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Abstract: Monocular depth estimation is a fundamental yet challenging task in computer vision as
depth information will be lost when 3D scenes are mapped to 2D images. Although deep learning-
based methods have led to considerable improvements for this task in a single image, most existing
approaches still fail to overcome this limitation. Supervised learning methods model depth estimation
as a regression problem and, as a result, require large amounts of ground truth depth data for training
in actual scenarios. Unsupervised learning methods treat depth estimation as the synthesis of a
new disparity map, which means that rectified stereo image pairs need to be used as the training
dataset. Aiming to solve such problem, we present an encoder-decoder based framework, which
infers depth maps from monocular video snippets in an unsupervised manner. First, we design an
unsupervised learning scheme for the monocular depth estimation task based on the basic principles
of structure from motion (SfM) and it only uses adjacent video clips rather than paired training data
as supervision. Second, our method predicts two confidence masks to improve the robustness of the
depth estimation model to avoid the occlusion problem. Finally, we leverage the largest scale and
minimum depth loss instead of the multiscale and average loss to improve the accuracy of depth
estimation. The experimental results on the benchmark KITTI dataset for depth estimation show that
our method outperforms competing unsupervised methods.

Keywords: monocular depth estimation; unsupervised learning methods; structure from motion;
confidence mask

1. Introduction

Depth information plays a critical role in the area of robot and computer vision
tasks. Low-precision depth may affect the performance of many vision systems, such as
3D reconstruction [1,2], 3D object detection [3,4], autonomous driving [5] and semantic
segmentation [6,7]. In this paper, we focus primarily on the depth estimation of monocular
images that do not rely on different sensors. However, this is an ill-posed and inherently
ambiguous problem because the same 3D scene can be projected to infinitely many 2D
images. Obviously, this projection is irreversible.

To address this issue, depth sensors and related algorithms gradually become very
popular. However, current methods for depth estimation have the following disadvantages.
Depth sensors based on structured light, such as the Microsoft Kinect, are easily disturbed
by various conditions of illumination. Additionally, their effect in outdoor environments
significantly degrades, and the depth measurement distance is limited [8,9]. Light detection
and ranging (LiDAR) can provide accurate 3D information, so it is a reliable scheme for
depth perception in outdoor environments. However, sensors based on this technology
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are cost-prohibitive, and due to the inherent limitation of LiDAR signals, 64 or 128 sparse
rotating laser beams can only provide sparse depth maps [4,9]. We plan to infer the depth
information of indoor and outdoor scenes using inexpensive, lightweight and conven-
tional cameras based on standard imaging technology. Traditional related algorithms
usually start with feature extraction and matching, followed by geometric verification.
These methods include box models [10–13], additional information [14–16], nonparametric
approaches [17–20], stereo matching [21–26], and SfM methods [27–29]. However, these
traditional algorithms rely heavily on accurate feature matching, and are hard to guarantee
the performance in a real-time manner.

Recent research results utilized deep learning to solve these problems. The main ad-
vantage comes from big data, which can help the convolutional neural network (CNN) learn
the prior knowledge between objects and their depths. Supervised learning-based methods
have been successfully applied to monocular depth estimation [9,30–32]. However, to
improve the generalization performance of the model, a large corpus of ground truth depth
data is usually needed for supervised learning-based methods. In most circumstances,
the cost of acquiring ground truth data in real-world scenarios is expensive, limiting the
massive growth of datasets. Training on a synthetic dataset [33,34], collecting relative depth
annotations [35] or obtaining pseudo ground truth depth maps [36,37] can alleviate the
above limitations. Unsupervised learning is another method that has received much atten-
tion. These methods only use synchronous stereo pairs [38–42], monocular video [36,43–50],
fusion structure from motion (SfM) [51] or optical flow or camera pose [48,52,53] to train
the depth estimation model without any depth data. However, stereo vision requires offline
calibration, monocular video is affected by illumination and occlusion, and the optical flow
approach requires additional networks.

To this end, we recover the dense depth of monocular images under three challenging
conditions. The first condition is that no 2D or 3D ground truth information is available.
The second condition is that no input image from other perspectives enables triangulation.
The third condition is that the photometric loss is highly influenced by illumination and
occlusion. To address these challenges, we design a novel pose CNN to assist the training
of a depth map inference network with encoding and introduce the largest scale loss to
enhance the inference accuracy. Overall contribution of our research summarizes as below:

(1) According to the SfM theory, we propose a novel depth CNN model for depth
map inference by a given video sequence, no other depth maps or rectified stereo pairs
are needed and our pose CNN also outputs two confidence masks to reduce the effect of
occlusion.

(2) We propose a new efficient upsample block with a channel-wise attention mecha-
nism that supports our network to achieve better performance without multiscale supervi-
sion and employ a novel optimizer [54,55] to improve the convergence speed.

(3) Our method is evaluated on the KITTI dataset [56] and achieves the best depth esti-
mation performance. Furthermore, our method is generalized to unknown environments
to demonstrate its superiority.

The rest of the paper is arranged as follows. In Section 2, the proposed unsupervised
learning method and detailed implementation process is given. Experimental comparison
and analysis are given in Section 3, and finally, the discussion and conclusion of our work
are given in Section 4.

2. Method

Our method combines training a single view depth and pose estimation network from
unlabeled monocular video sequences and uses the largest scale loss to constrain them
to predict depth. We assume that most of the scenes we are interested in are rigid. First,
borrowing the camera coordinate transformation and traditional SfM method, we describe
the key ideas behind our depth prediction framework. Second, we analyze the role of each
component of our method. Finally, we present how the CNN parameters are learned in a
self-supervised way.
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2.1. Reprojection Error

The ideal projection imaging model reflects the projection relationship from the object
to the image plane in 3D space. For any point P(xw,yw,zw) in the real world, after passing
through the pinhole camera, the pixel coordinates projected to the imaging plane are P(u,v);
then, according to the pinhole imaging model [57], we have,

ZP(u, v) = Z

u
v
1

 = K[RP(xw, yw, zw) + t] = KT(R,t)P(xw, ywzw) (1)

where Z is the distance from P(xw,yw,zw) to the camera, K is the camera internal parameters,
R is a rotation matrix, t is a translation vector, and T(R,t) is the conversion matrix composed
of R and t, called camera extrinsic parameters. Equation (1) describes the projection
relationship from the world coordinates to the pixel coordinates.

As illustrated in Figure 1, for a monocular camera, we assume that the projection
points of P(xw,yw,zw) on the imaging plane (purple line) are P1 and P2 at Tt−1 and Tt,
respectively. From Equation (1), we can obtain,{

depth1P1(u, v) = KT1P(xw, yw, zw)
depth2P2(u, v) = KT2P(xw, yw, zw)

(2)
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Figure 1. The mapping relationship of pixel coordinates of adjacent frames. Figure 1. The mapping relationship of pixel coordinates of adjacent frames.

If the conversion matrix of the camera moving from the position at time Tt−1 to the
position at Tt is T(R,t) and the world coordinate system coincides with the camera coordinate
system at Tt−1, then we can obtain,

depth2P2(u, v) = KT(R,t)depth1K−1P1(u, v) (3)

Since the homogeneous coordinates are multiplied by nonzero constants to express
the same meaning, after normalizing the pixel coordinates, we obtain,

P̃2(u, v) = KT(R,t)depth1K−1P1(u, v) (4)

Equation (4) describes the mapping relationship between the pixel coordinates of
adjacent frames. As illustrated in Figure 2, we can calculate the pixel coordinate P̃2 of P1 at
Tt, which means that given two adjacent frames of images It−1 and It, we can obtain the
image It from It−1 and further construct the reprojection error of the two adjacent frames,

reproj_error =
∣∣∣∣It − I′t

∣∣∣∣ (5)
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Figure 2. The reprojection error of two adjacent frames. P2 is the true projection point of P1 at Tt, P̃2

is the projection point of P1 at Tt calculated according to Equation (4). The reprojection error of P1 at
Tt can be expressed as: ||P2 − P̃2||.

Therefore, we can design neural networks to output depth and camera pose informa-
tion to optimize the reprojection error.

2.2. Occlusion Error

For monocular video sequences, occlusion between adjacent frames is common. A
typical occlusion error is shown in Figure 3, where It−1, It and It+1 are three frames of an
image at adjacent moments. In these images, a pedestrian is obscured by a tree at time t
and not obscured by a tree at time t − 1 and t + 1. From Equations (4) and (5), we know that
the pixel matching between the red and blue areas is poor, and the matching between the
red areas is good. Therefore, we can design neural networks to output confidence masks to
mask out occluded pixels when optimizing the reprojection error.
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2.3. Neural Network Model

Our method is designed to train depth, ego-motion and mask networks using unsu-
pervised learning from monocular video, where the supervision signal comes from the
unlabeled video sequence itself and does not depend on any depth information. The full
framework of this method is shown in Figure 4. Although the depth prediction and the
pose estimation network need to be jointly trained, these models can be used independently
during test inference. The input to our networks is three adjacent RGB images It−1, It and
It+1. We first use the depth estimation mode to output the corresponding depth maps Dt−1
and Dt+1 and then predict the relative 6D camera poses Tt→t−1 and Tt→t+1 using the pose
estimation mode. From Equations (4) and (5), we can jointly train the depth and pose
estimation networks.
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Figure 4. Illustration of our proposed learning framework for depth and pose estimation. Given a set
of unlabeled video sequences, our method can estimate the depth map. Images It−1 and It+1 are fed
to two weight–sharing frameworks consisting of a depth network for depth map calculation.

2.3.1. Depth Estimation Network

We propose to solve the depth prediction for monocular images as a disparity map
regression learning problem. The difference from previous related work [39,43–45,47,52,57]
is that the output of the network only contains a single-scale depth map, not a multiscale
depth map. Our depth estimation network is visualized in Figure 5. For the encoder, the
most representative features are automatically extracted through our backbone network
model, which is based on deep networks with stochastic depth [58] because it can reduce
the training time to improve performance. For the decoder, a series of upsampling with
attention structures and asymmetric convolution kernels are used to gradually restore the
resolution of the output feature map. Two downsampling layers build a bridge between
the encoder and decoder modules, including two 3 × 3 convolution layers with activation
function, which focus on reducing the size of the feature map and keeping the channel
constant. Some short-cut connections (red arrows) are also added between corresponding
layers in the encoder and decoder to enhance the information flow. Finally, the output of
the network goes through a 3 × 3 convolutional layer and a sigmoid layer to predict the
disparity map.
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ResNet [59] is the first choice for previous unsupervised depth estimation
tasks [34,39,40,42,43,45,49,52,53]. In the process of training ResNet, stochastic dropping of
hidden nodes or connection layers (the most common is the dropout method [60]) does not
affect the convergence of the algorithm, which shows that ResNet has good redundancy.
For fairness of comparison, we improved ResNet while keeping the number of convolution
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layers unchanged, which can not only reduce the parameters, but also improve the accuracy
of depth estimation. Inspired by [58] and [59], we design an 18-layer stochastic residual
structure (StoResNet-18) as the backbone network. A typical residual module is shown in
Figure 6a, which can be defined as,

Y = F(X) + X (6)

when considering multiplying each hidden activation by an independent Bernoulli random
variable b ∈ {0,1}, we can extend the typical residual module to a residual module with
stochastic depth (see Figure 6b), which can be defined as,

Y = b × F(X) + X, (7)
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stochastic depth.

In our research, StoResNet-18 is similar to ResNet-18 except for the residual module
and discards the fully connected layer. Therefore, we also divide StoResNet-18 into 5 layers
according to the output size, and each layer contains two residual blocks with stochastic
depth except for the first layer. The probability of stochastic dropping of hidden nodes at
each layer is shown in Figure 7, where Pl is the probability value when b = 1 in the l-th
residual module with stochastic depth (see gray square), which can be defined as,

Pl+1 = P(b = 1) =


Pl − P0−P7

Max(l) 0 < l < 7,
0.5 l = 7,
1 l = 0.

(8)
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It should be emphasized that b = 1 remains unchanged during testing to reduce the
network depth during training while maintaining the full depth at testing time.

Our decoding module is almost symmetrical to the encoding and mainly composed
of six new upsampling structures, mainly to linearly increase the resolution of the output.
Inspired by the idea of the inception module with dimension reductions [61], asymmetric
convolution kernel can be reducing the number of network parameters and improve the
speed of network convergence compared with symmetric convolution kernel. According
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to this discovery, we design an upsampling structure with channel attention and asym-
metric convolution kernels. By fusing both the feature from the previous phase and the
corresponding phase in the encoder module as the output of each phase, and using the
new upsampling structure to improve the resolution of the output. This can be observed
in Figure 8. First, we use bilinear interpolation to double the size of the output feature
map of the previous layer while maintaining the same channels. Next, we use a multiscale
receptive field structure to help extract detailed feature information. To keep the size
of the receptive field constant while reducing the inference time, we use a 3 × 3 dilated
convolution kernel instead of a 5 × 5 convolution kernel and an asymmetric convolution
kernel (such as 1 × 3 and 3 × 1). Finally, we introduce the channel attention mechanism-
ECALayer [62] to overcome the paradox of performance and complexity trade-off. Detailed
parameters and structure are shown in Figure 8.
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2.3.2. Pose and Mask Estimation Network

Figure 9 shows a schematic layout of the pose and mask estimation networks with
concatenated three adjacent frames (It−1, It, It+1) as input and the predicted mask map and
relative poses as output. Three input images first pass through the StoResNet-18 feature
extractor, which computes feature maps at five output resolutions (scale of 1/2, 1/4, 1/8,
1/16 and 1/32) and then continues to reduce (scale of approximately 1/64 and 1/128)
through two downsampling layers. In the first stage, we output two 6-DoF relative poses
(Tt→t−1 and Tt→t+1). Similar to the depth estimation network, in the second stage, we first
use six upsampling structures to restore the resolution of the output feature map from the
first stage and then use a sigmoid layer to output our predicted mask.
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input and outputs the relative pose and mask, and the downsampling and upsampling structures are
the same as those in Figure 5.

2.4. Data Preprocessing and Augmentation

Since a moving object violates the assumption of a static scene in error reconstruction,
we follow Zhou et al.’s [43] and Bian et al.’s [45] preprocessing method to remove all static
frames from the test scenes. A large quantity of training data is a prerequisite for achieving
an accurate model. To improve the generalizability and robustness of our unsupervised
learning model, we transform the training data by random operations performed sponta-
neously. It is worth noting that the camera internal parameters also need to be changed
when the sequence of images is transformed. The augmentation methods are described as
follows:

Flip: Input sequences of video are horizontally flipped with a 0.5 probability.
Translation: Input sequences of images are scaled by a random number t ∈ [1, 1.15]

and cropped to keep the same initial size.

2.5. Optimizer and Activation Function

Fast and stable optimization algorithms are the goal that researchers have been pursu-
ing. Previous related work [39,40,42–44,47,49,52,53] mainly used the adaptive optimization
algorithm (Adam) [63], which is the first choice for training depth estimation models.
Adam is a stochastic objective function algorithm based on a first-order gradient, which
works well with sparse gradients and in online and nonstationary settings. Although the
Adam method shows a quick convergence rate, it easily falls into a local optimal solution.
We introduce a novel variant of Adam called RAdam [54]. Compared with the Adam
method, RAdam can improve the robustness of model training and adapt to different
learning rates over a broader range. We further introduce a new optimization algorithm
called Lookahead [55], which uses any standard optimizer in its internal loop to update
the “fast weights” k times and then updates the “slow weights” once in the direction of
the final fast weights. By using Lookahead with RAdam optimizers, we can achieve faster
convergence of the model with less overhead.

For the nonlinear activation function in our network, we use exponential linear units
(ELUs) [64] to replace the rectified linear units (ReLUs) [65] excluding StoResNet-18. Al-
though ELU and ReLU have been widely used in other similar works [40,42,43,45,52], we
found that only using ELU will prematurely make the network fall to a local minimum
value, making subsequent improvement difficult. When ReLU is used instead of ELU
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in StoResNet-18, the depth prediction accuracy is further improved. Training lasts for
approximately 20 epochs in total on the KITTI dataset [56] (see Section 3.1) to verify the
convergence of the combination of different optimization and activation functions.

We use the activation function as a single variable for experimentation, and the results
are shown in Figure 10a. We find that the combination of ReLU and ELU can reduce the
absolute average relative (Abs Rel) error. Meanwhile, we also use optimization functions as
a single variable to conduct experiments for experimentation, and the results are shown in
Figure 10b. Obviously, the combination of Lookahead and RAdam achieve the best results
in terms of the root mean squared error (RMSE).
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2.6. Loss Function

Our goal is to combine ego-motion networks to train depth estimation networks
using monocular video sequences. Similar to [38–40,43,45], we formulate the depth pre-
diction problem as the minimization of synthesizing new viewpoint errors at the train-
ing time. In addition, we choose the largest scale supervision instead of the multiscale
supervision [39,43–45,47,52,57], see Figure 11.
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Figure 11. Comparison of largest scale loss and multiscale loss. Previous related work [39,43–45,47,52,57]
mainly used four scale disparity maps (d1, d2, d3 and d4) to calculate the loss, but we find that it is
better to choose the largest scale disparity map (d4).

First, It−1, It and It are three adjacent RGB images used as the input of the pose
estimation network, Mϕ denotes the confidence masks to mask out the invalid pixels when
It−1 is reprojected to It and It+1 is reprojected to It, A is a tensor with elements of 1, and the
scale is the same as Mϕ. In our task, the element value in Mϕ can only be 0 or 1, so we can
use binary cross entropy to construct the first loss function,

LossMa = −
1
N ∑

ϕ ∈ {t− > t− 1,
t− > t + 1}

[
A log(Mϕ

)
+ (1− A) log(1−Mϕ)] (9)

where ϕ ∈ {t−>t−1, t−>t+1} and N is the number of validity pixels. From Equation (5), we
know that our goal is to minimize the reprojection error. The structural similarity index
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metric (SSIM) [66] and Manhattan distance are better choices to judge the similarity of im-
ages, which are used together to solve the gradient locality problem in pose estimation and
to eliminate the discontinuity of learning depth in low texture regions. If re_error(t−>t−1)
and re_error(t−>t+1) are the reprojection errors of It−1 and It+1 reprojected to It, respectively,
in our research, we use the minimum error min(re_error(t−>t−1), re_error(t−>t+1)) instead
of the average error mean(re_error(t−>t−1) + re_error(t−>t+1)). Therefore, we have,

LossPe =
1
N ∑

ϕ ∈ {t− > t− 1,
t− > t + 1}

min(Mϕ

α
1− SSIM

(
It, Ĩϕ

)
2

+ (1− α)
∣∣∣It − Ĩϕ

∣∣∣
) (10)

The simplified formula of SSIM is,

SSIM
(

It, Ĩϕ

)
=

[
2µ(It)µ

(
Ĩϕ

)
+ C1

][
2σ
(

It, Ĩϕ

)
+ C2

]
[µ(It)

2µ
(

Ĩϕ)2 + C1

]
[σ(It)

2σ
(

Ĩϕ)2 + C2

] (11)

where Ĩϕ represent It−1 and It+1 reprojected to It, respectively, ϕ ∈ {t−>t−1, t−>t+1}, µ(.)
and σ(.) calculate the average value and standard deviations of corresponding images,
respectively, C1 and C2 are small constants to prevent the denominator from being zero in
Equation (11), and α is a weighted value. We empirically set α = 0.85 in our task.

Due to the photometric loss, it is not possible to provide sufficient information in
low-texture or homogeneous areas [45], and depth discontinuity usually occurs on the
image gradient. Therefore, we use the image-aware smoothness formulation to weight the
gradient of the image depth,

LossSm =
1
N ∑

ϕ∈{t−>t−1,

t−>t+1}

(
|∇Dt|e−

1
N |∇It | +

∣∣∇Dϕ

∣∣e− 1
N |∇Iϕ | +

∣∣∇Dϕ

∣∣e− 1
N |∇Iϕ |

)
(12)

where ∇ denotes the 2D differential operator along spatial directions and Dt and Dϕ are
depth maps.

Our final objective function can be expressed as,

Loss = αLossMa + βLossPe + γLossSm (13)

We set α = 0.2, β = 1.0 and γ = 0.1. Table 1 reports the results of the multiscale and
largest scale supervision on the KITTI dataset. We find that the largest scale supervision
method is better.

Table 1. Baseline comparisons between multiscale and largest scale supervision, where Cap represents
the range of valid depths. The best results in each category are in bold. Refer to Section 3.3 for the
meaning of evaluation metrics. αi = δ < 1.25i.

Scale Cap
Lower Is Better Higher Is Better

Abs Rel Sq Rel RMSE RMSElog α1 α2 α3

Multiscale 0–80 m 0.154 1.196 5.637 0.233 0.796 0.929 0.971
Largest scale (ours) 0–80 m 0.137 1.018 5.355 0.216 0.814 0.943 0.978

3. Experimental Result

In this section, we evaluate our method based on common metrics and protocols
adopted by prior methods and compare them with existing depth estimation approaches.
We use the public dataset KITTI [56] as a benchmark to verify the validity of our model. The
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method is implemented using the PyTorch framework [67], which is a machine learning
toolkit released by Facebook that can run on graphics processing units (GPUs) to achieve
acceleration. It is worth noting that our model trains short depth networks but uses full
deep networks during testing.

3.1. Training Datasets and Details

KITTI: The KITTI dataset is mainly captured by cameras and laser sensors on a
standard station wagon. A total of 42,382 stereo pairs with a size of 375 × 1242 from
61 scenes in the “residential”, “road” and “campus” categories constitute our original
dataset. In our research, we follow the data preprocessing method of Zhou [43] and
Bian et al. [45] and exclude all static sequence frames whose average optical flow size is less
than 1 pixel in the original dataset and downsample the image to 128 × 416. As a result,
we finally obtain 38,758 images for training and 5464 images for validation. To make a fair
comparison with related work [38–40,43,45,52,57], we use an Eigen split [30] to evaluate
the depth estimation performance of 697 images in two different depth ranges: 0−80 m
and 0−50 m. Note that our model is trained on a network with stochastic depth, but we
use full depth during testing.

According to [43], we use segments of three adjacent consecutive video frames as the
input of networks, in which the middle image is set as the reference frame to calculate the
loss together with the adjacent two images. During training, we perform data augmentation
online and use ELU activation except for StoResNet-18 with a batch of size 4 and initialize
the StoResNet-18 parameters via the pretrained classification model on ILSVRC 2012 [68].
In addition, we use the combination of RAdam with β1 = 0.9, β2 = 0.999, Lookahead
with k = 5, α = 0.5 as the optimizer, and the learning rate r = 1 × 10−4, which remains
unchanged because we find that the experimental results do not improve significantly
when fine-tuning the parameter r. Our depth estimation model is trained on GeForce 2080Ti
GPUs for approximately 20 epochs.

Figure 12 shows the detailed visual results of the KITTI datasets. Compared with
other unsupervised methods [43,45], our method shows better results on small objects
and boundaries.
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3.2. Generalization on Make3D Dataset

Make3D: The Make3D dataset of campus scenes is collected and contains 400 training
and 134 testing images. Since there is no video sequence image, our method cannot train
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on the dataset. However, to evaluate the generalization ability of our method in unknown
environments, we apply the depth estimation model trained on the KITTI dataset to the
Make3D dataset for testing. Figure 13 visualizes some generalized depth images. Our
method performs quite well, such as restoring detailed information about tree trunks,
utility poles and fire hydrants.
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3.3. Evaluation Criteria

For the depth estimation task, we adopt the following standard evaluation metrics,
which are similar to [30,38–40,43–45,52,57], to quantitatively assess the performance of our
method. There are several categories:

i. Mean absolute relative error (Abs Rel): 1
|N|∑pi∈N

|D(pi)−D̂(pi )|
D(pi)

ii. Mean square relative error (Sq Rel): 1
|N|∑pi∈N

(D(pi)−D̂(pi ))
2

D(pi)

iii. Root mean squared error (RMSE):
√

1
|N|∑pi∈N (D(pi)− D̂(pi))

2

iv. Root mean squared error log scale (RMSElog):
√

1
|N|∑pi∈N (log D(pi)− log D̂(pi))

2

v. Threshold accuracy: 1
|N|∑pi∈N |{D̂(pi) : max(D(pi)

D̂(pi)
, D̂(pi)

D(pi)
)} = δ < threshold|

Here, D(pi) and D̂(pi) denote the ground truth and estimated depth values, respectively,
corresponding to pixel pi, N is the set of validated pixels, and the threshold is a constant of
1.25, 1.252 or 1.253.

We report the experimental results on the KITTI dataset in Table 2, where our method
is superior to other state-of-the-art methods when compared with networks trained on
monocular video sequences. Recently, some related works jointly learned multiple tasks
(i.e., optical flow) [52,53] or calibrated stereo pair images (i.e., pose supervision) [38–40],
while our method does not need to do so. This effectively reduces the training and reasoning
overhead. Table 2 shows the results on the KITTI dataset.
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Table 2. Comparison of the proposed method with other monocular methods on the KITTI dataset,
where “K” denotes our network trained on the KITTI dataset, “D” denotes methods trained with
depth supervision, “D*” denotes methods trained with auxiliary depth supervision, “S” denotes
methods trained using stereo pairs, and M denotes methods trained on monocular video clips, and
“Cap” represents the range of valid depths. The best results in each category are in bold, and the
second-best results are underlined. αi = δ < 1.25i.

Method Cap Dataset
Lower Is Better Higher Is Better

Abs Rel Sq Rel RMSE RMSElog α1 α2 α3

Eigen [30] 0–80 m K(D) 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Liu [9] 0–80 m K(D) 0.202 1.614 6.523 0.275 0.678 0.895 0.965

AdaDepth [34] 0–80 m K(D*) 0.167 1.257 5.578 0.237 0.771 0.922 0.971
Godard [39] 0–80 m K(S) 0.148 1.344 5.927 0.257 0.803 0.922 0.964

Garg [38] 0–80 m K(S) 0.152 1.226 5.849 0.246 0.784 0.921 0.967
Zhan [42] 0–80 m K(S) 0.144 1.391 5.869 0.241 0.803 0.928 0.969
Zhou [43] 0–80 m K(M) 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Klodt [51] 0–80 m K(M) 0.166 1.490 5.998 - 0.778 0.919 0.966
Yang [46] 0–80 m K(M) 0.182 1.481 6.501 0.267 0.725 0.906 0.963

Mahjourian [47] 0–80 m K(M) 0.163 1.240 6.220 0.250 0.762 0.916 0.968
Wang [44] 0–80 m K(M) 0.151 1.257 5.583 0.228 0.810 0.936 0.974

GeoNet [52] 0–80 m K(M) 0.155 1.296 5.857 0.233 0.793 0.931 0.973
Bian [45] 0–80 m K(M) 0.149 1.137 5.771 0.230 0.799 0.932 0.973
Zou [48] 0–80 m K(M) 0.150 1.124 5.507 0.223 0.806 0.933 0.973
Shen [49] 0–80 m K(M) 0.156 1.309 5.73 0.236 0.797 0.929 0.969

Ours 0–80 m K(M) 0.137 1.018 5.355 0.216 0.814 0.943 0.978
Garg [38] 0–50 m K(S) 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Godard [39] 0–50 m K(S) 0.140 0.976 4.471 0.232 0.818 0.931 0.969
Zhan [42] 0–50 m K(S) 0.135 0.905 4.366 0.225 0.818 0.937 0.973
Zhou [43] 0–50 m K(M) 0.201 1.391 5.181 0.264 0.696 0.900 0.966

Mahjourian [47] 0–50 m K(M) 0.155 0.927 4.549 0.231 0.781 0.931 0.975
GeoNet [52] 0–50 m K(M) 0.147 0.936 4.348 0.218 0.810 0.941 0.977

Zou [48] 0–50 m K(M) 0.149 1.010 4.360 0.222 0.812 0.937 0.973
Ours 0–50 m K(M) 0.132 0.801 4.076 0.204 0.837 0.951 0.981

Furthermore, we quantitatively compare the generalization ability of the model on
the Make3D dataset. Since the sizes of images are different from KITTI, we perform center
cropping on these images and resize them to 128 × 416, following the evaluation strategy
used by Godard [39]. Table 3 summarizes the results on the Make3D dataset. Our method
shows better generalization ability than previous methods.

Table 3. Results (Abs Rel) on the Make3D dataset, where “Ma” denotes the model trained on the
Make3D dataset, “K*” denotes the model that needs to be pretrained on other datasets, and “D”,
”D*”, ”K” and “M” are the same as in Table 2.

Method Dataset Abs Rel

Karsch [17] Ma(D) 0.428
Liu [20] Ma(D) 0.475

AdaDepth [34] K(D*) 0.452
AdaDepth [34] K(M) 0.647

Godard [39] K*(M) 0.544
Wang [44] K(M) 0.387
Zhou [43] K*(M) 0.383
Zou [48] K*(M) 0.331

Ours K(M) 0.323

3.4. Confidence Mask Visualization

Figure 14 shows the visualization result of the confidence mask. It−1 and It are two
frames of the image at adjacent moments. From Equation (4) and Section 2.2, we know
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that the calculated reprojection error will be invalid when there are occluded or moving
objects in the scene. Therefore, we need to mask out the occluded or moving objects to
optimize the reprojection error in the process of training the depth estimation network. In
contrast with previous related work [37,50], our method does not require pre-segmentation
of moving objects to obtain the confidence mask. Figure 14b denotes the confidence mask
output by our method, where the black area is the region where two adjacent frames have
occlusion or motion during reprojection. The result also shows that the visual results of the
confidence mask output by our method are generally consistent with our expected results.
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4. Conclusions

We recover the depth information of monocular images under three challenging
conditions. The first is that there is no real depth information for reference; the second
is that no input images from other angles can be triangulated; and the third is that the
photometric reconstruction loss is greatly affected by illumination and occlusion. To solve
these challenges, we design a new camera pose network to assist the training of the depth
estimation network and introduce the largest scale loss to improve the prediction accuracy.
First, according to SfM theory, we treat depth prediction as a disparity map regression
problem and propose a new deep CNN structure to train our depth estimation model
without other depth maps or rectified stereo image pairs. Furthermore, we output two
confidence masks to reduce the impact of occlusion. Finally, we present a new upsampling
structure with a multiscale receptive field to support the training of our network using the
maximum scale loss function. Experimental results show that our method is more accurate
than competing methods on KITTI datasets.

Our method produces accurate and detailed depth map from monocular video. How-
ever, even though our method predicts two confidence masks to address occlusion error,
the accuracy of depth estimation will decrease in dynamic scenes, especially when there
are a large number of moving objects. Our method also highly depends on the photometric
consistency between adjacent frames, which also means that illumination has a great im-
pact on our results. Our method must be performed under the condition that the camera
intrinsic parameters are obtained in advance, but it is not easy to obtain the camera intrinsic
of datasets in real scenes.

In future work, we will focus on unsupervised monocular depth learning method
in dynamic scenes with unknown camera intrinsic and improve the robustness of our
method. We will also apply the method to other useful applications, such as 3D SLAM, 3D
reconstruction, 3D object recognition and semantic segmentation.
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