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Abstract: As two main drivers of vegetation dynamics, climate variability and human activities
greatly influence net primary productivity (NPP) variability by altering the hydrothermal conditions
and biogeochemical cycles. Therefore, studying NPP variability and its drivers is crucial to under-
standing the patterns and mechanisms that sustain regional ecosystem structures and functions under
ongoing climate variability and human activities. In this study, three indexes, namely the potential
NPP (NPPp), actual NPP (NPPa), and human-induced NPP (NPPh), and their variability from 2000
to 2020 in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) were estimated and analyzed.
Six main scenarios were generated based on change trends in the three indexes over the past 21 years,
and the different relative impacts of climate variability and human activities on NPPa variability
were quantitatively analyzed and identified. The results showed that the NPPp, NPPa, and NPPh

had heterogeneous spatial distributions, and the average NPPp and NPPa values over the whole
study area increased at rates of 3.63 and 6.94 gC·m−2·yr−1 from 2000 to 2020, respectively, while
the NPPh decreased at a rate of −4.43 gC·m−2·yr−1. Climate variability and the combined effects
of climate variability and human activities were the major driving factors of the NPPa increases,
accounting for more than 72% of the total pixels, while the combined effects of the two factors caused
the NPPa values to increase by 32–54% of the area in all cities expect Macao and across all vegetation
ecosystems. Human activities often led to decreases in NPPa over more than 16% of the total pixels,
and were mainly concentrated in the central cities of the GBA. The results can provide a reference for
understanding NPP changes and can offer a theoretical basis for implementing ecosystem restoration,
ecological construction, and conservation practices in the GBA.

Keywords: net primary productivity (NPP); climate variability; human activities; scenarios;
Guangdong-Hong Kong-Macao Greater Bay Area

1. Introduction

As a significant component and core cycle link in terrestrial ecosystems, vegetation
plays an irreplaceable role in mediating the global carbon balance and reducing greenhouse
gases such as CO2 in the atmosphere [1]. The net primary productivity (NPP) represents
the organic matter accumulated by green plants per unit of time and area [2]. It is an
important indicator for assessing the growth status of vegetation. It can also effectively
indicate plant community productivity in specific environments, and is an indispensable
index for measuring the ecosystem health and carbon balance at both local and global
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scales [3–5]. The NPP’s temporal and spatial variability depends largely on the complex
interactions between the vegetation, soil, and climate variables, and it is also heavily
influenced by human interference, making it an indispensable variable for both climate
and environmental changes.

Climate variability and human activities are critical drivers of vegetation dynamics.
Climate variability affects NPP changes by regulating plant metabolic processes [6], and it
can even alter regional vegetation types over the long term [7]. Many studies have explored
the impacts of climate variability on terrestrial ecosystems at the regional, national, or global
scale, examining how the vegetation NPP responds [4,8]. Nemani [9] suggested that the
global NPP increased by 3.4 petagrams of carbon from 1982 to 1999 after climate variability
eased several critical climatic constraints on plant growth. Sullivan [10] found that global
warming can promote NPP increases in ecosystems by increasing photosynthesis and
plant growth rates; however, sustained high temperatures will enhance respiration and
evapotranspiration, causing plants to consume more water and slowing down the rate of
the increase in vegetation productivity [11]. Zhu [8] suggested that temperature, radiation,
and precipitation were the main climate variables affecting the vegetation NPP, and that
each limit NPP variability in time and place. Admittedly, climate variability is considered
to be the main factor influencing NPP patterns in plant communities at the global scale,
although the mechanisms involved are complicated [4,12].

Human activities also play a crucial role in vegetation dynamics because they can
dramatically influence the biogeochemical cycles, soil quality, and hydrothermal condi-
tions [13–15]. As a significant human-induced interference, land use–land cover (LULC)
change is an unavoidable product of population growth and socio-economic development
that alters the structure and functions of natural ecosystems [16], particularly in cities that
are rapidly expanding [15,17,18]. Usually, LULC change caused by human activities is
accompanied by considerable carbon emissions through factors such as increases in local
fossil fuel usage and industrial processes, the transformation from vegetated to unvegetated
land, and impervious surface expansion [15,19], which in turn inhibit carbon accumulation.
Numerous studies have found that human activities often negatively affect NPP because
the carbon fixing potential drops considerably when natural landscapes are converted
to impervious surfaces [16–18]. It has been estimated that the potential photosynthetic
capacity of global ecosystems has reduced by 5% over the last two centuries due to LULC
change [20], and about 1.6 ± 0.7 Pg C (1 Pg = 1015 g) per year was released into the atmo-
sphere in the 1980s as a result of human-induced land cover change [21]. Furthermore,
human activities may further amplify the effects of climate variability on the environment
and ecosystem structure and function [22], leading to severe ecosystem degradation [23].
With accelerating urbanization, the influences of LULC change caused by human activities
on NPP are significant for the regional carbon balance and should be further investigated.
However, the positive impacts of human activities on vegetation should not be ignored;
for example, afforestation, ecological restoration, and ecological transformation not only
directly increase vegetation coverage, but also enhance ecosystem resilience, all of which
will result in significant ecosystem productivity increases [24].

Above all, both climate variability and human activities have significant impacts on
ecosystem and vegetation productivity over time and space [25,26]; however, the mech-
anisms of these effects are very complex. In particular, the strong interactions between
humans and the environment produce an intricate overlay of impacts on terrestrial ecosys-
tems. It is essential to elucidate the effects of climate variability and human activities
on NPP dynamics, especially in areas with complex natural regional structures, typical
climatic characteristics, and high-intensity human interferences, such as urban agglom-
erations. Many methods and models have been developed to distinguish and quantify
the relative influences of climate variability and human activities on NPP. The climatic
productivity and light use efficiency (LUE) models have been widely applied to calculate
the potential and actual NPP to compare the NPP dynamics and its mechanisms under cli-
matic and human conditions [14,27,28]. Alternatively, a method that compares the residual
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trends between the actual and potential NPP at the pixel level has been widely applied to
distinguish between climate variability and human-induced NPP dynamics [23,29]. This
approach was effective in quantifying and discriminating the relative effects of climate
variability and human activities on vegetation productivity [23,30].

As a world-famous greater bay area, the Guangdong–Hong Kong–Macao Greater
Bay Area (GBA) is one of the most populous, urbanized, and economically developed
coastal regions in China. The GBA has experienced rapid population growth, economic
increases, and urbanization since China’s reforms and opening-up. At the same time,
the environmental elements, structures, and functions in the GBA have also experienced
dramatic degradation and destruction under rapid urban development, which has further
impacted ecosystem services and processes [17,31]. Moreover, the GBA is located in South
China, with a typical subtropical climate characterized by cloudy and rainy weather,
and terrestrial ecosystems have been continuously affected by climatic fluctuations. The
accelerated development of the GBA will lead to more profound and complex changes
in the future, which will introduce more severe challenges to the terrestrial carbon cycle
and carbon balance. Furthermore, as the main component of the GBA, the Pearl River
Delta (PRD) was the first “national forest urban agglomeration construction demonstration
area” in China, so carbon neutrality is important for environment protection. Therefore,
exploring the NPP dynamics and describing the different impacts of climate variability and
human activities on NPP variability are of great significance for ecological construction
and sustainable development in the GBA. The objectives of this study were the following:
(1) to investigate the spatiotemporal characteristics of the actual NPP (NPPa), potential
NPP (NPPp), and human-induced NPP (NPPh); (2) to analyze and describe the impacts of
climate variability and human activities on NPPa; and (3) to identify the response of NPPa
changes in different cities and land cover types to climate variability and human activities.

2. Materials and Methods
2.1. Study Area

The GBA (21◦25′N~24◦30′N, 111◦12′E~115◦35′E), also known as the PRD urban ag-
glomeration, includes two Special Administrative Regions, namely Hong Kong and Macao,
as well as nine cities in the PRD, namely, Guangzhou, Shenzhen, Zhuhai, Foshan, Dong-
guan, Zhongshan, Jiangmen, Zhaoqing, and Huizhou. The GBA is located in Southern
China’s coastal area, downstream of the Pearl River and bordering the South China Sea
(Figure 1), and it covers an area of 56,000 km2. The central part of the GBA contains plains,
while the western, northern, and eastern parts are surrounded by hills. The GBA has a
subtropical monsoon climate with an average annual temperature of 22.5 ◦C and total
annual rainfall within the range of 1500–2500 mm. Over the past 40 years, climate change
in the GBA was mainly characterized by average annual temperature increases, an increase
in extreme precipitation, and a decrease in average annual sunshine hours [32,33]. Regional
climate change presents enormous challenges to environmental quality. By the end of 2020,
the population of the GBA was greater than 86 million, and its GDP exceeded 11 trillion
yuan. Forests and croplands comprise the dominant vegetation types, and agriculture and
aquaculture are well developed. The GBA now has become an important base for China to
build a world-class city cluster with high-quality development, playing a strategic role in
the development of the whole nation.

2.2. Data Collection and Processing
2.2.1. MODIS Data

Moderate-Resolution Imaging Spectroradiometer (MODIS) 16-day vegetation index
composite data (NDVI/EVI, MOD13Q1) at 250 m spatial resolution over the study area
from 2000 to 2020 were utilized in this study to estimate the NPPa. The NDVI and EVI are
calculated from the MODIS surface reflectance, which is corrected for molecular scattering,
ozone absorption, and aerosols [34], and the indices are essential inputs to assessment
models for biogeochemistry, geomorphology, hydrology, agriculture, and the climate at
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local and global scales [35,36]. The NDVI/EVI product was provided by NASA (National
Aeronautics and Space Administration (https://ladsweb.modaps.eosdis.nasa.gov/data/
(accessed on 1 December 2021))). The 16-day NDVI/EVI data were used to synthesize
monthly NDVI/EVI values using the widely used maximum-value compositing (MVC)
method [37–39], which can minimize the effects of clouds, the atmosphere, and other factors
on time series images [40].
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2.2.2. Land Cover Data

The Global Land Cover fine classification system dataset at 30 m resolution (GLC-
FCS30) was used to identify land cover types in the GBA. Data from 2000–2020 at 30 m
resolution were produced by combining Landsat time-series imagery and high-quality train-
ing data from the GSPECLib (Global Spatial–Temporal Spectral Library) within the Google
Earth Engine computing platform [41,42]. Datasets for 2000, 2005, 2010, 2015, and 2020
were downloaded from the Aerospace Information Research Institute, Chinese Academy
of Sciences (http://www.aircas.cas.cn/ (accessed on 1 December 2021)). The overall accu-
racy of the classification datasets was 82.5%, with a Kappa coefficient of 0.784. The final
reclassified land types included seven primary classes and 11 sub-classes, namely forest
(including evergreen broadleaved forest, evergreen needle forest, deciduous broadleaved
forest, deciduous needle-leaved forest, and mixed forest), grassland, shrubland, cropland,
water, construction land, and unused land types. The reclassified land cover data were
resampled to 250 m spatial resolution to match the NDVI/EVI data. Additionally, since
only five years of land use data were applied for NPPa estimation in this study, it was
difficult to achieve that NPPa for each year, as this was driven by the corresponding yearly
land cover data. Therefore, in this study, land cover data for one year were applied to
estimate NPPa values for the adjacent two years, e.g., land cover data in 2005 were used to
estimate NPPa values for 2003–2007.

2.2.3. Meteorological Data

Monthly meteorological data (2000–2020) were used in this study, including the aver-
age air temperature, total precipitation, and cumulative sunshine duration. The dataset was

https://ladsweb.modaps.eosdis.nasa.gov/data/
http://www.aircas.cas.cn/
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derived from the China Meteorological Science Data Center (http://data.cma.cn/ (accessed
on 1 December 2021)), with 51 meteorological stations in and around the GBA (Figure 1).
Due to the limited meteorological radiation data in the study area, we used an empirical for-
mula to calculate the monthly total solar radiation based on the sunshine duration [43]. In
addition, the Kriging interpolation method was applied to generate gridded meteorological
data at 250 m spatial resolution. This method is widely used in geostatistics and considers
the spatial correlation of the variables, which improves the accuracy of the interpolation
results [36,44].

2.3. Estimating the NPPp, NPPa, and NPPh

The NPPp assumes an ideal condition in the absence of human interference, and is
generally considered to be the NPPp value produced under the influence of climate condi-
tions alone. In this study, the comprehensive model established by Zhou and Zhang [45]
was applied to calculate the NPPp. The comprehensive model was based on the water
and heat balance equation, and reflects the relationship between the potential evapotran-
spiration rate (PER), radiative dryness index (RDI), and vegetation. The model uses the
following formulas:

NPPp =
r·
(
1 + RDI2 + RDI

)
(1 + RDI)·(1 + RDI2)

·Exp
(
−
√

9.87 + 6.25RDI
)

(1)

RDI = (0.629 + 0.237 PER − 0.00313 PER2)2 (2)

PER = PET/r = BT·58.93/r (3)

BT = ∑ T/12 (4)

where r represents the annual cumulative precipitation (mm), PET represents the annual po-
tential evapotranspiration (mm), BT represents the annual average biological temperature
(◦C), and T is the monthly averaged temperature range of 0–30 ◦C.

In this study, the Carnegie–Ames–Stanford Approach (CASA) model was applied
to calculate NPPa values from 2000 to 2020 over the GBA. The CASA was proposed by
Potter [46], and is determined by the photosynthetically active radiation (APAR) (MJ·m−2)
and light use efficiency (ε) (gC·MJ−1), which can be written as the following equations:

NPPa (x, t) = APAR (x, t) × ε(x, t) (5)

APAR (x, t) = SOL (x, t) × FPAR (x, t) × 0.5 (6)

ε (x, t) = T1(x, t) × T2(x, t) ×W (x, t) × εmax (7)

where NPPa (x, t) is the vegetation NPP for pixel x at time t, while SOL(x, t) represents
the solar radiation (MJ·m−2) of pixel x at time t. The value of 0.5 is the ratio of the
solar active radiation available for the vegetation. FPAR(x, t) represents the fraction of
the photosynthetically active radiation absorbed by the vegetation canopy, which can be
calculated from the NDVI-FPAR and SR-FPAR [47,48] values as:

FPAR (x, t) = 0.5 FPARNDVI + 0.5 FPARSR FPAR ∈ [0.001, 0.95] (8)

FPARNDVI =
(NDVI(x, t)− NDVIi,min)× (FPARmax − FPARmin)

(NDVIi,max − NDVIi,min)
+ FPARmin (9)

FPARSR =
(SR(x, t)− SRi,min)× (FPARmax − FPARmin)

(SRi,max − SRi,min)
+ FPARmin (10)

SR(x, t) =
[

1 + NDVI(x, t)
1− NDVI(x, t)

]
(11)

http://data.cma.cn/
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where the NDVIi,max and NDVIi,min values correspond to 95% and 5% of NDVI population
i, respectively; SR is the simple ratio; SRi,max and SRi,min correspond to the NDVIi,max and
NDVIi,min, respectively.

The εmax is the maximum light-use efficiency. T1 (x, t), T2 (x, t), and W (x, t) are the
stress coefficients for εmax at the minimum temperature, maximum temperature, and water
deficiency for pixel x at time t, respectively, and can be calculated as:

T1 (x, t) = 0.8 + 0.02 × Topt + 0.0005 × (Topt)2 (12)

T2 (x, t) =
1.184[

1 + e0.2×(Topt−10−T(x,t))
]
×
[
1 + e0.3×(−Topt−10+T(x,t))

] (13)

W(x, t) = 0.5 +
0.5ET(x, t)
PET(x, t)

(14)

where Topt is the average monthly temperature when the NDVI is at a maximum; T (x, t) is
the monthly average temperature of pixel x at time t; ET (x, t) and PET (x, t) represent the
actual and potential evapotranspiration (mm) of pixel x at time t, respectively.

The εmax varies considerably under different conditions and is primarily influenced
by the physiological attributes, spatial scale, and uniformity of the land types. [49]. The
fixed εmax value of 0.389 gC·MJ−1 was likely underestimated in the southern subtropical
region. According to a previous study [17], the simulated forest NPP based on the average
εmax values proposed by Pei [6] and Zhu [48] was closer to the field-based NPP. Therefore,
the forest NPP in this study was calculated using the average εmax simulated by Pei [6] and
Zhu [48]. Moreover, the average εmax value for the cropland was used based on the [17].
According to the above methods, the calculated εmax values for evergreen broadleaved
forest, deciduous broadleaved forest, evergreen needle-leaved forest, deciduous needle-
leaved forest, mixed forest, cropland, grassland, shrubland, and other areas were 0.808,
0.585, 0.378, 0.434, 0.461, 0.502, 0.482, 0.389, and 0.482, respectively.

The NPPh represents the influence of human activities on the NPPa [50], and can be
calculated from the difference between the NPPp and NPPa as:

NPPh = NPPp − NPPa (15)

Thus, when the NPPh > 0, this indicates human-induced NPP loss, while if the
NPPh < 0, this indicates an increase.

2.4. Trend Analysis

The Mann–Kendall (M–K) method was used to calculate pixel-level NPP trends and
the magnitude of the changes in each element. This method has been widely applied in
long time series trend analyses of non-normal data [51–53]. An approximately normal
distribution of the Z-test statistic is satisfied when the sample size of n≥ 8 [54]. A positive Z
value signifies an increasing trend, and vice versa. The M–K test statistic S can be calculated
by the following formula [55]:

S = ∑k−1
i=1 ∑k

j=i+1 sgn
(
xj − xi

)
(16)

where k is the number of data points; xi and xj are data values in time series i and j (j > i),
respectively; and sgn(xj − xi) is the sign function, denoted as:

sgn
(
xj − xi ) =


1, i f xj − xi > 0
0, i f xj − xi = 0
−1, i f xj − xi < 0

(17)
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The variance was calculated as follows:

Var(S) =
k(k− 1)(2k + 5)−∑m

i=1 ti(ti − 1)(2ti + 5)
18

(18)

where k is the number of data points, m is the number of tied groups, and ti is the number
of ties of extent i. A tied group is a set of sample data with the same value. The standard
normal test statistic Z was calculated as follows:

Z =


S−1√
Var(S)

, i f S > 0

0, i f S = 0
S+1√
Var(S)

, i f S < 0
(19)

The Thiel–Sen median slope estimator used for estimating the slope of the trend in a
sample with N pairs of data can be calculated as in Equation (13):

βs = Median
(

xp − xq

p− q

)
for = 1, . . . , N, (20)

where xp and xq are the data values at times p and q (p > q), respectively.

2.5. Correlation Analysis between Climatic Variables, LULC Change and NPPa

In this study, a partial correlation analysis was used to explore the correlations between
climatic variables (i.e., temperature, precipitation, and solar radiation) and the NPPa. The
partial least squares (PLS) regression method explores the linear relationship between two
factors while removing the effects of one or more influencing factors. This method has the
advantages of the ordinary least squares linear regression method, canonical correlation
analysis, and principal component analysis [56]. In this study, PLS regression was used to
explore the relationships between the NPPa dynamics and different climatic variables at
the pixel level from 2000 to 2020.

Moreover, in this study, LULC changes were considered as the most dominant human
activities affecting vegetation productivity, and the conversion results for land covers in
the four periods are displayed as a Sankey diagram.

2.6. The Relative Impacts of Climate Variability and Human Activities on NPPa

The NPP slope represents the change in the vegetation NPP at the pixel level over the
entire period. A positive slope for the NPPa represents improved vegetation conditions and
increased productivity. A negative slope signifies vegetation degradation and decreased
productivity. The NPPp and NPPh slopes from 2000 to 2020 demonstrate the effects of
climate variability and human activities on vegetation productivity. A positive or negative
NPPp slope demonstrates that climate variability is either beneficial or detrimental to
vegetation growth and productivity, whereas a positive or negative NPPh slope indicates
that the human activities either exacerbated the vegetation degradation or promoted
vegetation productivity. Referring to previous research methods regarding the relative
influences of the climate variability and human activities on the vegetation NPPa [23,57,58],
six main possible scenarios were presented according to the NPPa changes in this study
(the other two scenarios, i.e., when slope NPPa > 0, slope NPPh > 0, and slope NPPp < 0,
and when slope NPPa < 0, slope NPPh < 0 and slope NPPp > 0, are ignored in this study
because the percentage of pixels in these two scenarios is very low at less than 0.2%), and
are defined in Figure 2.

2.7. Validation of Simulated NPPa

Field-observed biomass data obtained from the Dinghushan and Heshan Forest Ecosys-
tem State Field Observation and Research Station were used to evaluate the NPPa as calcu-
lated in the CASA model. Forest and shrub biomass data from 2005 to 2015 were collated
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and then converted to NPP values by multiplying them by 0.45 [59], which was done in
this study to validate the accuracy of the CASA-NPPa results. A comparison of the two
results showed a highly significant (R2 = 0.81, p < 0.001; Figure 3) correlation between the
field-observed NPP and the CASA simulated NPPa, with a MAE and RMSE of 103.40 and
122.22 gC·m−2, respectively. This validation result indicated that simulated the NPPa was
reliable and could be used for further analysis.
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3. Results
3.1. Spatial Patterns and Trends Analysis of NPPp, NPPa, and NPPh

3.1.1. Spatial Distribution Patterns of NPPp, NPPa, and NPPh

Figure 4 shows the spatial patterns of the NPPp, NPPa, and NPPh from 2000 to 2020
for the GBA. The mean annual NPPp over the 21 years increased from northwest to south
(Figure 4a), with an average value of 1611.54 gC·m−2·yr−1, due to differences in the
hydrothermal conditions. The values were lowest in the northwest, with average values
of less than 1500 gC·m−2·yr−1. The largest NPPp values were observed in the southwest,
with average values greater than 1600 gC·m−2·yr−1.
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The NPPa spatial distribution was heterogeneous (Figure 4b) due to the variable land
cover and human activity intensity values. NPPa values were low in central areas and
high in surrounding regions, with a mean value of 606.37 gC·m−2·yr−1 during the study
period. The lowest values were primarily distributed in the central areas of the GBA, such
as Foshan, Zhongshan, southern Guangzhou, western Dongguan, western Shenzhen, and
Zhuhai. These areas were dominated by impervious surfaces and other non-vegetated
areas, with mean values < 200 gC·m−2·yr−1. In contrast, the highest values (greater than
700 gC·m−2·yr−1) were found in Zhaoqing, Jiangmen, Huizhou, and northeast Guangzhou,
and most of these areas were dominated by forests and croplands, with high light-use
efficiency and better carbon sequestration capacity.

NPP changes driven by human activities reflected human-caused interference with
vegetation growth. The results showed that the spatial pattern of the NPPh was almost
opposite to that of the NPPa (Figure 4c). During the 21 years, the NPPh values were higher
in the central region and lower in the southwest, northwest, and northeast, with a mean
value of 1018.94 gC·m−2·yr−1. Generally, the high values in the central areas, which were
dominated by non-vegetated areas, were greater than 1400 gC·m−2·yr−1, and the low
values (less than 600 gC·m−2·yr−1) were found in the remaining areas, especially those
with less human activities.

3.1.2. Trends in NPPp, NPPa, and NPPh

In this study, the M–K method was used to analyze and explore the trends and slope
significance tests of the NPPp, NPPa, and NPPh at the pixel level. The temporal trends of the
annual NPPp, NPPa, and NPPh values across the GBA are shown in Figure 5. During the
study period from 2000 to 2020, the NPPp increased with a mean slope of 3.16 gC·m−2·yr−1

(Figure 5a). More than 98% of the total pixels increased, indicating positive effects of climate
variability on the NPPp. About 97% of all pixels had a non-significant increase (p > 0.05),
and only 1.04% significantly decreased (p < 0.05; Figure 5d).
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Figure 5. Trends in annual (a) NPPp, (b) NPPa, and (c) NPPh from 2000 to 2020, and slope signif-
icance tests for (d) NPPp, (e) NPPa, and (f) NPPh in the study area. DS, decreased significantly
(0.01 < p ≤ 0.05); IS, increased significantly (0.01 < p ≤ 0.05); DVS, decreased very significantly
(p ≤ 0.01); IVS, increased very significantly (p ≤ 0.01); D_NS, decreased or non-significantly (p > 0.05);
I_NS, increased non-significantly (p > 0.05).

The NPPa trends were overall favorable, with an average slope of 6.94 gC·m−2·yr−1,
and were especially significant in the northwest and northeast areas (Figure 5b,e), such
as Jiangmen (8.44 gC·m−2·yr−1) and Huizhou (7.41 gC·m−2·yr−1). More than 73% of the
total pixel values increased and about 43.41% of them were significantly (p < 0.05) or very
significantly (p < 0.01) positive. These were mainly scattered in the northern, western, and
eastern areas of the GBA dominated by woodland. Only 8.10% of the total pixels were
significantly (p < 0.05) or very significantly (p < 0.01) negative, and were concentrated in
the central region.

Temporally, the NPPh values declined across the entire region during the 21-year
period, with an average slope of −4.43 gC·m−2·yr−1 (Figure 5c), suggesting a positive
impact of human activities on vegetation productivity. Of the total pixels, about 60.93%
decreased and were distributed in the northwest, southwest, and east, and about 17.5%
were significantly (p < 0.05) or very significantly (p < 0.01) negative (Figure 5f). The
remaining 39.07% of pixels increased, mostly concentrated in the central regions, where
human activities tended to be detrimental to the vegetation’s carbon accumulation, and
only 4.9% were significantly (p < 0.05) positive.

3.2. Impacts of Climate Variability and Human Activities on NPPa across the GBA
3.2.1. Relationships between Climatic Variables and NPPa

Previous studies have revealed that temperature, precipitation, and solar radiation are
the three dominant climate-related factors affecting vegetation dynamics [60,61]. To better
understand the relationship between the NPPa and these three climatic factors, a partial
correlation analysis was used and the results are shown in Figure 6. The results showed
that the NPPa was overall positively correlated with temperature and solar radiation (with
partial correlation coefficients of 0.0339 and 0.0264, respectively; Figure 6a,b), but negatively
correlated with precipitation (with a partial correlation coefficient of −0.1491; Figure 6c).
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Pixels that had positive correlations between temperature and the NPPa accounted for
52.45% of the total pixels (Figure 6d) and mostly occurred in the southern and northeast
GBA (Figure 6a). A negative sensitivity to temperature was mostly found in the northwest
and central GBA. A positive response of the NPPa to solar radiation was found in most of the
southwest and central GBA (Figure 6b), accounting for 50.51% of the total pixels (Figure 6f),
while negative correlations mostly occurred in the northwest and northeast GBA. Regarding
precipitation sensitivities, about 79.87% of the total pixels had negative coefficients related
to the NPPa, and they were mainly distributed in the southwest, southeast, and central
GBA (Figure 6b,e).
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3.2.2. Impact of LUCC Change on NPPa

In this study, LULC change due to urban expansion was the most dominant human
activity affecting vegetation productivity. Conversions between the six land cover types
were analyzed to identify the amount and direction of change in the GBA (Figure 7). Gen-
erally, the effect of LULC change on the NPPa was two-fold. LULC conversions from
higher to lower productivity tended to result in a decrease in NPPa; for the opposite sit-
uation, an increase in NPPa was observed. Over the four periods, the total converted
areas equaled 2137.26 km2, 1957.97 km2, 5094.92 km2, and 5768.87 km2. The conver-
sions in land cover resulted in increases of 65.55 Gg C (1 Gg C = 109 g C), 71.07 Gg C,
446.82 Gg C, and 337.88 Gg C, and decreases of 265.60 Gg C, 217.27 Gg C, 364.90 Gg C,
and 453.45 Gg C in total NPP over the four periods, respectively. Moreover, we found
that vegetated ecosystems suffered the most area losses due to land conversion in the four
study periods, and most vegetation types were converted to urban and construction land.
Over the four study periods, for example, about 462.95 km2, 496.05 km2, 698.65 km2, and
943.16 km2 of cropland; 202.96 km2, 323.27 km2, 505.74 km2, and 806.98 km2 of forest; and
11.43 km2, 7.39 km2, and 7.49 km2, and 66.82 km2 of shrub and grassland were converted
into construction land, respectively. Consequently, the conversion from vegetation to con-
struction land resulted in a considerable loss in NPPa, with total losses of 118.30 Gg C,
154.25 Gg C, 220.38 Gg C, and 552.01 Gg C in the four periods. Moreover, land conver-
sions between 2000 and 2020 were mainly characterized by the conversion from cropland
(2149.59 km2) and forest (1275.72 km2) to construction land, resulting in a total decline of
614.22 Gg C.
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3.2.3. Different Impacts of Climate Variability and Human Activities on NPPa

According to the NPPp, NPPa, and NPPh trends and the six defined scenarios, the
study area was divided by the dominant influences to assess the relative contributions of
climate variability and human activities to NPPa variability (Figure 8). The results indicated
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that climate variability and human activities had different effects on the spatial patterns and
tendencies of NPPa changes (Figure 8a). We confirmed that the combined impacts of climate
variability and human activities were the major factors contributing to NPPa changes in
most areas from 2000 to 2020, accounting for 59.88% of the total pixels (Figure 8b). Positive
contributions of the combined impacts on NPPa were widely distributed in the GBA, except
in the central areas, such as Zhaoqing, Jiangmen, Huizhou, and northwest Guangzhou,
accounting for 49.51% of pixels. Negative contributions to the NPPa were scattered in the
east, north, and west of the GBA. Areas driven solely by climate variability accounted for
approximately 22.86%, of which nearly 98% had a positive impact on the NPPa, scattered
in the central and south areas. The remaining 17.18% of the area was affected solely by
human activities and was mainly concentrated in the central areas, such as Zhongshan,
Foshan, southern Guangzhou, western Dongguan and Shenzhen, and central Zhuhai, and
most of these areas had negative NPPa impacts. The results suggested that both climate
variability and the combined effects of climate variability and human activities promoted
substantial improvements in the NPPa in most areas. In contrast, human activities resulted
in large NPPa decreases that were more prominent in the central regions due to the higher
human activity intensity.
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3.3. Different Impacts of Climate Variability and Human Activities on NPPa at the Regional Scale

Figure 9a shows the different impacts of climate variability and human activities on the
NPPa values of the 11 cities over the study period according to the six scenarios. Similarly,
climate variability and the combined impacts of climate and human activities were the
dominant driving factors increasing NPPa values, accounting for 49–81% of the total area
in each respective city. The positive contributions of the combined impacts were especially
significant in Zhaoqing, Jiangmen, and Huizhou, all of which encompassed greater than
52% of the total area. This was followed by a second echelon, i.e., Guangzhou, Shenzhen,
and Hong Kong, where positive contributions made up 40–44% of the total area. In the
remaining cities, i.e., Zhuhai, Dongguan, Zhongshan, and Foshan, the areas impacted made
up 32–39% of each region. The negative impacts of human activities alone on NPPa values in
11 cities were also dramatic, and particularly remarkable in the central cities, with relatively
uniform development, such as Zhuhai, Foshan, Dongguan, and Zhongshan, where they
accounted for more than 27% of each region. Nevertheless, the most significant increase
in NPPa due to human activities occurred in Shenzhen, accounting for approximately
16.27%, whereas it accounted for less than 5.5% in the remaining ten cities. Moreover,
the significant adverse effects of the combined impacts of climate variability and human
activities occurred in Zhaoqing, Huizhou, Hong Kong, Macao, and Shenzhen, accounting
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for more than 10% of each region. In addition, the NPPa decreases due to climate variability
alone were the lowest in the 11 cities, at less than 2%.
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3.4. Different Impacts of Climate Variability and Human Activities on NPPa by Land Cover

The NPPa sensitivity across different land classes to climate variability and human
activities was calculated. The results are shown in Figure 9b. We found that the NPPa
for the different land cover types was primarily affected by climate variability and the
combined effects of climate variability and human activities in all land covers except for
construction land. More than 54% of all vegetation types had increasing NPPa values due
to the combined effects; for water and unused land, the NPPa values increased by 42.72%
and 71.30%, respectively, due to the combined effects. Moreover, in most land cover types
except water (29.48%) and unused land (8.70%), NPPa changes that were solely influenced
by climate variability accounted for 21–22% of the effects, and most of these areas showed
an increase. In contrast, about 11.0% of the four vegetation types, 21.09% of water, 43.78%
of construction land, and 8.71% of unused land were solely dominated by human activities,
and more than 96% of them had decreasing NPPa values, signifying a detrimental impact
of human activities on vegetation growth.

4. Discussion
4.1. Spatiotemporal Variability of NPPp, NPPa, and NPPh

The comprehensive model established by Zhou and Zhang [45] was based on plant
ecological and physiological features and the heat equilibrium relation equation, and con-
sidered only climatic variables, such as temperature, precipitation, and evapotranspiration.
Therefore, the results estimated by this model can be used as the NPPp values. The re-
sults showed that the mean NPPp values across the GBA slightly increased from north
to south, with little difference (Figure 4a). The average NPPp values ranged from 1400
to 1870 gC·m−2·yr−1 and were much higher than the NPPa values. This suggested that
climate variability had more intensive positive effects on the vegetation dynamics under
ideal climatic conditions. Comparatively, the spatial heterogeneities of NPPa and NPPh
were significant and their spatial patterns were almost opposite (Figure 4b,c). Generally,
the NPPa decreased distinctly from the edges to the center, which was in agreement with
some other studies [52,62]. This may have been because of differences in the hydrothermal
conditions, topographical conditions, and land covers from the middle part to the ground.
For example, most northwest, southwest, and eastern areas of the GBA are characterized by
mountains and hills with high vegetation coverage of typical subtropical evergreen forests
and more abundant ecological resources than in the central regions. In addition, other
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factors, such as population density, economic development, and infrastructure increases,
impacted the urban developmental disequilibrium in urban development and resulted
in significantly different spatial NPPa patterns [17,18,63]. Additionally, the NPPh values
over the entire study area were higher in the central regions and mostly greater than
1400 gC·m−2·yr−1, and the annual mean NPPh in the GBA was significantly greater than
that in Guangzhou estimated by [14] based on the Chikugo model. This difference in NPPh
between these two regions may have been due to the different input data, parameters,
and model structures between the two models. In addition, the central GBA is the fastest
growing and most developed area, and is densely inhabited with a high proportion of
impervious surfaces, strong human interference, and intense inter-city linkages. These
factors would accelerate NPPa losses. Therefore, the average NPPh for the whole region
was much higher than in Guangzhou.

The temporal NPPp and NPPa trends were all spatially heterogeneous in the GBA from
2000 to 2020, with overall increases of 3.16 and 6.94 gC·m−2·yr−1, respectively, whereas an
NPPh decrease of −4.43 gC·m−2·yr−1 was found (Figure 5). This indicated that climate
variability and the combined effects of climate and human activities were beneficial to
vegetated ecosystem changes. For instance, although the decreasing cumulative solar
radiation may have inhibited vegetation photosynthesis, the increasing temperature and
precipitation (Figure A1) resulted in warmer and more humid environmental conditions
facilitating vegetation growth. Additionally, the increasing NPPa suggested that the vegeta-
tion conditions were overall improving and that disturbances in vegetated ecosystems by
human activities gradually weakened.

In addition, the implementation of some forest conservation measures, such as forest
classification management, natural forest protection, and plantation increases, was a sig-
nificant impetus for the increase in NPPa [64]. It is important to note that the decreasing
NPPa and increasing NPPh values were especially significant in the central regions of the
GBA. This may have been due to the dramatic human interference. For instance, since the
launch of the reform and opening-up, the construction land area increased by 5636.10 km2

from 1980 to 2018 in the GBA, with the central region exhibiting the highest rate of urban
expansion [22]. The significant increase in construction land could be responsible for the
NPPa decreases and NPPh increases. Moreover, related studies have shown that in addi-
tion to climate variables, soil conditions, CO2, forest age, policies, and regulations affect
vegetation productivity [62,65]. For instance, the NPPa for cultivated land can be enhanced
effectively with certain agricultural activities, such as irrigation, fertilization, and field
management [66,67]. Therefore, human activities often promote the NPPa in infrequently
transformed vegetated areas. As a result, there will be a lower or even negative NPPh than
NPPp because the NPPa is greater than NPPp.

4.2. Relative Influences of Climate Variability and Human Activities on NPPa

4.2.1. Impact of Climatic Variables on NPPa

Generally, temperature, precipitation, and solar radiation are usually considered to be
the most important climatic factors affecting the vegetation NPP [60,61]. From 2000 to 2020,
the temperature and precipitation increased while the solar radiation decreased (Figure A1),
which inevitably had a considerable influence on the vegetation dynamics. According to
Figure 6, we found that more than 50% of the total NPPa pixels were positively correlated
with temperature and solar radiation, and nearly 80% were negatively correlated with
precipitation, indicating that the temperature and solar radiation favored NPP increases,
whereas the precipitation was detrimental. Moreover, the pixels with positive correlations
between the NPP and temperature were mostly distributed in forest-dominated areas.
This was probably because of the enhanced photosynthetic capacity and increased pho-
tosynthetic enzyme activity contributing to the increase in forest productivity [68]. This
conclusion was also supported by the majority of the pixels having a positive relationship
between the NPPa and solar radiation in the region (Figure 6e). However, excessive precipi-
tation will reduce plant solar radiation exposure [69,70], which resulted here in a reduction
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in photosynthetically active radiation absorption and a decrease in accumulated vegetation
biomass [71]. Furthermore, in densely built-up urban areas such as the central GBA, the
contributions of the temperature and precipitation on the NPPa were mainly negative,
whereas that of the solar radiation was mainly positive. This may have been because of
the more pronounced urban heat island effect in those areas [6] due to the large number of
buildings and high level of impervious surface cover. Higher temperatures will enhance
vegetation transpiration, reduce soil moisture, and increase the restriction of physiological
vegetation activities, thereby inhibiting vegetation growth and carbon accumulation [72].

4.2.2. Impact of Human Activities on NPPa

Previous studies [17,31] have found that the major anthropogenic factor in the GBA
that influences vegetated ecosystems is LULC change, because it has not only encroached
on substantial natural ecosystems but has also caused further dramatic degradation of
the vegetation functions and productivity. This has been especially significant in [22]
highly urbanized areas. Therefore, LULC change was considered to be one of the most
direct human influences and impacts on the environment in this study. The present study
revealed that the land structure in the GBA underwent dramatic changes from 2000 to 2020
(Figure 7), which had a significant impact on the NPPa. In general, the LULC conversion
increased or decreased the NPPa; for example, the return of farmland to forest areas and
ecological restoration promoted NPP increases, while the encroachment of construction
land on vegetation tended to reduce the NPPa. Moreover, we found that cropland and
forest areas suffered the greatest area losses due to their conversion to construction land,
which was responsible for the substantial reduction in NPPa. This suggested that human
activities often negatively influence vegetation dynamics, particularly in urbanized areas.
Thus, it is necessary and urgent to protect natural ecosystems and to preserve, restore, and
promote the sustainable use of highly productive farmland, forest, and grassland areas in
the GBA.

In addition, although climate variability and natural disasters likely promoted the
decline in regional NPPa, anthropogenic factors, such as urban sprawl, population growth,
economic development, and road construction, were also responsible for the vegetation
deterioration in the urbanized areas [63]. We found that the areas where NPPa was nega-
tively influenced by human activities (ADH) were mainly concentrated in the central GBA,
such as in southern Guangzhou, most of Foshan, northern Zhongshan, western Dong-
guan, northern Zhuhai, and western Shenzhen. The more pronounced decreasing NPPa
(Figure 10a,d; mean slope NPPa = −6.74), increasing NPPh (Figure 10b,e; mean slope
NPPh = 10.13), and deteriorating vegetation conditions (Figure 10c,f; mean slope
EVI = −0.0004) that occurred in the ADH suggested that human activities had more signifi-
cant adverse effects in those areas. The underlying reason for this result was the extensive
urbanization and subsequent LULC change, which drove the dramatic reduction and
degradation of the vegetation dynamics (Figure 7). For example, regional development,
urbanization, industrialization, integrated transportation, and infrastructure connectivity
were further strengthened [22], resulting in significant pressure on the native vegetation
and vegetation productivity.

However, what cannot be ignored is that notable and influential efforts have been
made in urban land planning to protect green spaces and restore the ecology in the GBA.
The integrated plan for environmental security in the PRD emphasized the importance of
ecological security by establishing an ecological barrier, a coastal protection zone, two eco-
logical corridors, and five ecological green nuclei, along with the Pearl River Delta National
Forest Urban Agglomeration Construction Plan. This created favorable conditions for the
improvement of vegetation productivity. Additionally, the Guangdong–Hong Kong–Macao
Greater Bay Area Development Planning Outline proposes to promote sustainable develop-
ment by implementing the most stringent environmental protection measures, ensuring the
protection and restoration of important ecosystems and strengthening the protection of the
forest ecosystem around the PRD [73], which would increase the NPPa. Most importantly,
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the urban integrated development of the GBA, such as the construction of a Guangzhou,
Foshan, Zhaoqing, Shenzhen–Dongguan, and Shenzhen–Zhongshan economic circle and
urban integration, not only accelerated the decrease in NPPa, but also may have escalated
the conflict between social and economic factors and the NPPa [52]. Nonetheless, the
NPPa declined in more than 16% of the total area due to human interference. Although
many conservation efforts have been made, forests and farmland were still significantly
degraded [74], and the newly added NPPa due to ecological protection did not offset the
decrease in NPPa associated with destructive human activities. This phenomenon was
particularly prominent in the central GBA. Thus, it is essential to consider and research
how to improve the NPPa via the coordinated and integrated development of the GBA to
achieve carbon neutrality.
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4.2.3. Different Impacts of Climate Variability and Human Activities on NPPa

As two important factors influencing NPPa variability, climate variability and hu-
man impacts were spatially heterogeneous across the entire study area from 2000 to 2020
(Figure 8a). Compared with the NPPp, the NPPa and NPPh showed greater heterogeneities
across the GBA, as shown in Figure 5, indicating significant differences in hydrothermal
conditions and human activities in mountains and plains that created clear heterogeneities
in vegetation dynamics. Approximately 22.86% and 49.51% of the total pixels were regu-
lated by climate variability and the combined impacts of climate and human activities over
time, respectively, with NPPa increases (Figure 8b). This result suggested that increased
temperatures and abundant precipitation (Figure A1) provided suitable climatic conditions
for vegetation growth in most areas, promoting carbon accumulation. In addition, areas
dominated by climate variability and the combined impacts of climate and human activities
were mainly distributed in the northwest, southwest, and east, especially in higher-latitude
areas dominated by forests. This was because elevation increases reduced the impacts of
human activities, and changes in NPPa were predominantly climate-driven. This finding
is also supported by other studies [23,29]. On the contrary, human interference was re-
sponsible for the reduction in NPPa in the central GBA (Figure 9a), demonstrating that
ecosystem degradation in urbanized areas was characterized by rapid urban expansion,
economic growth, and population explosion. The conclusion was consistent with pre-
vious studies that human interference may have a more significant negative effect than
climate variability in regulating NPPa variability in urbanized areas [14,18,63]. Moreover, a
prior study [17] revealed that urbanization generally decreased NPP values even under
favorable climate conditions in the urban and peri-urban regions of the Pearl River Delta,
primarily by encroaching on the vegetable cover with urban impervious surfaces. The
conclusion was consistent with our results that LULC caused by human activities was
responsible for the reduction in NPPa. Although the conversion from low-productivity
vegetation to high-productivity vegetation increased the NPPa, the increases in carbon
absorption in highly urbanized areas were insufficient to offset the NPPa losses resulting
from vegetation conversion.

In addition, LULC change was considered the main anthropogenic factor in this
study, and LULC conversion and its effects on NPPa were analyzed. However, the NPP
dynamics when LULC remained unchanged (i.e., affected only by climate variability)
were not considered. To further investigate the effect of static LULC on changes in NPPa,
pixels labeled as the same land class (i.e., unchanged LULC) in 2000 and 2020 at the
same location were selected and the effects on NPP trends were analyzed. We found that
about 29.49% of the total pixels experienced LULC change, with an average NPPa slope
of 6.23 gC·m−2·yr−1; and static LULC was found in most areas, with an average NPPa
slope of 7.32 gC·m−2·yr−1. This was greater than the NPPa change (6.94 gC·m−2·yr−1) due
to the combined effects of climate variability and human activities, which indicated that
climate variability alone promoted NPPa. However, the contribution of climate variability
to the NPPa was significantly weakened by human activities, which was consistent with
the finding that human activities had an adverse effect on NPPa in the present study.

Furthermore, our results also showed that the decreases in NPPa and EVI and increase
in NPPh in the central GBA were significantly greater than in other regions (Figure 10),
indicating that large-scale and high-intensity human activities have severely disturbed and
damaged the vegetation dynamics in highly urbanized areas. Our results also confirmed
the significant adverse impacts of human activities on the NPPa in the central cities of the
GBA (Figure 8a). Although climate variability and the combined effects of climate and
human activities greatly influenced the NPPa in most cities, the NPPa decreases due to
human activities were more dramatic in Zhongshan, Macao, Dongguan, Foshan, Zhuhai,
and Guangzhou (Figure 9a). This suggested that intensive human activities, such as urban-
ization and land structure change, were responsible for the NPPa decreases in the central
cities of the GBA. Additionally, extensive urbanization has increased environmental prob-
lems, destroying the inherent structure and state of the natural environment, interfering
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with and disrupting the intrinsic linkages among elements of the ecosystem, and posing
a severe threat to human well-being [75,76]. These damages and impacts are difficult to
predict and may even be irreversible [22]. Therefore, greater efforts, such as the implemen-
tation of arable land and natural forest protection measures, ecological restoration, and
ecological compensation, should be made in the process of urban development in the GBA
to compensate for the adverse impacts of human activities on the NPPa.

4.3. Limitations

In this study, the NPPa simulation results were validated by observing the NPP in
the GBA, which demonstrated that the results were reliable. In addition, using the six
possible scenarios based on the slopes of the NPPp, NPPa, and NPPh, this study revealed
the relative impacts of climate variability and human activities on the NPPa across the GBA.
However, some uncertainties and limitations remained in this study. The application of the
CASA model for estimating the NPPa involved key influencing factors and parameters,
and the precision and effectiveness of such models are often biased by the accuracy of the
input data [77]. For example, a limited number of meteorological stations were employed
in this study, especially in areas with elevations greater than 1 km, and this may have
biased the NPPa estimations and the relationships between the climatic factors and NPP.
In addition, there were differences in spatial resolution between the land cover data,
meteorological data, and the MODIS products used, which resulted in matching errors
between the land surface and atmospheric conditions [78]. This required further data
processing and more consistent spatial and temporal resolutions for the data. Moreover, the
NPPp values used in this study were estimated based on the comprehensive model, which
can more effectively reflect the relationship between a plant’s physiological and ecological
characteristics and hydrothermal balance [45]. However, we did not validate the model’s
accuracy due to a lack of actual NPPp measurement data in the study area, which needs to
be further considered in future studies. Furthermore, there were complicated interactions
between climate variability and human activities, and this study only considered the
separate impacts of climatic variability and human activities on the NPPa and ignored
their interactions, such as between greenhouse gas emissions and aerosols. The heat island
effect caused by human activities may also amplify or moderate the impacts of climate
variability on the NPPa, [79,80], which we did not consider in this study. The complex
impacts of human–climate interactions on vegetation dynamics will be further analyzed in
future studies.

Additionally, only three climate variables (i.e., temperature, precipitation, and solar
radiation) and land cover change were considered as the main climatic factors and human
activities patterns to analyze the effects of climate variability and human activities on the
NPPa, while other factors were not considered in this study that may also affect NPPa
variability, such as the CO2 concentration, soil moisture and types, topography, biological
conditions, time lag effect, droughts, pests, plant diseases, vegetation phenology, vegetation
aging, species competition, and so on. Although previous studies have suggested that
the impacts of the above factors on NPPa variability were weaker than climatic factors
and human activities [61,81], the influence of human activities on the NPPa was more
complicated, especially in the GBA, which has a complex natural regional structure and
high-intensity human interference. Therefore, some factors such as the economy, popula-
tion, transportation, and even the heat island effect may affect NPPa changes [6,63], and
the comprehensive impact of multiple human activities on NPPa in highly urbanized areas
should be further studied.

5. Conclusions

In this study, NPPp and NPPa values were estimated using the comprehensive model
and CASA model, respectively, and the different impacts of climate variability and human
activities on NPPa variability were distinguished according to six possible scenarios across
the GBA from 2000 to 2020. Our results showed that the spatial pattern of annual NPPp,
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NPPa, and NPPh values displayed significant spatial heterogeneity: the NPPp increased
from northwest to south with a slope of 3.63 gC·m−2·yr−1, the NPPa increased from the
center to the edges with a slope of 6.94 gC·m−2·yr−1, while the NPPh increased from the
edges to the center with a slope of −4.43 gC·m−2·yr−1. The LULC profile changed dramat-
ically from 2000 to 2020, resulting in a significant reduction in total NPPa over the different
periods due to land cover conversions, except from 2010 to 2015. Moreover, cropland and
forest areas suffered the greatest losses in different periods and were responsible for the
considerable decreases in NPPa.

The combined impacts of climate variability and human activities were the primary
driving forces for the changes in NPPa and the increase of 49.51% of the pixel’s values, of
which 22.86% were solely dominated by climate variability, whereas the remaining 17.18%
were affected solely by human activities and mainly with negative effects, mostly in the
central areas. Over the study period, the NPPa increases across 11 cities and four vegetation
types primarily benefited from the combined effects of climate variability and human
activities, whereas human activities were detrimental to the NPPa, and the variability in
the NPPa was significantly greater than climate variability in the central cities of the GBA.
Therefore, although climate variability was overall favorable for NPPa increases due to
the high forest coverage, ecological construction approaches and efficient natural resource
protection measures should be emphasized and conducted to mitigate NPPa decreases
during urban development.
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Figure A1. Temporal variability of (a) temperature, (b) precipitation, and (c) total solar radiation data
in the GBA from 2000 to 2020.
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