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Abstract: The lakes distributed in permafrost areas on the Tibetan Plateau (TP) have been experiencing
significant changes during the past few decades as a result of the climate warming and regional
wetting. In September 2011, an outburst occurred on an endorheic lake (Zonag Lake) in the interior
of the TP, which caused the spatial expansion of three downstream lakes (Kusai Lake, Haidingnor
Lake and Salt Lake) and modified the four independent lake catchments to one basin. In this study,
we investigate the changes in surficial areas and water volumes of the outburst lake and related
downstream water bodies 10 years after the outburst. Based on the meteorological and satellite data,
the reasons for the expansion of downstream lakes were analyzed. Additionally, the importance
of the permafrost layer in determining hydrological process on the TP and the influence of from
lake expansion on engineering infrastructures were discussed. The results in this study showed the
downstream lakes increased both in area and volume after the outburst of the headwater. Meanwhile,
we hope to provide a reference about surface water changes and permafrost degradation for the
management of lake overflow and flood on the TP in the background of climate warming and wetting.

Keywords: climate warming and wetting; lake outburst; surface water body; continuous permafrost
regions; Tibetan Plateau

1. Introduction

The IPCC AR6 showed that the climate warming in the past 50 years is unprecedented
compared to the past 2000 years [1–3]. Along with the climate warming, the globally
averaged precipitation over land increased since 1950 and has accelerated at an increasing
rate since the 1980s [4–6]. The increasing global warming also related to the occurrence of
extreme events, including extreme heat events and heavy precipitation [7–10]. In Arctic
and high-altitude regions, the effects of global climate warming on the regional climate
system are generally amplified [11–14].

The Tibetan Plateau (TP) with an average elevation exceeding 4000 m above sea level
(a.s.l) is known as the “Third Pole” on the earth. It is also called as “Asia’s Water Tower”.
Many large rivers in Asia originate here, including the Yellow River, Yangtze River, Indus
River, Ganges River, Irrawaddy River, Brahmapura River, Mekong River and Salween
River. Additionally, a great number of glaciers and lakes are distributed here [15]. The
lakes located on the TP account for 39.2% in number and 51.4% in area among all lakes
in China [16]. The TP has the largest distribution of high-altitude permafrost on Earth,
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covering 1.4 × 106 km2 [17]. During the past 50 years, climate warming and wetting is
speeding up on the TP [4]. From 1961 to 2020, the increasing rate in mean annual air
temperature (MAAT) on the TP reached 0.35 ◦C/10a, which is about two times the global
average rate at the same time, and the annual precipitation had an increase rate about
7.9 mm/10a [18,19]. From 2016 to 2020, the mean annual precipitation reached 540 mm
on the TP, which is about 13% more compared to the period of 1961–1990 [19]. Because of
the warming and the wetting in regional climate, the cryosphere components, including
glaciers, permafrost and snow cover have been degrading extensively and continuously
over the past 50 years [19].

As a connection linking the atmosphere, biosphere and cryosphere in hydrological
cycle, lakes on the TP were rarely disturbed directly by anthropogenic activities, and
therefore are sensitive indicators of regional climate changes [20]. Driven by the continuous
climate and cryosphere changes, these lakes have experienced rapid changes in areas,
water levels and volumes during the past century [21–23]. The lakes on the TP showed
a slightly decrease in the total area between the 1970s and 1990, but increased rapidly
from 2000 to 2010 [24]. The variations in alpine lakes from 1986 to 2019 in the headwater
area of the Yellow River, northeastern TP, was studied, and the results indicated that lake
variations in this region are related to the increased net precipitation and the declined
aridity [25]. A rapid expansion of lakes in the endorheic basin on the TP since 2000 was
investigated, and the potential driving factors, including climate change, glacier melting
and permafrost degradation, were discussed [26]. Additionally, the impacts from lake
changes on hydrological cycles, periglacial environments, eco environments and future
climate change have been investigated [27–29]. However, few studies have focused on the
impacts of occasional extreme events on periglacial components in permafrost regions. In
the continuous permafrost area on the TP, lakes are distributed above and surrounded by
the permafrost layer, which acts as an isolation layer between the lakes and the surrounding
areas [25,30,31]. Therefore, the overflooding or the outburst of permafrost area TP lakes
upstream will cause changes in water bodies in the downstream area and create further
threats to communities and engineering infrastructure in the drainage basin.

In September 2011, an outburst of Zonag Lake occurred in the continuous permafrost
region on the TP [32]. This event was paid great attention by scientific communities and
governments because it is historically the first record of a lake outburst event outside the
glacial regions on the TP [32–37]. Because of this outburst, three downstream lakes named
Kusai Lake, Haidingnor Lake and Salt Lake experienced a series of changes hereafter, and
the hydrological connection among these four lakes was triggered. To avoid the damage
from potential overflow of Salt Lake to the engineering infrastructures nearby, a channel
was excavated for the drainage. Focusing on this event, Yao et al. [38] analyzed the area
variation of Salt Lake downstream and its overflowing condition and probability. Lu
et al. [36] presented the ground displacement around Salt Lake and concluded that the
outburst of Zonag Lake might accelerate the permafrost degradation around Salt Lake.
Xie et al. [37] pointed out that the outburst of Zonag Lake amplified the desertification
disaster around the lake and proposed that the possible outburst mode of Salt Lake would
be similar to that of the Zonag Lake. However, the surface connection among the four
lakes after the outburst has not been investigated. Additionally, few research focus on the
potential damage to transportation infrastructure in the downstream area.

Due to the high altitude and the harsh environment conditions, the data and informa-
tion from in situ investigation around the lakes are very limited. The technology of remote
sensing, however, has played an important role in obtaining the reliable information, and
has been applied in research on the process of lake changes on the TP [39–41]. In this study,
the water area of the basin and the number of small lakes and ponds (>1000 m2) were
extracted from Joint Research Centre (JRC) global surface water dataset by Google Earth
Engine (GEE) from 2000 to 2020. In addition, the hydraulic connection of the four lakes was
analyzed using Landsat TM/ETM+/OLI data based on the enhanced water index (EWI).
The results illustrated the changes in the area and the amount of surface water bodies in
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this region after the headwater lake outburst, and are hoped to provide a reference for
management of lake overflow and flood on the TP in the context of climate warming and
wetting.

2. Materials and Methods
2.1. Study Region

The study region (Figure 1a), is located in the northeastern TP. Administratively, it
belongs to Zhidoi County, Qinghai Province. The topography is high in the west and low in
the east, with an average elevation of about 4785 m a.s.l. In the region, four lakes, including
Zonag Lake, Kusai Lake, Haidingnor Lake and Salt Lake, are distributed from west to east.
The division of the catchments are shown in Figure 1b. The soil is not fully developed in
this area and is mainly composed of stone and sand. The main forms of vegetation in the
study region are alpine meadow, alpine steppe and alpine desert [35].
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Figure 1. Overview of the study area: (a) the permafrost on the TP; (b) the topography and lake
distribution of the study area.

This area is part of the Hoh Xil National Nature Reserve, which is defined as one of the
world heritages by the United Nations Educational, Scientific and Cultural Organization.
Human activities in this area are very rare due to the harsh climate and very thin oxygen
conditions [42]. It is characterized by a semiarid continental and cold climate, with the
MAAT of −10~−4.1 ◦C, annual precipitation of 173~494.9 mm (mainly in warm season),
and annual average wind speed of 4.4 m/s [43,44].

Before 2011, the four lakes had their own catchments. In late August and early
September 2011, due to continuous rainfall, the water level of the Zonag Lake rose sharply
and an outburst occurred in the eastern part of the lake. After that, the flood flowed into
Kusai Lake and caused an overflow in late September 2011. Then, the overflowing water
of Kusai lake entered into Haidinuoer Lake and eventually converged to the lowest Salt
Lake of the drainage basin. Although historically, these lakes were united, the four lakes
remained independent before the outburst. The outburst in 2011 connected these lakes by
eroding the historical channels. Therefore, the catchments of Zonag Lake, Kusai Lake as
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well as Haidingnor Lake became a part of the Salt Lake catchment, referred hereinafter as
Zonag-Salt Lake Basin (ZSLB).

2.2. Climate Data

The air temperature and precipitation data since 1965 were collected from Wudaoliang
meteorological observation station (35.21◦N, 93.08◦E, 4612 m a.s.l), which is the nearest
national station to the study region. The data were downloaded from China Meteorological
Administration (CMA) (http://cdc.cma.gov.cn, accessed on 27 October 2020).

2.3. Remote Sensing Data

In order to analyze the hydraulic connection between the four lakes, a total of 42 scenes
Landsat images (http://glovis.usgs.gov, accessed on 10 October 2020) were collected,
of which 22 scenes were from Landsat-5 TM, 4 scenes were from Landsat-7 ETM+ and
16 scenes were from Landsat-8 OLI with the world reference system (WRS) path 137/138
and row 35, spanning from 2000 to 2020. Due to the sensor failure, the Landsat-5 datasets
have been missing since 2011. Additionally, the scan line corrector of Landsat-7 was broken
in May 2003, and the images were affected by striping afterwards [45]. Compared with
Landsat-5 TM and Landsat-7 ETM+, the Landsat 8-OLI has still provided high-quality
images since 2013. The main parameters of Landsat sensors are listed in Table 1.

Table 1. Main parameters of the Landsat sensors.

Landsat-5 TM Landsat-7 ETM+ Landsat-8 OLI
Bands Wavelength

(µm)
Resolution

(m) Bands Wavelength
(µm)

Resolution
(m) Bands Wavelength

(µm)
Resolution

(m)

1-Blue 0.45–0.52 30 1-Blue 0.45–0.52 30 1-Coastal aerosol 0.43–0.45 30
2-Green 0.52–0.60 30 2-Green 0.52–0.60 30 2-Blue 0.45–0.51 30
3-Red 0.63–0.69 30 3-Red 0.63–0.69 30 3-Green 0.53–0.59 30

4-NIR 1 0.76–0.90 30 4-NIR 0.77–0.90 30 4-Red 0.64–0.67 30
5-SWIR1 2 1.55–1.75 30 5-SWIR1 1.55–1.75 30 5-NIR 0.85–0.88 30
6-Thermal 10.40–12.5 120 6-Thermal 10.40–12.5 60 6-SWIR1 1.57–1.65 30
7-SWIR2 2.08–2.35 30 7-SWIR2 2.08–2.35 30 7-SWIR2 2.11–2.29 30

8-Panchromatic 0.52–0.9 15 8-Panchromatic 0.50–0.68 15
9-Cirrus 1.36–1.38 30

1 NIR—near infrared; 2 SWIR—short-wave infrared.

To extract the annual distribution of water body in ZSLB, we used the JRC Monthly
Water History dataset from GEE platform as the source data. The dataset was generated
by using 4,453,989 scenes from Landsat 5, 7 and 8 images between 16 March 1984 and 31
December 2020 [46]. Each pixel was interpreted into either water or non-water using an
expert system and the results were collated into a monthly dataset with two epochs, from
1984 to 1999, and from 2000 to 2020. To extract the stream in ZSLB, the SRTM DEM data
were downloaded from the geospatial data cloud site (http://www.gscloud.cn, accessed
on 6 July 2021).

2.4. Lake Volume Data

The volume data of the four lakes in ZSLB were obtained from the dataset “Lake
volume changes on the Tibetan Plateau during 1976–2019 (>1 km2)”, downloaded from
National Tibetan Plateau/Third Pole Environment Data Center (https://data.tpdc.ac.cn/,
accessed on 7 October 2021) [29]. This dataset provided the water volume of 1132 lakes on
the TP between 1976 and 2019 using the Landsat images and SRTM DEMs. Lakes in the
dataset are classified into different categories and are well coded. In this study, the volume
data of Zonag Lake (Code L49), Kusai Lake (Code L47), Haidngnor Lake (Code L243 and
L476) and Salt Lake (Code L227) were used to investigate the volume change before and
after the outburst.

http://cdc.cma.gov.cn
http://glovis.usgs.gov
http://www.gscloud.cn
https://data.tpdc.ac.cn/
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2.5. Methods

The Normalized Difference Water Index (NDWI) uses the reflected near-infrared
radiation (TM band 4) and visible green light spectrum (TM band 2) to enhance the open
water feature while depressing the vegetation feature [47,48]. The Modified Normalized
Difference Water Index (MNDWI) uses TM band 5 to replace the NIR band in NDWI,
which can enhance the open water features while efficiently suppressing built-up land
noise, as well as vegetation and soil noise [49]. The enhanced water index (EWI) can clearly
distinguish the semidry watercourse from the noise by using TM band 2, band 4 and band
5 [50]. By taking advantage of the higher reflection in blue light and the higher absorption
in TM band 7 of the water body, the new water index (NWI) uses the TM band 1, band 4,
band 5 and band 7 to extract the water body [51]. The equations of water indices and the
involved spectrum sections are shown in Table 2.

Table 2. Required bands and the equation of each water indices.

TM/ETM+ Bands OLI Bands Equations

NDWI b2, b4 b3, b5 NDWI = ρGreen−ρNIR
ρGreen+ρNIR

MNDWI b2, b5 b3, b6 MNDWI = ρGreen−ρSWIR1
ρGreen+ρSWIR1

EWI b2, b4, b5 b2, b4, b6 EWI = ρGreen−(ρNIR+ρSWIR1)
ρGreen+(ρNIR+ρSWIR1)

NWI b1, b4, b5, b7 b2, b5, b6, b7 NWI = ρBlue−(ρNIR+ρSWIR1+ρSWIR2)
ρBlue+(ρNIR+ρSWIR1+ρSWIR2)

ρGreen: the reflectance of the green band; ρblue: the reflectance of the blue band; ρNIR: the reflectance of the
near-infrared radiation; ρSWIR1 and ρSWIR2: the reflectance of the blue band short wavelength infrared radiation.

In order to determine the most suitable index for this research purpose, four water
indexes were calculated based on the spectrum bands of Landsat images. Four types
of landcovers in and around the lake were selected, and five locations of each type of
landcover were interpreted (Table 3 and Figure 2). The table and figure show that the index
value of NDWI and MNDWI are quite similar and the value of NWI is the smallest in
water, river, land and wetland among the four indexes. Considering that the study area is a
semiarid region, the EWI has a better performance in suppressing the background noise
and was chosen and used to obtain the surficial water routes.

Table 3. Numerical value of different features selected.

Points NDWI MNDWI EWI NWI Points NDWI MNDWI EWI NWI

LK 11 0.832 0.893 0.742 0.672 R 31 −0.01 0.025 −0.327 −0.563
LK2 0.785 0.857 0.67 0.569 R2 0.346 0.441 0.067 −0.281
LK3 0.704 0.797 0.554 0.473 R3 0.061 −0.088 −0.35 −0.629
LK4 0.41 0.493 0.138 0.004 R4 0.077 0.062 −0.27 −0.503
LK5 0.577 0.663 0.36 0.03 R5 −0.119 −0.194 −0.467 −0.692

Average 0.662 0.741 0.493 0.35 Average 0.071 0.049 −0.269 −0.534
LD 21 −0.295 −0.345 −0.591 −0.792 W 41 −0.150 −0.185 −0.475 −0.715
LD2 −0.288 −0.361 −0.595 −0.794 W2 −0.233 −0.180 −0.506 −0.712
LD3 −0.211 −0.215 −0.510 −0.700 W3 −0.246 −0.281 −0.549 −0.767
LD4 −0.189 −0.261 −0.521 −0.729 W4 −0.161 −0.085 −0.440 −0.630
LD5 −0.167 −0.250 −0.508 −0.732 W5 −0.125 −0.199 −0.471 −0.714

Average −0.230 −0.286 −0.545 −0.749 Average −0.183 −0.186 −0.488 −0.708
1 LK—lake points; 2 LD—land points; 3 R—river points; 4 W—wetland points.

To identify the water area of the study area and analyze the distribution of the water
body, the annual water distribution of ZSLB was extracted and calculated from JRC Monthly
Water History v1.3 dataset from 2000 to 2020 using GEE. Then, with the river network of
ZSLB built by DEM, the vector data of small lakes and ponds in ZSLB between 2000 and
2020 was obtained. Considering that the resolution of the raster image was 30 m, in order
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to reduce the impact of the noise, only lakes and ponds larger than 1000 m2 were calculated.
The analysis procedure for the changes of water body and impacts of lake outburst on
adjacent lakes in ZSLB is shown in Figure 3.
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3. Results
3.1. Changes in Total Surface Water Area in ZSLB

The total surface water area in the ZSLB increased from 786.5 km2 to 1041.6 km2 from
2000 to 2020, with an average increase rate of 12.1 km2/a, and this period can be roughly
divided into four stages: 2000–2008, 2008–2013, 2013–2018, and 2018–2020, according to
the different increase rate (Figure 4). A slow and steady increase was presented in the first
stage, with an average rate of 5.1 km2/a. A quick and sharp increase occurred from 2008
to 2013 with a rate of 22.8 km2/a, and the outburst of Zonag Lake occurred in this stage.
Afterwards, the increase in the surface water area slowed down, with a rate of 6.6 km2/a
from 2013 to 2018. In the fourth stage, however, the fastest increase in the water area in the
ZSLB was shown, with an average rate of 33.8 km2/a
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3.2. Changes in the Area of the Four Lakes

Figure 5 presents the changes in the four lakes in areas between 2000 and 2020. Obvi-
ously, the outburst of the Zonag Lake in 2011 was a huge change. Before 2011, the areas of
the four lakes increased slowly but steadily. Specifically, the Zonag Lake had an increase in
the area of 9.5 km2 (3.7%) from 2000 to 2011, with an annual rate of 0.9 km2 and Kusai Lake
increased in the area of 30.7 km2 (11.5%) with a rate of 2.8 km2/a. The Haidingnor Lake
increased by 20.2 km2 (55.9%) with a rate of 1.8 km2/a, while Salt Lake increased in its
area of 9.91 km2 (23.2%) with a rate of 0.9 km2. After the outburst, the area of Zonag Lake
declined from 268.3 km2 to 163.8 km2, ending in 2020, while the other three downstream
lakes experienced the areal expanding spatially as the result of the water from the Zonag
Lake flowing in. The areas of Kusai Lake and Haidingnor Lake increased by 34.9 km2 and
23.3 km2, respectively. As the tail-end lake of the watershed, Salt Lake received the most
overflowing water from the three lakes upstream, and the area spatially increased from
52.6 km2 in 2011 to 140.6 km2 in 2013. After 2013, the area changes of the four lakes returned
to normal, although Zonag Lake had an area decrease slightly after that; it decreased to
approximately 150 km2 in 2020. The area of Haidingnor Lake increased 1.12 km2 during
seven following years. Similar to Haidingnor Lake, Kusai Lake has not experienced an
obvious change in area since 2013. Salt Lake, however, experienced a considerable increase
in the area between 2013 and 2020, with an increase rate of 9.0 km2/a on average. Before
2018, the increase rate was relatively small, with a magnitude of 5.1 km2/a. Meanwhile,
between 2018 and 2019, there was a sharp increase in the area of Salt Lake. Until 2020, the
area of Salt Lake reached 204 km2, which is about 4.7 times that in 2000.
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3.3. Changes in Shorelines of the Four Lakes in ZSLB

The shorelines and areas of the four lakes have changed with varying degrees in the
past 20 years. Figure 6 shows the shape changes in the shorelines of the four lakes in selected
years, namely 2000, 2010, 2012 and 2019. The shoreline of Zonag Lake mainly changed in
late 2011 and 2012, and along the east–west direction after the outburst occurred. After
2012, however, the shoreline of Zonag lake did not change much. Similarly, the shoreline of
Kusai Lake mainly changed in 2012, and expanded along its southeast direction as a result
of the outburst. After 2012, the shoreline of Kusai Lake did not change much.
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Compared with the former two, the shoreline changes of Haidingnor Lake were
complicated during the study period. Within the catchment of Haidingnor Lake, there
were two relatively large lakes in the north–south direction and a group of small lakes and
ponds or swampy wetlands in the east. After the outburst of Zonag Lake, the two large
lakes in the north–south direction connected together and expanded rapidly in both west
and east directions, merging with small lakes and ponds originally scattered in the east.
Since 2012, the shoreline of Haidingnor lake remained relatively stable.

Changes in the Salt Lake shoreline were obviously different from the former three,
and could be divided into three periods. In the first period, from 2000 to 2010, Salt Lake
expanded slightly, and its shoreline remained relatively stable. The second period is directly
related to the outburst of Zonag Lake. From 2010 to 2012, Salt Lake expanded rapidly
almost in all directions expect for its northwest part. After that, Salt Lake showed a rapid
expansion trend until 2019.
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3.4. Changes in Water Volumes of the Four Lakes in ZLSB

The water volume changes of four lakes also presented a sudden change around 2011
(Figure 7). During 1976 and 1990, the volume of four lakes showed a trend of decline
in varying degrees. From 1990 to 2010, the volume of Zonag Lake experienced a small
reduction first and then shifted to an increase between 2005 and 2010, while the water
volume change of Kusai Lake switched from negative to positive between 1995 and 2000.
The water volume of Haidingnor also showed a positive change after 2000. Meanwhile, the
volume of Salt Lake remained quite stable from 1990 to 2010.
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However, between 2010 and 2015, with the outburst of Zonag Lake, the volume of
the four lakes showed a big change. From 2010 to 2015, the water volume of Zonag Lake
decreased by 5.74 Gt, while the water volumes of Kusai Lake, Haidingnor and Salt Lake
downstream increased by 1.5 Gt, 0.12 Gt and 0.94 Gt, respectively, from 2015 to 2019. During
this period, the trend of the decreasing water volume of Zonag Lake slowed down with a
reduction of 0.23 Gt, while the increase in Kusai Lake and Haidingnor Lake slowed down
in comparison, with an increase of 0.1 Gt and 0.0073 Gt, respectively. The water volume of
Salt Lake increased by 1.03 Gt over the four-year period, surpassing the period from 2010
to 2015, making it the lake with the largest increasement in water volume after the Zonag
Lake outburst.

From the aspect of the water volume changes and the hydraulic connection between
the four lakes, it can be seen that after the outburst of Zonag Lake, Kusai Lake and Salt
Lake received most of the incoming water from upstream. Meanwhile, Haidingnor Lake,
limited by its area and topography, served more as a water passage to bring water to Salt
Lake. However, until 2015, Kusai Lake was the main intake lake of the overflowing water.
After that, with the gradual formation of a relatively stable river channel between the four
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lakes, the volume of Kusai Lake tended to stabilize, while the volume of Salt Lake still
increased at the same time.

3.5. Hydraulic Connection of the Four Lakes in ZSLB

Before the outburst of Zonag Lake, the four lakes in ZSLB had their own catchments
and there were almost no connections between each of them. After the outburst of Zonag
Lake in September 2011, a gully which was about 100 m wide and 6–7 m deep was formed
on the east side of the lake in a very short time because of the sudden and large overflowing
water from the lake. [35]. The flood water first flowed into Kusai Lake through Zonag-Kusai
River (ZKR) and triggered the overflow of Kusai Lake between September 20 and 30, 2011.
The overflowing water widened and downcut the relict river channel and formed the
Kusai–Haidingnor River (KHR). Afterwards, Haidingnor Lake, downstream of Kusai Lake,
was filled up and the overflowing water made the lake expand to the west, which occupied
the historical river channel and formed the Haidingnor–Salt River (HSR) [32] (Figure 8).
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Figure 8. The EWI results of hydraulic connection in ZSLB (2013).

From the EWI results during 2000 and 2020, the changes in water distribution between
Kusai Lake and Haidingnor Lake, and between Haidingnor Lake and Salt Lake, were cap-
tured. In the 2000s, water distribution in the regions between Kusai Lake and Haidingnor
Lake remained quite stable. However, since 2010, the area of Kusai Lake has expanded in
the east, and some small lakes can be spotted on the map. By 2013, after KHR formed, the
eastern side of Kusai Lake experienced a significant expansion compared to 2010. In the
following years, KHR and the area of the eastern Kusai Lake and the western Haidingnor
Lake remained relatively stable (Figure 9a). As for the region between Haidingnor Lake
and Salt Lake, the expansion of water body can be observed from 2010 onwards, when
several small lakes appeared between Haidingnor Lake and Salt Lake. After HSR was
formed in late 2011 and remained stable in the following years, a significant expansion of
the inlet channel of Salt Lake can be observed. The water area both in eastern Haidingnor
and western Salt Lake had an obvious expansion, resulting in the distance between two
lakes becoming closer than ever before in 2020 (Figure 9b).
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Figure 9. The EWI results of hydraulic connection between 2000 and 2020: (a) region between Kusai 
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Figure 9. The EWI results of hydraulic connection between 2000 and 2020: (a) region between Kusai
Lake and Haidingnor Lake; (b) region between Haidingnor and Salt Lake.
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3.6. Variations in the Number of Small Lakes and Ponds in ZSLB

The total number of small lakes and ponds larger than 1000 m2 in area in ZSLB did
not change too much before 2010. However, between 2010 and 2012, the total number of
lakes and ponds increased by 26% during the period in which the outburst occurred. After
2012, several rivers formed between the four lakes to carry most of the overflowing water
from the upstream lakes, and the number of lakes and ponds gradually returned to the
level before the outburst. However, after 2017, the number of lakes and ponds in the basin
once again saw an increase, rising to 2388 lakes and ponds in 2019, and reaching a 20-year
historical high.

Considering the changes of small lakes and ponds within each catchment of the four
lakes individually, the number of small lakes and ponds within each catchment of the four
lakes fluctuated and increased during the decade from 2000 to 2010. In the catchment of
Haidingnor Lake, the number of small lakes and ponds decreased by about 16% from 2000
to 2008, but nearly doubled between 2008 and 2010, reaching 237. Within two years of
the outburst of the Zonag Lake in 2011, the number of small lakes and ponds within the
catchment first jumped to 270 and then gradually decreased. However, the number of small
lakes and ponds rose again after 2016, with an increase of about 19%, reaching 290 in 2020.
The number of small lakes and ponds in the former Kusai Lake basin and Haidingnor Lake
basin underwent an increase–decrease–increase cycle after 2011, eventually reaching 1.45
and 1.67 times the number of lakes and ponds in 2010, respectively. The number of small
lakes and ponds in the Salt Lake catchment increased significantly after 2016, and finally
reached 876 lakes and ponds in 2020, which was 1.5 times the number of lakes and ponds
in 2010. This is the largest increase in the number of small lakes and ponds among the four
catchments (Figure 10).
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4. Discussion
4.1. Causes of Lake Expansion in the ZSLB

Observations showed that lakes on the TP have undergone obvious expansion over
the past few decades [35,52]. Between the 1970s and 2010s, the mass of lake water on the
TP increased by approximately 110 Gt [39]. From 2003 to 2018, lake water increased more
rapidly and reached a rate of 14 Gt/a in this period [39]. The possible reasons for the
increase in lake water on the TP include net precipitation onto the lake area, melting of
snow, permafrost degradation, glacier melt water and precipitation-induced runoff from
upstream catchments, of which the increase in the net precipitation on the TP was believed
to be the dominant contributor [25,31,53–55]. In detail, the proportion of net precipitation,
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glacier melt and ground ice melt due to permafrost degradation to the increase in lake
water were estimated as 74%, 13% and 12%, respectively [15]. At different regions of
the TP, however, the contributions of these drivers differed considerably. Qiao et al. [56]
divided the TP into five regions and estimated that the contributions of glacier melt water
to increasing lake water storage in these five regions varied from 20% to 100%. In the
northeast part of the TP, where the ZSLB is located, the glacier melt water was estimated to
contribute nearly 40% of the mass increase in lake water [56].

It is believed that increased precipitation, decreased evaporation, increased glacier
meltwater and ground ice meltwater, along with permafrost degradation, all attributed
to the lake expansion in the ZSLB [22,25,31,32]. Additionally, the increased precipitation
is considered the dominant contributor of the lake expansion in the basin [22,32]. From
1965 to 2019, the air temperature and precipitation data from Wudaoliang meteorological
station showed a continuous and significant increase (Figure 11). After 2000, the increase
rate of both the air temperature and precipitation accelerated. The air temperature reached
a peak of −3.68 ◦C in 2016, while the precipitation reached peak of 480.3 mm in 2018. This
indicated that before the outburst event, the air temperature and precipitation in the basin
underwent a long-term increasing period. The overflow and outburst event of Zonag Lake
was triggered directly by continuous and heavy precipitations in August and September,
2011. Data from the meteorological station showed that heavy precipitations occurred a
few days before and after the outburst event, including days from 14 August to 21 August,
31 August to 5 September, and 16 September and 17 September. On two days of 17 and 21
August, the daily precipitations reached 20.5 mm and 19.4 mm, respectively.
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Due to limited in situ observations and data on glaciers and permafrost in the ZSLB,
the contributions of each driver to lake expansion in the ZLSB have not been estimated
clearly to date. In Yao et al. [32] and Liu et al. [35], glacier retreated in the catchments
of Zonag Lake, Kusai Lake and Salt Lake were introduced and its contribution to lake
expansion in the basin was confirmed. In these studies, the contributions from glacier
meltwater were qualitatively analyzed.

The contributions of the permafrost degradation and consequential ground ice melt-
water increase are more difficult to estimate. The volume of ground ice within permafrost
layer and its distribution with depth generally cannot be detected directly or indirectly [57].
At present, the ground ice volume in permafrost regions is generally estimated with water
content measurement during boreholes drilling. Zhao et al. [57] estimated the ground ice
volume of permafrost regions on the TP based on 697 boreholes along the Qinghai–Tibet
engineering corridor. Wang et al. [58] and Wang et al. [59] estimated ground ice volume
in permafrost at the source area of the Yellow River and Datong River. The number of
boreholes used in the two studies was 105 and 74. However, the distribution of ground
ice was influenced by many factors, including liquid water supply, soil texture and frost
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susceptibility, active layer history, ground thermal gradients, hydraulic conductivity, vapor
deposition and sublimations. Some factors interact in variable and site-specific ways; there-
fore, each permafrost site should be considered individually. In ZLSB, however, boreholes
of permafrost were very limited. The existing boreholes showed that the permafrost in the
basin was characterized as high temperature (>−1.0 ◦C) (Figure 12) and ice rich. Thus, the
rapid permafrost degradation and consequential melt of near-surface ground ice would
definitely contribute to the lake expansion in the basin. To quantify this contribution, more
boreholes are needed in future.

Remote Sens. 2022, 14, 2918 15 of 20 
 

 

texture and frost susceptibility, active layer history, ground thermal gradients, hydraulic 

conductivity, vapor deposition and sublimations. Some factors interact in variable and 

site-specific ways; therefore, each permafrost site should be considered individually. In 

ZLSB, however, boreholes of permafrost were very limited. The existing boreholes 

showed that the permafrost in the basin was characterized as high temperature (>-1.0 °C) 

(Figure 12) and ice rich. Thus, the rapid permafrost degradation and consequential melt 

of near-surface ground ice would definitely contribute to the lake expansion in the basin. 

To quantify this contribution, more boreholes are needed in future. 

 

Figure 12. Ground temperature around (a) Zonag Lake (from Liu. et al. [35]) and (b) Salt Lake. 

4.2. Roles of Permafrost Layer in Hydrology Process in Periglacial Environments 

In a periglacial environment, the permafrost layer plays an important role in affecting 

the surface water balance, the interaction between surface water and underground water 

and the runoff regime. In a continuous permafrost region, the process of downward infil-

tration and the interaction between the surface water and ground water are limited be-

cause of the existence of the permafrost layer, which contributed to a larger surface runoff 

from the precipitation and snow-melt water in the spring and summer time (Figure 13a). 

In addition, melting of near-surface ground ice contributes to the expansion of lakes. By 

analyzing the stable isotopes of thermokarst lakes on the TP, Yang et al. [60] suggested 

that the lakes mainly recharged using rain and snowmelt/permafrost thaw in the ice-free 

season, while melting of the surrounding permafrost dominated the hydrology of ther-

mokarst lakes in the ice covered season. Due to the climate warming and wetting acceler-

ated the melting of permafrost in the past few decades, rapid lake expansion in continuous 

permafrost regions has been observed and reported widely [40,56]. 

On the contrary, as stable aquicludes are unable to form in island or discontinuous 

permafrost regions, the hydrological connectivity between surface water and groundwa-

ter is enhanced compared to the continuous permafrost region. Based on the satellite im-

agery between the 1970s and the 2000s, Smith [61] concluded the development of perma-

frost lakes involves two periods: (1) initial permafrost warming leads to development of 

lake expansion, (2) followed by lake drainage as the permafrost continues degrading. As 

permafrost degradation accelerates, the thinning of permafrost layer and the formation 

and expansion of taliks in the continuous permafrost region provides a major pathway to 

connect surface water and groundwater systems. A large amount of surface water and 

supra-permafrost groundwater was infiltrated, and the lake area was transformed from 

expansion to continuous shrinkage (Figure 13b). In Western Siberia, Northwest Canada, 
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4.2. Roles of Permafrost Layer in Hydrology Process in Periglacial Environments

In a periglacial environment, the permafrost layer plays an important role in affecting
the surface water balance, the interaction between surface water and underground water
and the runoff regime. In a continuous permafrost region, the process of downward
infiltration and the interaction between the surface water and ground water are limited
because of the existence of the permafrost layer, which contributed to a larger surface runoff
from the precipitation and snow-melt water in the spring and summer time (Figure 13a).
In addition, melting of near-surface ground ice contributes to the expansion of lakes. By
analyzing the stable isotopes of thermokarst lakes on the TP, Yang et al. [60] suggested that
the lakes mainly recharged using rain and snowmelt/permafrost thaw in the ice-free season,
while melting of the surrounding permafrost dominated the hydrology of thermokarst
lakes in the ice covered season. Due to the climate warming and wetting accelerated
the melting of permafrost in the past few decades, rapid lake expansion in continuous
permafrost regions has been observed and reported widely [40,56].
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On the contrary, as stable aquicludes are unable to form in island or discontinuous
permafrost regions, the hydrological connectivity between surface water and groundwater
is enhanced compared to the continuous permafrost region. Based on the satellite imagery
between the 1970s and the 2000s, Smith [61] concluded the development of permafrost
lakes involves two periods: (1) initial permafrost warming leads to development of lake
expansion, (2) followed by lake drainage as the permafrost continues degrading. As
permafrost degradation accelerates, the thinning of permafrost layer and the formation
and expansion of taliks in the continuous permafrost region provides a major pathway
to connect surface water and groundwater systems. A large amount of surface water
and supra-permafrost groundwater was infiltrated, and the lake area was transformed
from expansion to continuous shrinkage (Figure 13b). In Western Siberia, Northwest
Canada, and northern Alaska, lake shrinkage and drainage events have been reported and
observed [62,63].

4.3. Influences of Lake Expansion and Outburst on Engineering

From an engineering viewpoint, the bearing capacity and deformation behavior of
permafrost subgrade are closely related to its thermal regime. As an excellent heat carrier,
the surface water can bring a large amount of heat and cause rapid deepening of the
active layer, warming of permafrost layer and even development of taliks. These processes
will lead to a decrease in the bearing capacity of permafrost subgrade and an increase in
(differential) thaw settlement of foundation built on permafrost. Based on in situ moni-
toring, Mu. et al. [64] concluded that water ponds near the foot of a railway embankment
can significantly affect the thermal regime of permafrost subgrade and cause excessive
settlement of the railway embankment. Lin et al. [65] and Wen et al. [66] investigated im-
pacts of thermokarst lakes near the roadway embankment through numerical simulations.
The simulated results showed that the thermokarst lakes can result in local permafrost
warming and thawing beneath the roadway embankment. Compared with water ponds or
a thermokarst lake, surface water flow would lead to more rapid and severe permafrost
warming and thawing due to convection heat transfer between the flowing water and
shallow ground.

Important linear infrastructures extend downstream of Salt Lake in a narrow corridor.
To prevent overflow or outburst of Salt Lake, a channel was excavated to drainage the
water from Salt Lake into Qingshui River. To solve the problem of the rising water level in
the Qingshui River caused by this drainage project, the highway reconstructed a longer
bridge across the Qingshui River (Figure 14a). The railway at this section was originally
built with a 14 km-long dry bridge to cross thermal unstable permafrost. Before the channel
was excavated, the water flow only crossed 1~2 spans of the bridge. However, after the
drainage project, the water flow covers about 10 spans of the bridge in warm seasons and
5~6 spans in cold seasons. For pile foundations of the bridge, the surface water flow and
the consequential permafrost warming and thawing can result in considerable decline in
their bearing capacity. The deepening of active layer will decrease the effective length of
pile and exert negative friction force on it. To mitigate these detrimental effects induced
by increased flowing water, thermosyphons were installed around the pile foundations
(Figure 14b). It is hoped that, with thermosyphons cooling, the increased heat gains of
permafrost foundation provided by flowing water can dissipate, and the thermal stability
of permafrost around the pile can be ensured. Before installation of the thermosyphons,
waterproof materials were placed at the riverbed to prohibit infiltration of surface water
into active layer. Meanwhile, a coupled heat transfer simulation among flowing water,
permafrost subgrade and thermosyphons is needed, which will help to determine of the
numbers of the thermosyphons used for each pile. In the simulation, factors including
the velocity, temperature and depth of the flowing water are important, as well as their
seasonal variations.
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5. Conclusions

The outburst of Zonag Lake is an extreme event of lake expansion on the TP in the
context of climate warming and wetting. This event induced expansion of three lakes
downstream and significant changes in the surface water distribution in the ZSLB basin.
An artificial channel was constructed to drain the water of the tail-end lake of the basin,
i.e., Salt Lake, to the Qingshui River. Then, the ZSLB changed from an endorheic drainage
basin to part of the source area of the Yangze River. In this study, changes in surface water
bodies in the basin 10 years before and 10 years after the outburst of Zonag Lake were
investigated. The main conclusions are as follows:

(1) The total surface water area in the ZSLB showed a continuous and significant
increasing trend during the period from 2000 to 2020. The average increase rate in 20 years
was as much as 12.1 km2/a. Before the outburst of Zonag Lake, the areas of the four lakes in
the basin increased, with the rates ranging from 0.9 km2/a to 2.8 km2/a. After the outburst,
the area of the Zonag lake declined from 268.3 km2 to 163.8 km2.The areas of Kusai Lake,
Haidingnor Lake and Salt Lake increased by 11.8% and 41.5%, and 117% from 2011 to 2013,
respectively. In the following 7 years, the area of Zonag lake shrank slightly, and the areas
of Kusai Lake and Haidingnor Lake remained almost the same, while the area of Salt Lake
still increased considerably with a rate of approximately 9.0 km2/a.

(2) According to the changes in shoreline and water volume of the four lakes, the
outburst of Zonag Lake caused a redistribution of surface water in ZSLB. After 2011, the
Zonag Lake experienced a quick shrinkage in west and east direction. The volume of the
Zonage Lake decreased by 5.96 Gt. With the water continuously flowing into Kusai Lake,
the water volume of Kusai Lake increased around 1.60 Gt, and the shoreline expanded
mainly along the southeast direction. When the upstream water flowed into Haidingnor
lake, its shoreline expanded rapidly and a connection was built with Salt Lake in a short
time. As a tailwater lake in ZSLB, Salt Lake received the most overflowing water from
Zonag, and its water volume increased by 1.98 Gt, with the shoreline expanding in every
direction.

(3) The total number of small lakes and ponds with an area larger than 1000 m2 in
the ZSLB did not change much before 2010. However, this number increased significantly
within two years after the outburst of Zonag Lake. After 2012, as the streams and channels
formed gradually and connected the four lakes, the total number of lakes and ponds
gradually decreased to the level before the outburst. Since 2017, however, the number of
lakes and ponds in the basin once again increased and reached a peak in the past 20 years.

(4) The increase in surface water and lake expansion in the ZSLB are primarily at-
tributed to the increased precipitation, and secondly by glacier retreat and ground ice melt
from underground permafrost degradation. The contribution of each factor has not been
estimated so far because of the limited data on glacier and permafrost in the area; also, the
difficulty in the estimation of ground ice volume in permafrost region. The permafrost
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layer, acting as an impermeable layer, played an important role in affecting the surface
hydrological process.

(5) From an engineering viewpoint, flowing water could induce rapid warming and
thawing of underlying permafrost, and then could create a threat to the engineering
infrastructure above. To mitigate the thermal effects caused by flowing water to permafrost
embankment, active cooling methods such as thermosyphons were used. However, the
infiltration of surface water to the ground should be avoided by setting up the waterproof
materials above the permafrost layer. Meanwhile, a system evaluation should be carried
out to determine the numbers of thermosyphons used for permafrost foundations.
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