter.

There is still potential to considerably improve BR. In particular, although the BR algo-
rithm could completely protect the angle and Doppler frequency information of the target,
it could not completely eliminate high-energy clutter from the main lobe. Consequently, it
retained part of main-lobe clutter energy, which made it difficult to obtain an extremely
high signal-to-clutter ratio. Therefore, a method to eliminate high-energy clutter in the
main lobe is required. We will evaluate improving the performance of BR to suppress
clutter in the main lobe or develop a method to deal with the main-lobe clutter following
BR processing.
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