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Abstract: Reliable near-real-time precipitation estimation is crucial for scientific research and resis-
tance to natural disasters such as floods. Compared with ground-based precipitation measurements,
satellite-based precipitation measurements have great advantages, but precipitation estimation based
on satellite is still a challenging issue. In this paper, we propose a deep learning model named
Attention-Unet for precipitation estimation. The model utilizes the high temporal, spatial and spec-
tral resolution data of the FY4A satellite to improve the accuracy of precipitation estimation. To
evaluate the effectiveness of the proposed model, we compare it with operational near-real-time
satellite-based precipitation products and deep learning models which proved to be effective in
precipitation estimation. We use classification metrics such as Probability of detection (POD), False
Alarm Ratio (FAR), Critical success index (CSI), and regression metrics including Root Mean Square
Error (RMSE) and Pearson correlation coefficient (CC) to evaluate the performance of precipitation
identification and precipitation amounts estimation, respectively. Furthermore, we select an extreme
precipitation event to validate the generalization ability of our proposed model. Statistics and visual-
izations of the experimental results show the proposed model has better performance than operational
precipitation products and baseline deep learning models in both precipitation identification and
precipitation amounts estimation. Therefore, the proposed model has the potential to serve as a
more accurate and reliable satellite-based precipitation estimation product. This study suggests that
applying an appropriate deep learning algorithm may provide an opportunity to improve the quality
of satellite-based precipitation products.

Keywords: Fengyun-4A satellite; Attention-Unet; near-real-time estimation; multispectral
satellite imagery

1. Introduction

Precipitation plays an important role in the global hydrological cycle. Accurate pre-
cipitation estimation is a key factor in the research of weather, climate, hydrology, and
ecology [1]. In addition, accurate precipitation estimation can help reduce the loss caused
by natural disasters such as floods, which are directly caused by extreme precipitation
events [2–4]. There are three kinds of common precipitation measurements: rain gauges,
ground-based radar observations, and satellite-based precipitation measurements [5,6].
Due to the tough environment and high maintenance costs, rain gauges and ground-based
radar observations are sparsely distributed in certain areas such as plateaus, deserts, and
poor regions [7,8]. Spatial interpolation of precipitation data is also difficult to reflect the
real spatial and temporal distribution of precipitation, which leads to the lack of reliable
data in these areas [9]. Rain gauges can provide accurate precipitation data, but due to
uneven distribution, they cannot accurately reflect the spatial and temporal characteris-
tics of large-scale precipitation. Ground-based radar observations can detect the spatial
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distribution of precipitation within a certain range, but the detection signal of radar is
easily affected by high mountains and so on, so ground-based radar is more suitable for
plains [10].

Owing to the moving orbit of meteorological satellites being above the earth, so
compared with rain gauges and ground-based radar, the observation of meteorological
satellites is not limited by geographical and natural conditions. Therefore, meteorological
satellites are the only viable means to observe precipitation globally [11,12]. Meteorological
satellites can observe the development and evolution of cloud systems on a vast scale of time
and space, and thus overcome the defect of ground-based observation effectively [13]. The
advantages of global coverage and high spatiotemporal resolution of satellite precipitation
products are particularly valuable for remote areas that lack precipitation data. In addition,
for extreme weather events, meteorological satellites can monitor the entire process of
extreme events with a high spatiotemporal resolution, which contributes to some scientific
research and helps humans defend against natural disasters.

Most satellite precipitation products estimate precipitation indirectly because the
sensors equipped by meteorological satellites detect cloud top temperature or cloud particle
information through various spectral bands including infrared bands, visible bands, and
passive microwave bands. Infrared data is characterized by high spatiotemporal resolution,
so it has a great advantage in monitoring precipitation events. Compared with infrared
bands, the passive microwave band is very sensitive to raindrops and can detect information
on temperature and humidity under various weather conditions, which is important for
precipitation identification and estimation [7,14]. However, for a fixed area of the earth, the
sampling frequency of a single satellite is low, and the spatiotemporal range is limited; the
spatiotemporal resolution of passive microwave data cannot meet the demands of practical
operation [15]. Visible data are only available during the day, but precipitation events may
occur at night and day, which limits the use of visible data. In other words, the information
offered by a single spectral band does not meet the demands of accurate precipitation
retrieval [16–18]. In order to improve the accuracy and spatiotemporal resolution of
precipitation estimation, more and more researchers are trying to use multi-spectral data.
For example, some studies show that the combination of infrared and water vapor channel
information can significantly improve the accuracy of precipitation estimation [19–21].
Therefore, multi-spectral data fusion is a direction to improve the accuracy of satellite-
based precipitation products in the future [13]. In this study, the data used come from the
FY4A satellite, which is the most advanced geostationary meteorological satellite around
China. The Advanced Geostationary Radiation Imager (AGRI) sensor carried by the FY4A
satellite could detect and offer multi-spectral data, which can avoid errors in the fusion
process of multiple satellites and provide convenience for the time sustainability and
consistency of the study.

In addition to using multi-spectral data, advanced algorithms also can improve the
accuracy of satellite-based precipitation products. Therefore, another way to improve the
accuracy of satellite precipitation products is by using advanced algorithms which can
extract precipitation-related feature information from multi-spectral data [22]. In recent
years, deep learning algorithms have gradually expanded from computer science to other
fields such as medical and earth science [23]. One of the unique advantages of the deep
learning algorithm is that it can extract and utilize relevant feature information from various
types of data automatically. Common neural networks include Convolutional Neural
Networks [24], Recurrent Neural Networks [25], Generative Adversarial Networks [26], and
so on. Each neural network has its strength in dealing with different types of research. For
example, LSTM Recurrent Neural Networks are used in short-term Precipitation Forecast
studies [27]. Convolutional Neural Networks are used for detecting extreme weather
in climate data sets [28]. The Convolutional LSTM network is used in the precipitation
Nowcasting study [29]. In 2017, a four-layer fully connected neural network proposed by
YUMENG TAO and XIAOGANG GAO was used to study precipitation identification [30].
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As for deep learning research on satellite precipitation, more and more neural networks
have been applicated in recent years. In 2018, in order to estimate precipitation amount, Tao
added a three-layer Auto-Encoder network to the previous network [31]. Experiments show
that her new model has a great improvement compared with the PERSIANN-CCS products.
In 2019, MOJTABA SADEGHI introduced a ten-layer convolutional neural network to
estimate precipitation amount, the results show that compared with the PERSIANN-CCS
products, the ten-layer convolutional neural network is more accurate in precipitation
identification and has a higher correlation coefficient for precipitation amount estima-
tion [32]. In 2020, Cunguang Wang proposed the infrared precipitation estimation using
the CNN(IPEC) network to estimate precipitation amount based on GOES-5 satellite in-
frared data [33], the experimental results show that the Pearson correlation coefficient
increased by 34.9% and relative error decreased by 38.0. In 2019, Negin Hayatbini applied
the Conditional Generative Adversarial Nets (CGAN) to research satellite precipitation
estimation, experimental results show that CGAN has an overall improvement compared
with PERSIANN-CCS products [34]. These studies show that it is the correct direction to
apply the deep learning algorithm to estimate satellite-based precipitation.

This study explores the application of the Attention-Unet to estimate precipitation
using multiple spectral information of FY4A geostationary satellite. The specific objectives
of this paper are to report on:

(1) Adjust and test Attention-Unet model so that it is capable of extracting useful features
from satellite information and support producing accurate precipitation estimation.

(2) Evaluate the effectiveness of the proposed Attention-Unet model on precipitation
identification and precipitation amount estimation by comparing its performance with
CMORPH product which is an operational product around the world and FY4A-QPE
as FY4A satellite’s operational precipitation estimation product.

(3) Evaluate the capability of the proposed Attention-Unet model by comparing its
performance with other deep learning models including Unet and the PERSIANN-
CNN model.

(4) Evaluate the performance of the Attention-Unet model by selecting an extreme precip-
itation event whose happened location is not calibrated areas, so as to test its potential
for future application on the global scale.

This paper is organized as follows. Section 2 describes the materials and methods we
have used. Including the study region and the datasets used for this study, an explanation
of detailed processes and structures of the Attention-Unet model, and the setup parameter
of the experiment. Section 3 presents the results of the proposed model in this study,
comparing it with operational satellite-based precipitation products and deep learning
models which are successfully applicated in precipitation estimation. Section 4 discusses
experimental results and some future research directions. Finally, Section 5 concludes this
paper.

2. Materials and Methods
2.1. Data and Study Area
2.1.1. Study Area

The region selected in our study is the southeast coast of China, the specific range is
114◦–120◦ east longitude, 21◦–27◦ north latitude. The selected regions contain land and
ocean so as to calibrate the proposed model over both land and ocean. In the future, we
want to apply the model to global coverage.

2.1.2. Fengyun 4A Satellite Data

Fengyun-4 series satellites are the new generation of geostationary meteorological
satellites developed by China following Fengyun-2. Fengyun-4A is the first satellite of
the Fengyun-4 series satellites. The satellite was launched on 11 December 2016 and put
into meteorological operation on 1 May 2018. Compared with the Visible and Infrared
Spin Scan Radiometer (VISSR, made by China) carried by the FY-2 satellite, the Advanced
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Geostationary Radiation Imager (AGRI, made by China) carried by the FY-4A satellite has
more spectral channels whose channels range from 1 to 14, covering the visible, short-wave
infrared, mid-wave infrared and long-wave infrared spectral band, the highest spatial
resolution of FY4A data is 500 m [35]. Specific spectral bands and detection objects can be
seen in Table 1. In this study, we chose channels 9–14, which mainly include information on
infrared (IR) and water vapor (WV). The detected information of channels 9–11 covers the
water vapor information of the upper layer, middle layer, and lower layer of the atmosphere.
Water vapor is a key factor in the formation of precipitation. The detected information
of channels 12–14 mainly covers the infrared information. Infrared information plays an
important role in the traditional precipitation retrieval of satellites. Some research indicates
that the lower infrared brightness temperature of rain clouds corresponds to the higher
precipitation amounts, so the relationship between infrared information and precipitation
amounts can be effectively established to accomplish precipitation retrieval [36–38].

Table 1. The setting of FY-4A/AGRI spectral band and main detection objects.

Channels
Number

Band
Range/µm

Center
Wavelength/µm

Spatial
Resolution/km

Primary
Probe Object

1 0.45–0.49 0.47 1 aerosol
2 0.55–0.75 0.65 0.5 fog, clouds
3 0.75–0.90 0.825 1 vegetation
4 1.36–1.39 1.375 2 cirrus
5 1.58–1.64 1.61 2 snow
6 2.10–2.35 2.225 2 cirrus, aerosol
7 3.50–4.00 3.725 2 fire point
8 3.50–4.00 3.725 4 earth’s surface
9 5.80–6.70 6.25 4 high-layer water vapor

10 6.90–7.30 7.1 4 mid-layer water vapor
11 8.00–9.00 8.5 4 low layer water vapor

12 10.3–11.3 10.8 4 cloud and surface
temperature

13 11.5–12.5 12.0 4 cloud and Surface
temperature

14 13.2–13.8 13.5 4 cloud-top height

2.1.3. Precipitation Products

The target precipitation data used in this study is Integrated Multi-satellite Retrievals
for Global Precipitation Measurement (IMERG) which is a level-3 precipitation product of
GPM. GPM is a satellite precipitation observation project, which is the best precipitation
observation project around the world currently [39]. The GPM Core Observatory was
launched on 28 February 2014. GPM precipitation products are based on multi-satellite
and multi-algorithm. The satellite network of GPM has 10 satellites and may continue
to expand in the future. Due to combining satellite network and rainfall gauge data,
the accuracy of GPM precipitation data is relatively high among satellite precipitation
products. IMERG currently provides three sets of precipitation data: Early run, Late run,
and Final run. The IMERG Early run data will be released approximately 4 h after the
observation time, it provides relatively fast results for flood analysis and other short-term
assimilation applications. The IMERG Late run data will be released approximately 14 h
after the observation time, which is suitable for routine and longer applications such as
crop forecasting. For IMERG Final run data, satellite precipitation data were calibrated
using Global Precipitation Climatology Centre (GPCC) monthly rain gauge data, finally
generating the IMERG Final run data. The time delay of the IMERG Final run data is
about 3–4 months. Considering rain gauge data calibrating satellite precipitation data, we
regard the IMERG Final run data approximately as ground truth. The time resolution of
the IMERG Final run data is 30 min and the spatial resolution is 0.1◦.
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In addition, two operational satellite precipitation estimation products were selected
to evaluate our proposed model. The first product is the Climate Prediction Center Morph-
ing technique precipitation product (CMORPH) [40], it is a global precipitation product
generated by the National Oceanic and Atmospheric Administration’s Climate Prediction
Center, which combines microwave data with infrared cloud top brightness temperature
data. The CMORPH precipitation data used in this study with 30 min temporal resolution
and 8 km spatial resolution. The second precipitation product is the FY4A Quantitative
Precipitation Estimation (FY4A-QPE), which is the level 2 operational product of the FY4A
satellite. FY4A-QPE product is generated by AGRI’s precipitation retrieval algorithm
using the instantaneous brightness temperature data observed by AGRI in the infrared
channel [41]. FY4A-QPE product can be obtained from the official website of the National
Satellite Meteorological Centre of China, the temporal resolution of the FY4A-QPE data
is about 4.5 min and the spatial resolution is 4 km. Due to the satellite data used in our
proposed model and FY4A-QPE product both coming from the FY4A satellite, we can
estimate our proposed model more intuitively.

2.2. Methodology
2.2.1. Network Introduction

The deep learning network used in our study is Attention-Unet, which adds Attention
Gates in the Decoder module of Unet. The Unet network is famous for its successful
application in biomedical segmentation [42], it combines low-resolution information with
high-resolution information through skip-connection module connections. Based on the
characteristics of Unet, we believe that Unet is suitable for the precipitation estimation
of satellite imagery. The specific reasons are as follows: (1) Typical rain clouds are easily
distinguished from satellite images and low-resolution information can help identify the
principal part of rain clouds. (2) The boundaries of rain clouds in satellite images are blurred
and the gradients of boundaries are complex, high-resolution information of satellite images
is necessary to obtain an accurate segmentation of rain cloud boundaries.

In 2018, the experiments of Ozan Oktay showed that after incorporating Attention
Gates with Unet [43], the model could inhibit the task-independent parts and increase
the task-related features during the learning process, and finally the model gets better
performance than before.

2.2.2. Network Structure and Parameters

Figure 1 is the structure diagram of Attention-Unet used in our study [43], the model
input is six channels of satellite images, and the model output is a precipitation estimation
map, both satellite images and precipitation estimation map have the same size which
is 300 pixels in width and 300 pixels in height. The spatial resolution of satellite images
and precipitation estimation map is 0.02◦. The precipitation region and estimated precip-
itation amounts can be seen in the precipitation estimation map. The Attention-Unet is
based on the Unet, the difference between the Attention-Unet and Unet is the decoder
module. Different from Unet, in the Attention-Unet the low-dimensional feature infor-
mation first passes Attention Gate and then gets into the process of Decoder. Specifically,
an Attention Gate is used to readjust the output features of Encoder before splicing the
features on each resolution of Encoder with the corresponding features in Decoder. The
Attention Gate generates a gated signal that controls the importance of features at different
spatial locations.
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2.2.3. Baseline Models

In addition, two deep learning models are employed as baseline models to compare
with the Attention-Unet model.

1. Unet

Unet is developed by Olaf Ronneberger for the application of biomedical segmenta-
tion [42]. As shown in Figure 2, the shape of the network resembles the letter ‘U’, so it
was named Unet. Unet is made up of the Encoder part and Decoder part. The encoder is
responsible for feature extraction, which consists of the convolution layer and pooling layer.
For the Decoder part, the key steps are up-sampling and skip-connection. Interpolation is
used in the up-sampling process, skip-connection concat the feature information of encoder
part with the feature information of up-sampling so as to make the feature map have more
low dimensional information of encoder part and enhance the segmentation accuracy. To
prove the effectiveness of adding Attention Gate, we selected Unet as the baseline model.
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2 PERSIANN-CNN

The PERSIANN-CNN model was developed by MOJTABA SADEGH [32]. As men-
tioned in the introduction, it uses IR and WV data in a convolutional neural network to
detect and estimate the rainfall rate. Mean square error (MSE) was used as the loss function
in the PERSIANN-CNN algorithm. The PERSIANN-CNN model uses two convolution
layers and two pooling layers to extract data features of WV and IR and then uses a
concatenation function to merge the two map features. During the up-sampling stage, a
two-dimensional convolutional transpose function and a two-dimensional convolutional
function are used two times to output the precipitation estimation data with the same
size as the input data. Details of the network structure can be found in their article. Since
PERSIANN-CNN shows excellent performance in the precipitation estimation of the GOES
satellite, we choose it as the baseline model to evaluate the capability of Attention-Unet.

2.3. Experiment
2.3.1. Data Preprocessing

Before the experiment, we need to preprocess the input data, the main work is as
follows: The first work is making the spatial resolution of all used data consistent. The
spatial resolution of satellite data is 4 km and the IMERG precipitation data is 0.1◦ (around
10 km). In order to keep the spatial resolution consistent, we use the bilinear interpolation
method to preprocess data and finally both FY4A data and IMERG data with a spatial
resolution of 0.02◦ were obtained. In the evaluation stage, the same method was applicated
to FY4A-QPE data and CMORPH data. The second work is time matching. The time reso-
lution of FY4A is about 4.5 min and for IMERG data is 30 min, to make them consistent we
only choose the FY4A satellite imageries whose recording time is the same as IMERG data.

2.3.2. Hyperparameters Setting

The initialization weights of the proposed deep learning network obey a normal
distribution, then the parameters are optimized using the Adam optimizer [44] to minimize
the loss functions for the model. Mean square error was used as the loss function. The
initial learning rate is 0.0001, and then the Cosine annealing algorithm is used to adjust the
learning rate. The training batch size is 4. The proposed model is trained in the Pytorch
framework with a single GPU of NVIDIA Tesla V100-SXM2p.

2.3.3. Evaluation Metrics

We evaluate the performance of precipitation identification and precipitation amounts
estimation by two kinds of evaluation metrics, respectively. Classification metrics are used
to evaluate precipitation identification performance, including Probability of Detection
(POD), False Alarm Ratio (FAR), and Critical Success Index (CSI). In precipitation estima-
tion, if the model or product tends to over-identify the cloud as precipitation, it will lead
to a higher POD value and a higher FAR value. Conversely, it will lead to a lower POD
value and a lower FAR value, CSI represents the model’s or product’s comprehensive per-
formance of POD and FAR. Regression metrics are used to evaluate precipitation amounts
estimation performance, including the Root Mean Square Error (RMSE) and the Pearson
correlation coefficient (CC) [45]. The metrics mentioned above are shown in Tables 2 and 3.

Table 2. Description of classification metrics used. TP denotes the number of true positive events,
FN denotes the number of missing events, FP denotes the number of false-positive events, and TN
denotes the number of true negative events.

Classification Metrics Formula Range Optimum

Probability of detection (POD) TP
TP+FN [0, 1] 1

False alarm ratio (FAR) FP
TP+FP [0, 1] 0

Critical success index (CSI) TP
TP+FN+FP [0, 1] 1
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Table 3. Description of regression metrics used. yi is an observation and ŷi is its estimation.

Verification Measure Formula Range Optimum

Root mean square
error (RMSE)

1
N ∑N

i=1

√
(ŷi − yi)

2 [0, ∞] 0

Pearson correlation
coefficient (CC)

1
N ΣN

i=1(ŷi−ŷ)(yi−y)
Sŷ ·Sy

[−1, 1] 1

2.3.4. Training Data and Precipitation Threshold Selection

After preprocessing the data, we have a total of 40 months of data from April 2018 to
July 2021. Data from June to August 2020 are used as testing data set to evaluate the model.
The other data were divided into training data (80%) and validation data (20%). For the
precipitation threshold, 0.5 mm per hour is often taken as the threshold of precipitation
identification [31]. In our study, the precipitation threshold selected is 0.2 mm per hour,
lower threshold means the model’s ability to capture precipitation is more accurate than
the common precipitation threshold.

3. Results

In this section, we evaluate the performance of the Attention-Unet model in long-term
verification periods and an extreme precipitation event, in comparison with two operational
near-real-time satellite-based precipitation products and two baseline deep learning models.
The definitions of the metrics used for verification are presented in Section 2. For all metrics,
we also present the performance gain or loss with respect to the FY4A-QPE product and
the Unet model.

3.1. Comparison with Operational Precipitation Products

Table 4 summarizes the overall precipitation identification performance of the FY4A-
QPE product, CMORPH product and the Attention-Unet model over the verification
periods (June–August 2020) of the southeastern coast of China (21◦–27◦N, 114◦–120◦E). The
Attention-Unet model shows the best performance gain (57.22% in CSI) in precipitation
identification compared to the other two products (0.283 compared to 0.180 and 0.220). The
CMORPH product has a 40.09% performance improvement in POD compared to FY4A-
QPE (0.311 compared to 0.222), while the Attention-Unet model has a 113.06% performance
improvement in POD compared to FY4A-QPE (0.473 compared to 0.222), it is a great
improvement obviously. As the CMORPH product and Attention-Unet model obtain a
higher score in CSI and POD, the score of FAR shows lower. The CMORPH product has a
35.48% performance loss in FAR compared to FY4A-QPE (0.569 compared to 0.420), and
the Attention-Unet model has a 33.11% performance loss in FAR compared to FY4A-QPE
(0.559 compared to 0.420). The overall promising performance demonstrates the superiority
of the Attention-Unet model in precipitation identification.

Table 4. Summary of precipitation identification performances over the verification periods.

Metrics FY4A-QPE
Product

CMORPH
Product

Attention-
Unet Model

CSI Value 0.180 0.220 0.283
Performance gain - 22.22% 57.22%

POD Value 0.222 0.311 0.473
Performance gain - 40.09% 113.06%

FAR Value 0.420 0.569 0.559
Performance gain - −35.48% −33.10%

Table 5 provides the overall precipitation estimation performances of FY4A-QPE,
CMORPH and the Attention-Unet model over the verification periods of the southeast-
ern coast of China (21◦–27◦N, 114◦–120◦E). The Attention-Unet model has significant
improvement in all measurements, compared to the FY4A-QPE precipitation product. The
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Attention-Unet model reduces average RMSE by 23.21% (0.751 compared to 0.978) and
the CMORPH Product reduces average RMSE by 14.92% (0.832 compared to 0.978). At
the same time, the Attention-Unet model has a 37.04% performance gain in the Pearson’s
correlation coefficient (CC), compared to the FY4A-QPE product (0.370 compared to 0.270),
The overall performance demonstrates the ability of the Attention-Unet model to estimate
precipitation amounts more accurately.

Table 5. Summary of precipitation estimation performance over the verification periods.

Metrics FY4A-QPE
Product

CMORPH
Product

Attention-
Unet Model

Average RMSE Value 0.978 0.832 0.751
Performance gain - 14.92% 23.21%

CC Value 0.270 0.268 0.370
Performance gain - 0.74% 37.04%

Figure 3 presents the maps of POD, CSI, and FAR of the FY4A-QPE, CMORPH product
and Attention-Unet model over the southeastern coast of China (21◦–27◦N, 114◦–120◦E) in
the verification periods. The warm colors indicate high measurement values, while cold
colors indicate low measurement values. High values are desirable for POD and CSI, while
low values are desirable for FAR. Compared with the FY4A-QPE product and CMORPH
product, the Attention-Unet model shows significant improvement in POD (Figure 3a–c),
especially the improvement is uniform. The improvement of the CMORPH product over
the FY4A-QPE product is reflected in the ocean area, while the Attention-Unet model
is not only the ocean areas but also the land areas. For CSI, Figure 3d–f show that the
Attention-Unet model uniformly outperforms FY4A-QPE product and CMORPH product
over the land and ocean areas. Compared with the FY4A-QPE product, we find that the
CMORPH product has an obvious improvement in the southwest ocean, however, in the
southwest land, no significant improvement can be visually distinguished. However, we
can find that the Attention-Unet model not only has a significant improvement in the
southwest ocean but also the southwest land. This finding demonstrates the model’s ability
to extend to different surfaces of the earth. For FAR (Figure 3g–i), the performance of
the Attention-Unet model is almost the same as CMORPH, which is consistent with the
FAR values presented in Table 4 (0.5686 and 0.5588 for CMORPH and Attention-Unet
model, respectively), the score of both CMORPH and Attention-Unet model is lower than
FY4A-QPE product. Overall, the Attention-Unet model’s performance improvements are
significant and consistent geographically for both land and ocean areas.

Figure 4 presents the maps of RMSE and Pearson correlation coefficient of the FY4A-
QPE product, CMORPH product and the Attention-Unet model over the southeastern coast
of China (21◦–27◦N, 114◦–120◦E) in the verification periods. The warm colors indicate high
measurement values, while cold colors indicate low measurement values. High values
are desirable for the Pearson correlation coefficient, while low values are desirable for
RMSE. Figure 4a–c show that there are some decreases in RMSE throughout the whole
map for the Attention-Unet model, compared to the FY4A-QPE product and CMORPH
product. In addition, we can find that most decreases are concentrated upon the land.
For the Pearson correlation coefficient, Figure 4d–f show that the Attention-Unet model
uniformly outperforms FY4A-QPE product and CMORPH product over the map, and an
obvious improvement can be observed over the mid-western part of the map, centered
around Guangdong province. In summary, compared to the FY4A-QPE product and
CMORPH product, a consistent improvement can be found in the RMSE and Pearson
correlation coefficient of the Attention-Unet model across the map. The overall performance
demonstrates the ability of the Attention-Unet model to estimate precipitation amounts
more accurately.
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Figure 3. POD, CSI, and FAR of CMORPH, FY4A-QPE and Attention-Unet model over the southeast-
ern coast of China during the validation period (June–August 2020). (a–c) POD; (d–f) CSI; and (g–i)
FAR. (a) POD: FY4A-QPE; (b) POD: CMORPH; (c) POD: Attention-Unet; (d) CSI: FY4A-QPE; (e) CSI:
CMORPH; (f) CSI: Attention-Unet; (g) FAR: FY4A-QPE; (h) FAR: CMORPH; (i) FAR: Attention-Unet.

In order to demonstrate the performance of the Attention-Unet model on specific
events that happened in uncalibrated areas. We select an extreme precipitation event to test
it. In 2021, from July 18 to 21, China’s Henan Province experienced extreme rainfall, which
is rare across the history of Henan Province. Figure 5 presents precipitation identification
results for the FY4A-QPE product, CMORPH product and the Attention-Unet model
in the 0430 UTC 19 July 2021. The green represents hit, the blue represents the false
detection, and the red represents miss. The white color indicates that less than 0.1 mm of
precipitation was observed at that location during the corresponding period. It is obvious
that only small sections of rainfall are correctly identified by the FY4A-QPE product. For
the CMORPH product, it is not only missing half of the rainfall areas but also makes
plenty of false detections; more pixels with false detection of rainfall are observed in
the CMORPH product than in the other two. Compared to the FY4A-QPE product and
CMORPH product, the Attention-Unet model can reduce the missing rainy pixels and
shows a significant improvement in delineating the precipitation area, represented by green
pixels. The overall performance demonstrates that the Attention-Unet model captures the
precipitation coverage more effectively and more accurately and means the Attention-Unet
model can extract more useful precipitation-related features from satellite information that
FY4A-QPE product and CMORPH product fail to extract.
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and Attention-Unet model over the Henan province at 0430 UTC 19 July 2021. (a) FY4A-QPE;
(b) CMORPH; (c) Attention-Unet.

Table 6 provides detailed values of CSI, POD, and FAR for the FY4A-QPE product,
CMORPH product and the Attention-Unet model from July 18 to 21, 2021 over the main
coverage area of the extreme precipitation event. For CSI, the Attention-Unet model
has the best performance compared to the FY4A-QPE Product and CMORPH Product
(0.570 compared to 0.420 and 0.161). The CMORPH product has a 43.76% decrease in
POD compared to FY4A-QPE (0.257 compared to 0.457), while the Attention-Unet model
has a 59.52% increase compared to the FY4A-QPE product (0.729 compared to 0.457),
the experimental result shows great superiority of the Attention-Unet Model in POD.
In the evaluation of FAR, the FY4A-QPE product has the best performance (0.156), and
the CMORPH product has the worst performance (0.698), while the performance of the
Attention-Unet model is similar to the FY4A-QPE product (0.265 compared to 0.156). The
experimental results show that the FY4A-QPE product seems conservative in precipitation
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identification, which leads to missing some precipitation pixels, owing to this reason it
shows good performance in the evaluation of FAR. The performance of the CMORPH
product is consistent with Figure 4, which shows a lot of false detection and missing many
precipitation pixels, the lowest score of CSI validates this result. The overall performance of
precipitation identification in extreme precipitation events demonstrates that the Attention-
Unet model is more balanced and stable compared to the other two precipitation products.

Table 6. Summary of precipitation identification performances over extreme precipitation events.

Metrics FY4A-QPE
Product

CMORPH
Product

Attention-
Unet Model

CSI Value 0.420 0.161 0.570
Performance gain - −61.67% 35.71%

POD Value 0.457 0.257 0.729
Performance gain - −43.76% 59.52%

FAR Value 0.156 0.698 0.265
Performance gain - −347.44% −69.87%

The specific performance for precipitation amounts estimation is displayed in Table 7.
As shown in Table 7, the Attention-Unet model has the best performance in all measure-
ments. Firstly, the Attention-Unet model reduces average RMSE by 84.23% (2.519 compared
to 15.976), which means a minimum error in precipitation amounts estimates. Secondly, the
Attention-Unet model has the highest score in the correlation coefficient (0.616 compared
to 0.590 and −0.086), which indicates that the precipitation amounts estimated by the
Attention-Unet model have the best correlation with true precipitation amounts.

Table 7. Summary of precipitation estimation performance over extreme precipitation events.

Metrics FY4A-QPE
Product

CMORPH
Product

Attention-
Unet Model

Average RMSE Value 15.976 3.855 2.519
Performance gain - 75.87% 84.23%

CC Value 0.590 −0.086 0.616
Performance gain - −85.42% 4.41%

3.2. Comparison with Baseline Deep Learning Models

Table 8 summarizes the overall precipitation identification performance of Unet,
PERSIANN-CNN and Attention-Unet over the verification periods (June–August 2020). For
POD and FAR, the Unet model performed best in POD and worst in FAR meanwhile (0.606
in POD and 0.681 in FAR), which means that Unet tended to over-identified cloud-covered
areas as precipitation areas. Compared to Unet, PERSIANN-CNN and Attention-Unet are
relatively balanced. They performed almost equally in identifying the precipitation area
(0.476 and 0.473 in POD), meanwhile, the false alarm rate of Attention-UNet is lower than
PERSIANN-CNN (0.559 compared to 0.600), which indicates that Attention-Unet is more
balanced and stable. The evaluation score of three deep learning models in CSI validates
the result mentioned above. The Attention-Unet model shows best in CSI compared to
Unet and PERSIANN-CNN (0.283 compared to 0.267 and 0.274). The overall results demon-
strate that Attention-Unet performed better than two baseline deep learning models in
delineating precipitation regions.
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Table 8. Summary of precipitation identification performances over the verification periods.

Metrics Unet
Model

PERSIANN-
CNN Model

Attention-
Unet Model

POD Value 0.606 0.476 0.473
Performance gain - −21.45% −21.95%

FAR Value 0.681 0.600 0.559
Performance gain - 11.89% 17.91%

CSI Value 0.267 0.274 0.283
Performance gain - 2.62% 5.99%

Table 9 provides the overall precipitation amounts estimation performances of Unet,
PERSIANN-CNN and Attention-Unet over the verification periods (June–August 2020).
For RMSE, Unet showed relatively high errors and fluctuations in precipitation amounts
estimation. The PERSIANN-CNN and the Attention-Unet model performed similarly and
both better than Unet. They reduced average RMSE by 75.30% (0.709 compared to 2.871)
and 73.84% (0.751 compared to 2.871), respectively. In the evaluation result of CC, the
precipitation amounts estimated by three models both showed a relatively high correlation
with truth precipitation amounts, among three models Attention-Unet performed best
(0.370 compared to 0.357 and 0.368).

Table 9. Summary of precipitation estimation performance over the verification periods.

Metrics Unet
Model

PERSIANN-
CNN Model

Attention-
Unet Model

Average RMSE Value 2.871 0.709 0.751
Performance gain - 75.30% 73.84%

CC Value 0.3570 0.368 0.370
Performance gain - 3.08% 3.64%

Figure 6 presents the maps of POD, FAR and CSI of the Unet, PERSIANN-CNN and
the Attention-Unet model over the southeastern coast of China (21◦–27◦N, 114◦–120◦E)
during the verification periods. The colors and the information corresponding to colors
are the same as the description mentioned in Figure 2. Compared with PERSIANN-CNN
and Attention-Unet, the Unet shows a higher value in POD (Figure 6a–c) among the
whole map, meanwhile, the average FAR of Unet is also much higher than the other two.
The color difference in Figure 6b,c indicates that the Attention-Unet model outperforms
PERSIANN-CNN in POD over the whole validate areas. Similarly, for Figure 6d–f, more
cold color pixels of the Attention-Unet map indicate that Attention-Unet performed better
than the other two models in FAR. For CSI, Figure 6g–i show that the Attention-Unet model
uniformly outperforms Unet model and PERSIANN-CNN model over the land and ocean
areas, which demonstrates that the Attention-Unet model can be applicated better than
the other two models on different surfaces of the earth. Overall, the Attention-Unet model
performed more balanced and better for both land and ocean areas among the three deep
learning models.

Figure 7 presents the maps of RMSE and CC of the Unet, PERSIANN-CNN and the
Attention-Unet model over the southeastern coast of China (21◦–27◦N, 114◦–120◦E) during
the verification periods. The colors and the information corresponding to colors are the
same as the description mentioned in Figure 4. For Figure 7a–c, it is obvious that Unet
shows a much higher RMSE value than PERSIANN-CNN and Attention-Unet among the
whole map except for the edge of validating areas. The PERSIANN-CNN and the Attention-
Unet model performed similarly and both better than Unet. They showed relatively high
RMSE value in the ocean areas located in the southwest part of the map. For the Pearson
correlation coefficient, precipitation amounts estimated by Unet showed a relatively high
correlation with true precipitation amounts in the mid-eastern ocean areas, but a low
correlation in the land. In contrast to Unet, PERSIANN-CNN and Attention-Unet are
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more balanced. Precipitation amounts estimated by PERSIANN-CNN and Attention-Unet
showed a relatively high correlation with true precipitation amounts in both land and ocean.
The color differences of Figure 7e,f indicate that the average CC value of Attention-Unet
is higher than PERSIANN-CNN. In addition, more warm color pixels of the Attention-
Unet map represent that Attention-Unet performed better in more widely regions. The
overall performance demonstrates that the Attention-Unet model can estimate precipitation
amounts more accurately.
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eastern coast of China during the validation period (June–August 2020). (a–c) POD; (d–f) FAR; and 
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Figure 6. POD, CSI, and FAR of Unet, PERSIANN-CNN and Attention-Unet model over the south-
eastern coast of China during the validation period (June–August 2020). (a–c) POD; (d–f) FAR;
and (g–i) CSI. (a) POD: Unet; (b) POD: PERSIANN-CNN; (c) POD: Attention-Unet; (d) FAR: Unet;
(e) FAR: PERSIANN-CNN; (f) FAR: Attention-Unet; (g) CSI: Unet; (h) CSI: PERSIANN-CNN; (i) CSI:
Attention-Unet.

Figure 8 presents precipitation identification results for the Unet, PERSIANN-CNN
and the Attention-Unet model at the 0430 UTC 19 July 2021. It is obvious that Unet can
identify almost all precipitation areas correctly, but the number of false detection pixels
of Unet is the largest among the three deep learning models. This indicates that Unet
has the problem of over-identifying clouds as precipitation and is unable to accurately
delineate precipitation areas. Compared to the Unet, PERSIANN-CNN and Attention-UNet
performed better, reducing false detection while identifying major precipitation areas. In
contrast to PERSIANN-CNN, Attention-Unet has fewer false detection pixels and identifies
the edge of precipitation areas sharper, while the PERSIANN-CNN performed ambigu-
ously. The overall performance demonstrates that the Attention-Unet model delineates
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the precipitation areas more effectively and accurately in extreme precipitation events
compared with baseline deep learning models.
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Figure 8. Visualization of precipitation identification performance of Unet, PERSIANN-CNN and
Attention-Unet model over the Henan province at 0430 UTC 19 July 2021. (a) Unet; (b) PERSIANN-
CNN; (c) Attention-Unet.

Table 10 provides detailed values of POD, FAR and CSI for the Unet, PERSIANN-
CNN and the Attention-Unet from July 18 to 21, 2021 over the main coverage area of the
extreme precipitation event. The Unet model performed best in POD but worst in FAR
(0.889 in POD and 0.451 in FAR), which is consistent with the results shown in Figure 6
and Table 8. PERSIANN-CNN and Attention-Unet are relatively stable and balanced, they
performed the same in POD, but the FAR of Attention-Unet is lower than PERSIANN-CNN
(0.265 compared to 0.292). For CSI, Attention-Unet has the best performance compared
to Unet and PERSIANN-CNN (0.570 compared to 0.540 and 0.558), which denotes that
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Attention-Unet can delineate precipitation areas more effectively among three deep learning
models in extreme precipitation events.

Table 10. Summary of precipitation identification performances over extreme precipitation events.

Metrics Unet
Model

PERSIANN-
CNN Model

Attention-
Unet Model

POD Value 0.889 0.729 0.729
Performance gain - −18.00% −18.00%

FAR Value 0.415 0.292 0.265
Performance gain - 29.64% 36.14%

CSI Value 0.540 0.558 0.570
Performance gain - 3.33% 5.56%

The specific performance of deep learning models for precipitation amounts estimation
is displayed in Table 11. Among three deep learning models, Unet performed worst in
precipitation amounts estimation (13.274 in RMSE), Attention-Unet performed best and
reduce average RMSE by 81.02% compared to Unet Model (2.519 compared to 13.274). In the
evaluation of CC, the precipitation amounts estimated by Attention-Unet show the highest
consistency and correlation with true precipitation amounts, which is 36.28% higher than
Unet (0.616 compared to 0.452). The overall evaluation results show that Attention-Unet
performs best in precipitation amounts estimation of the extreme precipitation event.

Table 11. Summary of precipitation estimation performance over extreme precipitation event.

Metrics Unet
Model

PERSIANN-
CNN Model

Attention-
Unet Model

Average RMSE Value 13.274 2.908 2.519
Performance gain - 78.09% 81.02%

CC Value 0.452 0.527 0.616
Performance gain - 16.59% 36.28%

4. Discussion

In this work, we applicated Attention-Unet to accurately estimate FY4A satellite-based
precipitation. Two experiments including a long-term validation period and an extreme
precipitation event are selected to evaluate the performance of the model. Our discussions
are based on the experiment results.

We use classification metrics and regression metrics to evaluate our proposed model’s
effectiveness in precipitation identification and precipitation amounts estimation, respec-
tively. In the comparison of Attention-Unet with operational precipitation products, the
Attention-Unet model shows significant improvements in both precipitation identification
and precipitation amounts estimation over the study area of the southeastern coast of China.
In the precipitation identification, the performance gain in CSI for the Attention-Unet model
is 57.22%, compared to the FY4A-QPE product. In precipitation amount estimation, the
Attention-Unet model is 23.21% lower in average RMSE and 37.04% higher in Pearson
correlation coefficient compared to the FY4A-QPE product. In the evaluation of an extreme
precipitation event, even though in uncalibrated areas the Attention-Unet model also shows
the best performance compared to the FY4A-QPE product and CMORPH product. In the
comparison of Attention-Unet with two baseline deep learning models, Attention-Unet per-
formed more balanced and stable in precipitation identification and precipitation amounts
estimation. This result was demonstrated in the experiment of extreme precipitation event,
Attention-Unet outperformed in precipitation identification (0.570 in CSI) and precipitation
amounts estimation (2.519 in RMSE and 0.616 in CC) among three deep learning mod-
els. The contrast of Attention-Unet with Unet indicates that adding Attention Gate on
Unet plays an important role in satellite-based precipitation estimation, Attention Unet is
more suitable for satellite precipitation estimation. In addition, we find that deep learning
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models generally performed better than operational satellite precipitation products in
our experiments.

The experimental results verify the direction for improving the accuracy of satellite
precipitation products mentioned in the introduction. In this study, the FY4A satellite’s
multi-spectral data represent the most advanced meteorological satellite data in China and
the selected Attention-Unet network is an advanced deep learning methodology that is
suitable for satellite precipitation estimation, finally, the experimental results demonstrated
the universal superiority of the Attention-Unet model over the operational precipitation
products and two baseline deep learning models. The results of our experiments have
positive significance for future research on satellite precipitation estimation.

There are also some research opportunities left for futural exploration. Firstly, the
instantaneous satellite data and 30 min-cumulative precipitation data may not be the best
pairs to build a relationship, we will choose the precipitation data which has a higher
temporal resolution for experiments in the future. Secondly, the precipitation estimation
model should be conducted over a larger study area with longer training and verification
periods to make the model have better stability. Thirdly, we can make full use of data
related to precipitation in the future, such as the brightness temperature difference between
channel 13 and channel 10 of the FY4A satellite, whose value becomes positive when there
is heavy precipitation.

5. Conclusions

In this study, the application of Attention-Unet in detecting and estimating precipita-
tion from the FY4A satellite’s multi-spectral information was explored. Experiments show
that the Attention-Unet model can effectively delineate the precipitation area and estimate
precipitation amounts. The effectiveness of the Attention-Unet model is fully demonstrated
by comparing it with two operational precipitation products and two baseline deep learn-
ing models. Experimental results of extreme precipitation events show that the trained
Attention-Unet model has a pretty good generalization ability. The current application of
advanced deep learning algorithms toward supporting FY4A satellite to develop effective
precipitation retrieval algorithms. In the future, we are interested in exploring adding some
physical data related to the formation of precipitation to solve the limitation of only consid-
ering spectral information and introducing a more advanced deep learning algorithm to
improve the performance of satellite-based precipitation estimation. Further experiments
are required for the preparation of the model to serve as an operational product.
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