
Citation: Xi, J.; Ersoy, O.K.; Cong, M.;

Zhao, C.; Qu, W.; Wu, T. Wide and

Deep Fourier Neural Network for

Hyperspectral Remote Sensing Image

Classification. Remote Sens. 2022, 14,

2931. https://doi.org/10.3390/

rs14122931

Academic Editor: Pedro Melo-Pinto

Received: 4 May 2022

Accepted: 16 June 2022

Published: 19 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Wide and Deep Fourier Neural Network for Hyperspectral
Remote Sensing Image Classification
Jiangbo Xi 1,2,3,4,† , Okan K. Ersoy 5,† , Ming Cong 1,2,* , Chaoying Zhao 1,2 , Wei Qu 1,2 and Tianjun Wu 6

1 College of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China;
xijiangbo@chd.edu.cn (J.X.); cyzhao@chd.edu.cn (C.Z.); quwei@chd.edu.cn (W.Q.)

2 Key Laboratory of Western China’s Mineral Resources and Geological Engineering, Ministry of Education,
Xi’an 710054, China

3 Big Data Center for Geosciences and Satellites (BDCGS), Chang’an University, Xi’an 710054, China
4 Key Laboratory of Ecological Geology and Disaster Prevention, Ministry of Natural Resources,

Xi’an 710054, China
5 School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA;

ersoy@purdue.edu
6 Department of Mathematics and Information Science, College of Science, Chang’an University,

Xi’an 710064, China; tjwu@chd.edu.cn
* Correspondence: mingc@chd.edu.cn
† These authors contributed equally to this work.

Abstract: Hyperspectral remote sensing image (HSI) classification is very useful in different appli-
cations, and recently, deep learning has been applied for HSI classification successfully. However,
the number of training samples is usually limited, causing difficulty in use of very deep learning
models. We propose a wide and deep Fourier network to learn features efficiently by using pruned
features extracted in the frequency domain. It is composed of multiple wide Fourier layers to extract
hierarchical features layer-by-layer efficiently. Each wide Fourier layer includes a large number
of Fourier transforms to extract features in the frequency domain from a local spatial area using
sliding windows with given strides.These extracted features are pruned to retain important features
and reduce computations. The weights in the final fully connected layers are computed using least
squares. The transform amplitudes are used for nonlinear processing with pruned features. The
proposed method was evaluated with HSI datasets including Pavia University, KSC, and Salinas
datasets. The overall accuracies (OAs) of the proposed method can reach 99.77%, 99.97%, and 99.95%,
respectively. The average accuracies (AAs) can achieve 99.55%, 99.95%, and 99.95%, respectively. The
Kappa coefficients are as high as 99.69%, 99.96%, and 99.94%, respectively. The experimental results
show that the proposed method achieved excellent performance among other compared methods.
The proposed method can be used for applications including classification, and image segmentation
tasks, and has the ability to be implemented with lightweight embedded computing platforms. The
future work is to improve the method to make it available for use in applications including object
detection, time serial data prediction, and fast implementation.

Keywords: hyperspectral image classification; deep learning; convolutional neural network; frequency
domain learning; deep fourier neural network

1. Introduction

Hyperspectral remote sensing images can be used for land cover classification on
different applications such as agriculture, environmental protection, and water resources
analysis. In the past 30 years, many different machine learning methods such as decision
trees [1], support vector machine (SVM) [2], multilayer perceptron (MLP) [3], and random
forest (RF) [4] have been used for pixel classification. These methods mainly use the spectral
information of HSI.
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Including full use of spectral and spatial information, deep learning has been used
successfully for HSI classification [5]. Zhang et al. [6] described in detail how to use deep
learning with different inputs and applications. Diverse region-based CNN [7] was pro-
posed to obtain good classification results. Researchers also used different features to learn
HSI images, including fast dense spectral–spatial convolution (FDSSC) [8], which learn dif-
ferent features with different convolutional kernels, multiscale convolution (MS-CNNs) [9]
to learn discriminative features, a CNN to learn various morphological profiles [10], and
the method to extract hierarchical deep spatial features from CNN [11]. Recently, three
dimensional features were used for HSI classification, such as 3D CNN [12], hybrid spectral
CNN [13], and mixed CNN [14], which combined spectral spatial 3D features with 2D
spatial features. An expansion convolution network (ECNet) was proposed to inject holes
into convolution kernels to expand the receptive field; therefore, more context features can
be extracted [15].

Researchers also combined emerging new methods with CNN to improve HSI classifi-
cation performance. The fully convolutional network (FCN) was improved by using an
efficient nonlocal block for HSI classification [16]. The model reduces parameters with less
degrading of classification performance using lightweight and attentional block. The atten-
tional mechanism was also combined with 3D octave convolutional neural network [17].
The HSI classification performance of CNN was improved by introducing active learn-
ing [18]. The CNNs were also trained with transfer learning [19,20] for HSI classification.

Different learning models were also proposed by researchers for HSI classification
other than CNN-based deep learning methods. Originating with recurrent neural network,
long short-term memory (LSTM), transformer, developed originally for natural language
processing, deep recurrent neural network [21], cascaded recurrent neural network [22],
bidirectional–convolutional LSTM [23], and attention-based bidirectional LSTM [24] were
proposed for HSI classification. A two-branches multidirectional spectral and spatial long
short-term memory (LSTM) attention network [25] was also proposed for HSI classifi-
cation, which uses LSTMs to extract six directional spatial spectral features, and extract
spectral spatial relationships along different directions. The transformers were used for HSI
classification with improved performance using both spatial and spectral features [26,27].
Very recently, a spectral spatial self-mutual-attention network (S3MANet) was proposed to
enhance both spectral and spatial features through self mutual attention method [28].

CNNs were also combined with Fourier Transform to improve their performance. A
Fourier domain acceleration method was proposed for convolutional neural networks [29].
An efficient spectral-based CNN model [30] was proposed that uses only the lower fre-
quency components. Spectral dropout method [31] was proposed to prevent overfitting
by eliminating weak and noisy Fourier domain coefficients of the neural network acti-
vations. Other types of original machine learning methods were proposed for different
goals such as using different learning kernels, learning efficiency, and unbalanced data.
Researchers proposed different transform based networks, especially, Fourier transform is
usually used to develop learning models [32,33]. A new neural operator [34] by parameter-
izing the integral kernel directly in Fourier space to generate an expressive and efficient
learning architecture. The Global Filter Network (GFNet) [35] was proposed by replacing
the self-attention layer in vision transformers with 2D discrete Fourier related operations.
Harmonic networks [36] were proposed, and they were further developed by naive Gabor
networks [37] for HSI classification to reduce the number of learning parameters. The deep
support vector machine (DSVM) [38] was proposed through extending SVM in the deep
direction. A generative adversarial minority oversampling [39] was proposed to deal with
unbalanced instances in HSI. A spectral–spatial attention feature extraction method using
generative adversarial network (GAN) [40] was proposed for HSI classification.

Because the training samples of HSI are pretty limited, it is usually difficult to train
a learning model with a large number of parameters without overfitting. Incremental
learning (IL) and scalable learning (SL) can be used to solve this problem by generating
learning models with proper parameters according to the complexity of the learning tasks.
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They were originally designed to overcome catastrophic forgetting [41], to and reduce
computational load [42,43]. IL models have been proposed by different researchers, for
example elastic weight consolidation (EWC) [44], which remembers old knowledge through
reducing important weights selectively, and incremental moment matching (IMM) [45],
which assumes that the moment of the posteriors can be matched incrementally by the
posterior distribution of the parameters in Bayesian neural networks. SL models mainly
include the earlier work called parallel, self-organizing, hierarchical neural networks
(PSHNNs) [46] and parallel consensual neural networks (PCNNs) [47] which combine
multistage neural networks with the sample rejection or statistical consensus methods.
Scalable effort classifiers [42,43] were also generated with increasing complexity of learning
models. Another way to generate a learning model for HSI classification is using wide
learning [48,49] or both wide and deep [50] learning. It is demonstrated that the wide fully
connected neural networks can generalize better [48,49]. Researchers have used incremental
learning for remote sensing image scene classification, for example, an incremental learning
with open set recognition (ILOSR) framework [51] was proposed by identifying unknown
classes from a data stream and learning new classes incrementally. Parallel multistage wide
neural network (PMWNN) [3] was proposed to learn unbalanced image data effectively
and incrementally, and it also has good performance on HSI classification. Scalable wide
neural network (SWNN) [52] was proposed for classification including HSIs, which can
generate wide neural networks incrementally. Wide sliding and subsampling network
(WSWS Net) [53] was proposed for HSI classification, and it can be extended in both wide
and deep directions to learn both spatial and spectral features efficiently. Dynamic wide
and deep neural network (DWDNN) [54] was proposed, which can generate wide and deep
learning models dynamically to classify HSI effectively with proper computational load.

It is hard and to use limited HSI training samples to generate deep learning models
with very deep architecture, and considering with other new proposed learning models,
how to learn HSI features efficiently based on the limited training samples is still a still
key issue to be solved. In this paper, a wide and deep Fourier network (WD-FNet) is
proposed to learn hierarchical features efficiently in the frequency domain. It is composed
of multiple wide Fourier layers in the deep direction to extract features layer-by-layer,
and more abstract features can be extracted as the number of layers increases. Each wide
Fourier layer includes a large number of Fourier transforms generated in the wide direction
using sliding windows with given strides. These Fourier transforms extract features from
the spatial domain in the corresponding sliding windows, and the extracted features are
pruned to reduce the computational load and improve generalization. The fully connected
layer follows wide Fourier layers, and its weights can be learned fast using the least squares
method. The contributions of the proposed WD-FNet are as follows:

• Learning both spectral and spatial fine grained features efficiently using a large number
of Fourier transforms in the wide direction, with computational load reduced by using
pruning and retaining most effective features;

• Extracting hierarchical abstract features layer-by-layer in the deep direction with wide
Fourier layers efficiently with limited training samples for HSI classification;

• Learning the weights in the fully connected layer by using least squares, which makes
the training process very simple for HSI classification.

The motivation is that we would like to design a more representative and efficient
feature learning model for HSI classification. The current convolutional neural network
learns features in spatial domain with learnable kernels, which usually needs a large
number of training samples and long training time. This is a disadvantage when there
are only limited training samples such as for HSI classification, and it is hard to build and
train a CNN with a very deep architecture. The WF model computes features in frequency
domain, and the transforms can be computed with fast method (FFT). Only a few frequency
components are used to represent the training data, and the number is further reduced by
using subsampling method. Therefore, the training process are more efficient compared
with CNN based methods for HSI classification. The training data is also learned with fine
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grained using sliding windows with strides in wide direction; therefore, the learning model
can be generated with proper complexity according to the number of training samples and
the difficulty of learning tasks for HSI classification. This makes the proposed method with
WF layers overcome overfitting more easily.

The rest of the paper is organized as follows: Section 2 presents the detailed description
of the proposed WD-FNet. Section 3 gives the datasets and the experimental settings.
Section 4 presents the experimental results with different HSI datasets. Sections 5 and 6
provide a discussion and conclusions.

2. Wide and Deep Fourier Neural Network for Hyperspectral Image Classification

Considering that CNN is not efficient for use with very deep architectures for HSI
classification, and other newly proposed methods still need to be improved both in terms
of their performance and efficiency, this paper proposed a wide and deep Fourier neural
network for HSI classification. There are three advantages for the proposed method.
Firstly, the wide Fourier layer (WF layer) is proposed to extract features in the frequency
domain, and the transforms in WF layers can be computed with fast Fourier transform (FFT)
fast. Then, the layers are stacked in deep direction to extract more abstract hierarchical
features efficiently. Finally, only the weights in the fully connected layer need to be learned
using least squares method, which is very simple and efficient for HSI classification. The
limitation of the WD-FNet is that unlike DWDNN, which can learn features dynamically,
the current learning model is a static model; therefore, it is hard and important to find
proper hyperparameters for each WF layers. The capability of learning spatial features still
needs to be improved. The architecture of the proposed model is shown in Figure 1. The
deep Fourier neural network is composed of multiple wide discrete Fourier transform (DFT)
layers to extract features in the frequency domain. Firstly, the HSI data is preprocessed
including spectral band reduction by using PCA, and data splitting with overlapping to
generate image patches. Then, these image patches are flattened into vectors, and a sliding
window with a stride is used to generate input vectors. For each sub-vector in the sliding
window, a discrete DFT is performed and, therefore, a large number of DFTs are generated
in the wide direction, and the amplitudes of these DFTs are used as the outputs of the
transforms. After that, the sorting and pruning operation are performed to reduce the
number of outputs. Finally, the wide Fourier layer is added one-by-one in the deep direction
to extract more abstract features, and a fully connected layer is given, and the weights are
computed using least squares method. Because the proposed method is in the frequency
domain, it can use fast Fourier transform to accelerate the computing process. Another
advantage is that because only the important Fourier components are used, the number of
outputs is highly reduced, and the WD-FNet only needs a small computational load.

2.1. Hyperspectral Remote Sensing Data Sliptting

The HSI data X ∈ RH×W×B is first processed with principal component analysis (PCA)
to reduce the spectral bands to B′ to obtain X′ ∈ RH×W×B′ , where (H, W) is the height
and width of the HSI, and B is the number of bands. The image after PCA is split into
fixed-size image patches Pm ∈ Rsr×sc×B′(1 ≤ m ≤ M), and then these patches are flattened
into vectors P′m ∈ R(srsc)×B′(1 ≤ m ≤ M). These vectors are organized by subdivisions as
training, validation, and testing sets to be used for learning and testing.
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Figure 1. Architecture of the wide and deep Fourier neural network for hyperspcetral image classification.

2.2. The Wide Fourier Transform Layer

For each wide Fourier layer in Figure 2, the sliding window with size w and a sliding
stride with the size s are selected. The sliding window is used to generate the input sub-
vectors with a given stride. With the nth sliding window, the DFT is performed on part
of the vector for the mth image patch (denoted as vmn after zero padding according to the
number of desired frequency components) as follows:

ũmn = F(vmn) =
L−1

∑
l=1

vmn(l)ej 2π
L lu, 1 ≤ l ≤ L− 1 (1)

where n denotes the nth slice, L is the total number of frequency components, and l is
the current component in frequency domain. ũmn is a complex vector, whose amplitude is
denoted by

umn = |ũmn|
1
2 (2)

It is only the amplitude, and not the phase used for subsequent processing. For all N
sliding windows with an image patch and writing vmn as vn, the outputs are written as

U = [u1, u2, · · · , uN ] (3)

where un refers to the nth DFT amplitude vector.
In order to represent the features in the frequency domain more effectively, the DFT

amplitudes in each slice are summed up with respect to the image patches as

usum_n =
M

∑
m=1

umn (4)

Then, usum_n is sorted from maximum to minimum according to

usort_n = sort(usum_n) (5)

The indices of the sorted components with Ns elements determine the elements of un
to be used, and the corresponding feature vectors is generated by

up_n = [un(1), un(2), · · · , un(Ns)] (6)
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Finally, they are combined together as

UFT =
[
up_1, up_2, . . . , up_N

]
(7)

Figure 2. Architecture of the wide Fourier neural layer.

2.3. Wide and Deep Fourier Neural Network

The wide Fourier Layer is added layer-by-layer to obtain more abstract features.
Suppose there are Q layers in the proposed network. The output in layer q, (1 ≤ q ≤ Q) is
denoted as U(q)

FT . A fully connected layer is added after the Fourier layers, and the output
of the proposed network is

Y = U(Q)
FT W (8)

Suppose the class ground truth of the instances is given by D. The weights can be
computed using least squares by computing

Ŵ = arg min
W

∥∥∥U(Q)
FT W−D

∥∥∥2
(9)

That is because the final outputs are the linear combination of pruned features using
weights in the fully connected layer. Ŵ is finally computed with pseudoinverse of UFT
given by

Ŵ = U(Q)+
FT D =

(
U(Q)T

FT U(Q)
FT

)+
U(Q)T

FT D (10)

3. Datasets and Experimental Settings
3.1. Experimental Datasets

We used three datasets to evaluate the proposed method, and they are described in
Tables 1 and 2.
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Table 1. Description of Hyperspectral data.

Dataset Description
It was acquired by the Reflective Optics System Imaging Spectrometer (ROSIS) sensor over the

Pavia University Pavia University campus. It has nine classes of land cover. The image dimension is 610× 610.
After discarding the pixels without information, the dimension is 610× 340 with 103 spectral bands.
The Kennedy Space Center (KSC, Merritt Island, FL, USA) dataset was acquired over the Kennedy

KSC Space Center in Florida. The image size is 512× 614, and there are 13 classes of land cover. It has
176 bands after removing water absorption and low SNR bands.

Salinas It was acquired in Salinas valley, California. The image size is 512× 217 pixels, and the number of
classes is 16. There are 204 bands after removing bands of water absorption.

Table 2. Hyperspectral Remote Sensing Datasets.

Class NO.
Pavia University KSC Salinas

Land Cover Class NO. Land Cover Class NO. Land Cover Class NO.

1 Asphalt 6631 Scrub 347 Brocoli-green-weeds-1 2009
2 Meadows 18,649 Willow swamp 243 Brocoli-green-weeds-2 3726
3 Gravel 2099 CP hammock 256 Fallow 1976
4 Trees 3064 Slash pine 252 Fallow-rough-plow 1394
5 Painted metal sheets 1345 Oak/broadleaf 161 Fallow-smooth 2678
6 Bare soil 5029 Hardwood 229 Stubble 3959
7 Bitumen 1330 Swamp 105 Celery 3579
8 Self-blocking bricks 3682 Graminoid marsh 390 Grapes-untrained 11,271
9 Shadows 947 Spartina marsh 520 Soil-vinyard-develop 6203
10 Cattail marsh 404 Corn-senesced-green-weeds 3278
11 Salt marsh 419 Lettuce-romaine-4wk 1068
12 Mud flats 503 Lettuce-romaine-5wk 1927
13 Water 927 Lettuce-romaine-6wk 916
14 Lettuce-romaine-7wk 1070
15 Vinyard-untrained 7268
16 Vinyard-vertica-trellis 1807

Total 42,776 5211 54,129

3.2. Experimental Setup

The computer system used had Intel-i7-8700K CPU @ 3.7 GHz, 32G memory. The
number of bands used was 15 after using PCA. The patch sizes used were with 15× 15,
17× 17, and 19× 19 for Pavia Universiy, KSC, and Salinas datasets, respectively. The
centered pixels in the patches were treated as instances for the learning process. The
ratio of instances for training, validation was 0.2, and the remainder was for test. All the
instances were chosen randomly for training, validaiton, and test. The overall accuracy
(OA), average accuracy (AA) [53,54], and Kappa coefficient were used as evaluation indices
in the experiments. OA is given by

OA =
Nc

Nt
(11)

where Nc, and Nt are the correctly classified and the total number of testing instances,
respectively.

AA is defined as

AA =
1
C

C

∑
i=1

Nc_i
Nt_i

(12)

where, Nc_i and Nt_i are the numbers of correctly classified and testing instances for class
i, respectively.

The proposed WD-FNet in the experiments is composed of four WF layers. The hyper-
parameters for each WF layer includes sliding window size, sliding stride, size of DFTs,
and number of pruned outputs. For the Pavia University dataset, these parameters are 15,
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0.9 of the length of the sliding window, 600, and 100 for the first layer; 0.35 of the input
data length, 0.15 of the length of sliding window, 1000, and 100 for the second layer; 0.3 of
the input data length, 0.15 of the length of sliding window, 1000, and 100 for the third layer;
and 0.32 of the input data length, 0.15 of the length of sliding window, 3000, and 300 for the
fourth layer. For the KSC dataset, these parameters are 20, 0.9 of the length of the sliding
window, 600, and 100 for the first layer; they are the same for the second and third layers;
and 0.37 of the input data length, 0.15 of the length of sliding window, 1000, and 50 for the
fourth layer. For the Salinas dataset, these parameters are 15, 0.8 of the length of the sliding
window, 600, and 100 for the first layer; they are the same for the second and third layers;
and 0.37 of the input data length, 0.15 of the length of sliding window, 4000, and 400 for
the fourth layer. The detailed settings are shown in Table 3.

We compared the proposed method with multilayer perceptron (MLP) [53], radial basis
function (RBF) [53], CNN [53], RBF ensemble [53], CNN ensemble [53], 2D CNN [17,21],
3D CNN [17,21], SMSB [55], WSWS Net [53], and DWNNN [54].

Table 3. Hyperparameters of the WD-FNet for different datasets.

Dataset Hyperparameters of the WD-FNet for Different Datasets

Pavia University

Wide Fourier Layer 1 Wide Fourier Layer 2

Window Stride DFT Pts. Pruned NO. Window Stride DFT Pts. Pruned NO.
15 0.9 600 100 0.35 0.15 1000 100

Wide Fourier Layer 3 Wide Fourier Layer 4

Window Stride DFT Pts. Pruned NO. Window Stride DFT Pts. Pruned NO.
0.3 0.15 1000 100 0.32 0.15 3000 300

KSC

Wide Fourier Layer 1 Wide Fourier Layer 2

Window Stride DFT Pts. Pruned NO. Window Stride DFT Pts. Pruned NO.
20 0.9 600 100 0.35 0.15 1000 100

Wide Fourier Layer 3 Wide Fourier Layer 4

Window Stride DFT Pts. Pruned NO. Window Stride DFT Pts. Pruned NO.
0.3 0.15 1000 100 0.37 0.15 1000 50

Salinas

Wide Fourier Layer 1 Wide Fourier Layer 2

Window Stride DFT Pts. Pruned NO. Window Stride DFT Pts. Pruned NO.
15 0.8 600 100 1.35 0.15 1000 100

Wide Fourier Layer 3 Wide Fourier Layer 4

Window Stride DFT Pts. Pruned NO. Window Stride DFT Pts. Pruned NO.
0.5 0.15 1000 100 0.37 0.15 4000 400

4. Experimental Results
Classification Performance on Different Datasets

The classification results on the Pavia University dataset are shown in Table 4 and
Figure 3. It is seen from the results that the proposed WD-FNet achieved the best per-
formance among the compared methods, and the OA, AA, and Kappa coefficients for
WD-FNet are 99.77%, 99.55%, and 99.69%, respectively. DWDNN, WSWS Net, and SMSB
also achieved excellent performance. It is also seen from the classification results in the
figures that the proposed method has the most smooth predicted land cover results. For
example, the class of bare soil at the lower right of Figure 3 is exactly predicted as compared
with the original false color image.
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Table 4. Classification results of different methods on Pavia University dataset (the unit of all the
results is %).

Class NO. MLP CNN 2-D CNN 3-D CNN SMSB WSWS DWDNN WD-FNet

1 97.13 96.18 98.51 98.40 99.11 99.10 99.87 99.85
2 98.43 96.69 99.54 96.91 98.97 100.00 100.00 99.96
3 85.15 80.86 84.62 97.05 98.89 93.01 96.98 98.89
4 95.05 87.21 98.04 98.84 98.74 98.37 99.29 99.18
5 99.88 99.63 100.00 100.00 100.00 99.88 99.75 99.26
6 96.35 88.30 97.10 99.32 99.87 99.97 100.00 100.00
7 90.85 82.58 95.05 98.92 99.79 99.00 98.62 100.00
8 93.21 94.12 96.39 98.33 98.99 98.33 99.59 99.50
9 99.30 99.30 99.69 99.90 98.04 98.95 99.65 99.30

OA 96.47 93.66 97.84 96.52 99.11 99.19 99.69 99.77
AA 95.04 91.65 96.56 97.47 99.16 98.51 99.31 99.55

Kappa 95.36 91.72 97.19 95.50 98.79 98.93 99.59 99.69

Figure 3. Classification results of Pavia University data (the unit for both horizontal and vertical axes
is: pixel).

The classification results on KSC data are shown in Table 5 and Figure 4. It is observed
that the proposed WD-FNet achieved the best performance among the compared methods.
The OA, AA, and Kappa coefficients of the proposed method are 99.97%, 99.95%, and
99.96%, respectively. DWDNN, WSWS Net, and SMSB also achieved excellent performance.
It is also seen that 12 of 13 classes achieved accuracies of 100% for both the proposed
WD-FNet and DWNNN, while 11 of 13 classes achieved accuracies of 100% for WSWS Net.
It is also seen from the classification results in the figures that the proposed method has
smooth predicted land cover results with different classes.
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Figure 4. Classification results of KSC data (the unit for both horizontal and vertical axes is: pixel).

Table 5. Classification results of different methods for KSC (the unit of all the results is %).

Class NO. MLP RBF CNN RBFE CNNE WSWS DWDNN WD-FNet

1 99.78 98.47 97.37 96.94 97.81 100.00 100.00 100.00
2 99.31 88.28 94.48 92.41 94.48 100.00 100.00 100.00
3 92.86 96.75 95.45 96.10 98.70 99.35 100.00 100.00
4 79.61 64.74 76.97 71.71 70.39 100.00 98.68 99.34
5 87.63 90.72 72.16 92.78 69.07 96.91 100.00 100.00
6 99.27 88.32 83.21 83.21 86.13 100.00 100.00 100.00
7 100.00 96.83 100.00 95.24 90.48 100.00 100.00 100.00
8 100.00 98.07 96.53 94.98 99.61 100.00 100.00 100.00
9 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

10 99.59 99.59 100.00 97.93 100.00 100.00 100.00 100.00
11 98.41 90.84 100.00 95.62 100.00 100.00 100.00 100.00
12 99.34 98.01 96.01 98.67 98.34 100.00 100.00 100.00
13 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

OA 97.95 95.36 95.75 95.52 95.97 99.87 99.94 99.97
AA 96.60 93.10 93.25 93.51 92.69 99.71 99.90 99.95

Kappa 97.72 94.85 95.28 95.03 95.52 99.86 99.93 99.96

The classification results for the Salinas dataset are shown in Table 6 and Figure 5. It is
seen from the results that the proposed WD-FNet achieved the best performance among
the compared methods. The OA, AA, and Kappa coefficients of the proposed method are
99.95%, 99.95%, and 99.94%, respectively. DWDNN also achieved excellent performance
with OA, AA, and Kappa coefficients as high as 99.76%, 99.73%, and 99.73, respectively. It
is also observed that the proposed method has the most smooth predicted results, which
can be seen clearly at the bottom right of Figure 5.
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Table 6. Classification results of different methods on Salinas dataset (The unit of all the results is %).

Class NO. MLP CNN 2-D CNN 3-D CNN SMSB WSWS DWDNN WD-FNet

1 100.00 98.51 100.00 98.41 99.78 100.00 100.00 100.00
2 100.00 99.82 99.96 100.00 99.97 99.87 99.91 100.00
3 99.41 99.66 99.63 99.23 99.94 98.82 99.24 100.00
4 99.52 98.68 99.28 99.90 99.28 97.73 98.80 100.00
5 97.70 99.38 99.20 99.43 99.54 99.38 99.88 99.88
6 100.00 99.96 100.00 99.55 99.97 99.96 100.00 100.00
7 0.00 99.95 100.00 99.72 99.88 99.91 99.95 100.00
8 90.64 74.24 93.62 89.75 98.87 99.72 99.81 99.91
9 100.00 100.00 100.00 99.81 99.91 99.76 99.70 99.92

10 99.08 93.44 98.82 98.36 98.85 99.64 99.95 100.00
11 99.53 96.72 99.73 98.12 99.79 100.00 99.84 100.00
12 100.00 99.74 100.00 98.96 99.94 99.91 99.74 100.00
13 99.64 98.91 100.00 98.93 99.03 99.82 99.82 100.00
14 99.84 100.00 99.86 98.60 98.86 100.00 99.69 100.00
15 85.53 88.65 91.52 79.31 97.63 99.52 99.56 100.00
16 99.91 98.53 99.92 94.51 99.92 100.00 99.72 99.45

OA 89.27 92.42 97.39 93.95 99.26 99.67 99.76 99.95
AA 91.92 96.64 98.85 97.02 99.45 99.63 99.73 99.95

Kappa 88.20 91.69 97.07 93.31 99.17 99.63 99.73 99.94

Figure 5. Classification results of Salinas data (the unit for both horizontal and vertical axes is: pixel).
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5. Discussion
5.1. Effects of Different Sizes of Image Patches

The size of image patches is usually important for hyperspectral image classification,
because it provides spatial features. We tested the proposed WD-FNet with different sizes
of image patches on Pavia University, KSC, and Salinas datasets. The model settings are
the same as the the previous part. The results are shown in Table 7. It can be seen that as
the image patch increases, the test performance continue increasing, and then it decreases
or stops increasing. For Pavia University, it is seen that the proposed method can reach
the best OA, AA, and Kappa coefficients for the size of the image patches with 15× 15,
then these indices decrease. For the KSC dataset, it reaches the best OA, AA, and Kappa
coefficients with the size of the image patches being as large as 17× 17. For the Salinas
dataset, the proposed method achieves the best test performance as the size of the image
patches reach 21, and then the performance almost stops increasing. It also seen that the
proposed method usually has good classification results with pretty large image patches,
which demonstrates that the proposed method has good ability to learn spatial features.

5.2. Visualization of the Fourier Transform Layers of the Wd-Fnet

The learning process included the feed-forward process, and the computation of
weights in the fully connected layer using least squares. The extracted features were
computed layer-by-layer, and in each layer, the features were extracted from the amplitudes
of a large number of Fourier transforms. These features were sorted, and the large feature
values were retained as the output of each transform. Finally, these pruned features were
concatenated as the feature vector of the current wide Fourier layer. The transformed
outputs from the last sliding windows in different layers are shown in Figure 6. For the
three datasets, 10% of the training samples in class 1 were chosen to visualize the Fourier
transform layers. It is seen that the training vectors are similar in the same class, and the
curves are different in different classes. The shapes of the whole curves of the transform
amplitudes look a bit similar, but the values are quite different, representing the extracted
features from different frequencies.

Table 7. Testing accuracies with different neighborhood sizes of Pavia Center, Pavia University, and
KSC datasets.

Neighborhood Sizes
Pavia Univ. /(%) KSC/(%) Salinas/(%)

OA AA Kappa OA AA Kappa OA AA Kappa

3× 3 96.68 93.96 95.63 94.63 92.18 94.04 96.46 98.33 96.08
5× 5 98.05 96.16 97.38 96.87 95.16 96.52 97.56 98.81 97.30
7× 7 98.70 97.40 98.05 98.18 96.98 97.97 98.43 99.33 98.26
9× 9 99.22 98.52 98.97 99.04 98.06 98.93 98.98 99.46 98.87

11× 11 99.35 98.71 99.13 99.07 98.10 98.97 99.49 99.76 99.43
13× 13 99.59 99.20 99.46 99.30 98.87 99.22 99.73 99.79 99.70
15× 15 99.77 99.55 99.69 99.49 99.40 99.43 99.89 99.95 99.88
17× 17 99.51 99.10 99.35 99.97 99.95 99.96 99.88 99.93 99.87
19× 19 99.44 98.64 99.26 99.81 99.66 99.79 99.95 99.95 99.94
21× 21 99.41 98.57 99.22 99.39 99.27 99.32 99.95 99.98 99.95
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Figure 6. Visualization of the DFT layers of the WD-FNet. (a–c) Input training vectors of class 1 from
Pavia University, KSC, and Salinas datasets, respectively. (d–o) are transformed outputs from the last
sliding windows in layer 1, 2, 3, and 4 for Pavia University, KSC, and Salinas datasets, respectively.

5.3. Advantages and Limitations of the WD-Fnet Compared with Other Learning Models

For the HSI datasets in the experiments, SMSB, WSWS, DWDNN, and the proposed
WD-FNet have comparable performance. It can be seen that the order of the performance
of the models are the same on all the three datasets. The WD-FNet always has the best
performance, and the DWDNN has the second best performance. DWDNN is composed
of multiple base learners that can learn features dynamically; therefore, it is possible
to find the learning model with proper complexity to overcome overfitting. However,
the generating process will take some time until it is trained and stopped with proper
architecture. WD-FNet has better performance on HSI classification than the WSWS Net
and SMSB method. All these three models are static learning models, which means the
proper hyperparameters need to be found. WD-FNet learns features in the frequency
domain efficiently, while WSWS Net learns features with a group of Gassian kernels as
basis functions. SMSB combines spectral and spatial data to reduce the computational
complexity, but the performance can still be improved. For further validation of the WD-
FNet, we also compared the results with methods in very recently published papers. For
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the Pavia University data, the OA and Kappa coefficients of the deep high order tensor
convolutional sparse coding model (DHTCSCNet) [56] are 99.11%, and 98.81%, respectively.
The indices for spectral–spatial random patches network (SSRPNet) [57] are 99.05%, and
98.73%, respectively. The indices for deep multilayer fusion dense Network (MFDN) [58]
are 98.89%, and 98.10%, respectively. For the KSC dataset, the OA and Kappa coefficients of
the DHTCSCNet are 99.60%, and 99.56%, respectively. The indices for SSRPNet are 99.43%,
and 99.37%, respectively. The indices for MFDN is 97.55%, and 97.27%, respectively. It can
be seen that the proposed WD-FNet has very promising performance for HSI classification.

To summarize, the advantages of the proposed method are: (1) the WF layer extracts
features in the frequency domain effectively, and can be computed fast with FFT. (2) The
layers can extract more abstract hierarchical features by stacking WF layers in the deep
direction. (3) The weights in the fully connected layer can be learned easily using least
squares method. The limitations of the WD-FNet are that the current learning model
is a static model, it is hard to find proper hyperparameters for each WF layer, and the
performance of learning spatial features by using WD-FNet still needs to be improved.

6. Conclusions

It is important and useful to classify land covers with hyperspectral remote sensing
images based on abundant spectral bands together with spatial features. The problem is
that there are usually a very limited number of training samples to do the classification.
In this paper, a wide and deep Fourier Network is proposed to do hyperspectral image
classification efficiently with high performance. First, the hyperspectral image after PCA
is split into image patches, and then stretched into vectors as inputs. Then, the wide
Fourier layer is generated by combining a number of DFTs used with sliding windows
to learn features in the frequency domain as DFT amplitudes with pruning to reduce the
number of features. After that, the wide Fourier layers are stacked layer-by-layer to learn
features hierarchically with the DFT amplitudes adopted as nonlinear activation functions.
Finally, the fully connected layer is added and the weights are learned efficiently using
least squares method. The experiments were performed with the Pavia University, KSC,
and Salinas datasets, and the results show that the proposed method can learn features
very efficiently, and has excellent classification performance. The OAs of the proposed
method are 99.77%, 99.97%, and 99.95%, respectively. The AAs are 99.55%, 99.95%, and
99.95%, respectively. The Kappa coefficients are 99.69%, 99.96%, and 99.94%, respectively.
The results show that the WD-FNet hast best performance among the compared methods.
It can be used for image classification and segmentation, and can be potentially used on
lightweight embedded computing platforms. In the future work, we will try to use it for
applications such as object detection in images, and time serial data prediction.
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Abbreviations
The following abbreviations are used in this manuscript:

HSI Hyperspectral Image
PCA Principal component analysis
DFT Discrete Fourier transform
FFT Fast Fourier transform
PCA Principal component analysis
MLP Multilayer perceptron
CNN Convolutional neural network
LSTM Long short-term memory
FCN Fully convolutional network
GAN Generative adversarial network
EWC Elastic weight consolidation
PSHNN Parallel, self-organizing, hierarchical neural networks
PCNN D-parallel consensual neural networks
WSWS Wide sliding window and subsampling
SWNN Scalable wide neural network
DWDNN Dynamic Wide and Deep Neural Network
WF Wide Fourier
WD-FNet Wide and Deep Fourier Neural Network
OA Overall Accuracy
AA Average Accuracy
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