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Abstract: Landslide susceptibility mapping (LSM) is significant for disaster prevention and mitigation,
land use management, and as a reference for decision-making. Convolutional neural networks
(CNNs) in deep learning have been successfully applied to LSM studies and have been shown to
improve the accuracy of LSM. Although optimizing the quality of negative samples at the input
step of a deep learning model can improve the accuracy of the model, the risk of model overfitting
may increase. In this study, an LSM method based on the Gaussian heatmap sampling technique
and a CNN was developed from the perspective of LSM dataset sampling. A Gaussian heatmap
sampling technique was used to enrich the variety of landslide inventory at the input step of the
deep learning model to improve the accuracy of the LSM results. This sampling technique involved
the construction of a landslide susceptibility Gaussian heatmap neural network model, LSGH-Net,
by combining a CNN. A series of optimization strategies such as attention mechanism, dropout,
etc., were applied to improve the model structure and training process. The results demonstrated
that the proposed approach outperformed the benchmark CNN-based algorithm in terms of metrics
(Accuracy = 95.30%, F1 score = 95.13%, and Sensitivity = 91.79%). The Gaussian heatmap sampling
technique effectively improved the accuracy of frequency histograms of the landslide susceptibility
index, which provided finer-grained mapping details and more reasonable landslide density. By
analyzing Gaussian heatmap at different scales, the approach proposed in this paper is an important
reference for different regions and other disaster susceptibility studies as well.

Keywords: landslide susceptibility; gaussian heatmap; LSGH-Net; deep learning; Jiuzhaigou

1. Introduction

Landslides are one of the most catastrophic natural disasters in the world triggered
by anthropogenic and natural factors [1]. Earthquakes, as one of the triggering factors for
landslides, are prone to cause thousands of landslides in mountainous areas due to the
special geomorphic environment [2]. High spatial resolution remote sensing images and
unoccupied airborne vehicles have been broadly applied to landslide investigation and
identification [3]. However, it is difficult to predict the probability of landslides in the future
based on image band information alone. Therefore, landslide susceptibility mapping (LSM)
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is of great significance to post-earthquake emergency response and disaster prevention and
mitigation [4].

Landslide susceptibility is a prediction of the likelihood of a landslide occurring at
a site based on topography, geology, and other factors [5]. Several methods have been
applied to LSM and tested to be usable and effective, including geomorphological mapping,
physics-based models, heuristic terrain and susceptibility zoning, and machine learning
(ML) methods [6]. In this paper, we focus on a critical review of ML, especially deep
learning (DL), for landslide susceptibility modelling due to the latest development trends.
Traditional statistical ML methods mainly include decision trees [7], random forests [8],
support vector machines [9], artificial neural networks [10], and naïve Bayes [11]. These
methods proved that due to shallow structures, the methods are unable to learn more
representative deep features [12]. Deep learning, especially convolutional neural networks
(CNNs) with deep network structures and powerful feature learning capabilities, is being
increasingly applied in the field of LSM [13]. The rich environmental information and the
influence between factors were taken into account in CNN-based LSM, leading to better
performance than the benchmark models [14]. The application of deep learning can achieve
very good assessment results without a significant geoscience background. This is the
strength and also the weakness of deep learning, which indirectly reflect the landslide
formation law in a black box way.

Although there have been some excellent studies on LSM applying DL methods,
especially CNNs, to the best of our knowledge, there have been few reputable studies
on landslide inventory optimization for LSM. Generally, the traditional approaches of
constructing a landslide inventory indicated that positive samples represented by landslides
were marked as “1”, while negative samples represented by non-landslides were marked as
“0” [15]. Positive samples were often true and reliable. However, the selection of negative
samples is considered subjective or selected based on certain rules. For example, Chen et al.
(2018) used a randomly selected negative sample from the area outside a landslide and
participated in the training of the model [16]. Hu et al. (2020) proposed and compared
three rules for selecting negative samples and compared their characteristics. The selection
rules were random sampling of non-landslide areas, sampling of low-slope areas, and
sampling using fractal theory [17–19]. Yi et al. (2020) proposed a method to select negative
samples through a certain distance buffer. The accuracy of the model was proved to be
improved by optimizing negative samples [20]. The starting point for these negative sample
selections is the assumption that there is no possibility of future landslides in the area,
and the optimized negative samples make the model easier to classify, meaning that the
samples are not representative during the training process.

As expressed above, although optimizing the quality of negative samples at the input
step of a deep learning model can improve the accuracy of the model, the existing methods
of directly applying positive and negative samples for LSM mainly have the following two
shortcomings: (1) Relying solely on positive and negative samples to participate in CNN
model training often led to results approaching the maximum and minimum susceptibility
index. Instead, the reality is that several different levels of LSM results are desired to be
classified. (2) The existing studies mainly addressed the overfitting issue by simplifying
the network structure and reducing the number of epochs [21–23]. These strategies could
contribute to the model’s inability to learn rich features and thus affect model performance.
Therefore, it is worthwhile to study in depth how to refine and improve this dataset
sampling method.

Gaussian heatmap regression was applied to DL model-based target detection owing
to its powerful spatial generalization ability [24]. Unlike traditional landslide inventory,
the Gaussian heatmap sampling technique can generate samples in the range of 0~1 by
a two-dimensional Gaussian kernel function. The advantages of this method mainly
include (1) expansion of partially credible samples in the case of insufficient samples and
consideration of environmental information around landslides. (2) These smooth samples
(ranging from zero to one) were considered hard to classify, thus enhancing the spatial
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generalization ability of the model and avoiding extreme susceptibility index distributions.
(3) The generated new samples avoided the risk of overfitting while ensuring excellent
model performance.

In this study, a landslide susceptibility Gaussian heatmap network (LSGH-Net) was
innovatively applied to LSM. The main goal of this paper is to use the Gaussian heat map
sampling technique to enrich the variety of landslide inventory at the input step of the
deep learning model to improve the accuracy of the LSM results. This strategy took into
account the rich environmental information and the possibility of future landslides in the
surrounding environment due to disasters. LSGH-Net is an improved convolutional neural
network of LeNet-5 [25]. A series of optimization strategies such as attention mechanism,
dropout, etc., were applied to enhance model performance and efficiency. This paper chose
Jiuzhaigou as an experimental site to verify the feasibility and efficiency of the proposed
network. In addition, a series of evaluation metrics, Precision and Recall (PR) curves,
Average Precision (AP) values, and landslide densities, were applied to evaluate the model
performance and compare it with the traditional CNN, an unoptimized model.

2. Materials and Methods

Aiming at the problem of landslide inventory sampling in LSM, this paper uses
multi-source remote sensing images, deep learning model as a technical method, takes
the Jiuzhaigou earthquake area as the research area, and develops a Gaussian heatmap
sampling and convolutional neural network based on a method for LSM. The specific
technical route of this study is shown in Figure 1.
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Figure 1. The technical route of this study.

2.1. Study Area and Data

In this study, a total area of about 208 km2 within the earthquake epicenter was
selected as the most severely affected area. As shown in Figure 2, the area is located
in Jiuzhaigou County, Sichuan Province, with longitude from 103.71◦E to 103.90◦E and
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latitude from 33.11◦N to 33.33◦N. The elevation varies between 2191 and 4453 m above
mean sea level, and the maximum slope is 75.68◦. The study area is covered by dense
rivers, roads, and well-developed karst landscapes, which form a typical deep valley [26].
The main land use types and stratigraphic units are woodland, grassland, and Middle and
Lower Carboniferous, respectively. The typical humid highland climate provides the region
with abundant precipitation (an annual average of 550 mm). These unique geographical
conditions lead to frequent rock landslides, mudslides, and rockfalls [27].
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Figure 2. Overview of the study area.

At 21:19 on 8 August 2017, a magnitude surface wave magnitude (Ms) 7.0 earthquake
occurred in Jiuzhaigou County, with a depth of 20 km. Massive co-seismic landslides were
triggered by strong earthquakes and the unique topographic, geological, and hydrolog-
ical conditions. The Jiuzhaigou earthquake and 2903 aftershocks caused 25 deaths and
525 injuries, and 176,492 people (including tourists) were affected. In total, 73671 buildings
were damaged to varying degrees, of which 76 collapsed [28]. Meanwhile, large ar-
eas of natural landscape and ecology were destroyed due to landslides and collapses
of different scales.

According to the research needs of this paper, the data were mainly divided into two
categories: (1) remote sensing images and regional survey data used to establish the sample
set for LSM; (2) raw data of landslide causative factors. According to the data types, they
can be divided into raster and vector, and the names, types, uses, and detailed sources of
each data type are shown in Table 1.

Table 1. Landslide susceptibility mapping data.

Data Type Resolution Usage Source

Gaofen-1 Raster 2 m Visual interpretation Aerospace Information Research Institute,
Chinese Academy of Sciences (AIRCAS)

Gaofen-2 Raster 1 m Visual interpretation AIRCAS
GeoEye-1 Raster 0.41 m Visual interpretation AIRCAS

Geological hazard data Vector – Regional Landslide Survey Geological Cloud 3.0 Platform
Basic geographic data Vector 1:250,000 Extraction factor National Basic Geographic Information Center

Digital elevation model
(DEM) Raster 30 m Extraction factor Geospatial Data Cloud
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Table 1. Cont.

Data Type Resolution Usage Source

Geological data Vector 1:250,000 Extraction factor Sichuan Geological Survey
Landsat-8 Raster 30 m Extraction factor Geospatial Data Cloud

land-use type Raster 30 m Extraction factor GlobeLand30
Rainfall station data Vector - Extraction factor China Meteorological Administration
Earthquake related Vector - Extraction factor U.S. Geological Survey

2.2. Landslide Inventory

Regardless of the adopted method, a detailed historical landslide inventory is an
important pre-requisite for LSM [29,30]. Especially in the study of LSM based on ML,
accurate sample information is a necessary condition to ensure that the model is fully
trained and has feature learning. Here, we first discuss in detail the existing method of
establishing a landslide inventory and then point out its deficiencies. In response to the
above issues, we proposed a new method for the Gaussian heatmap sampling technique.

The choice of the type and scale of the mapping unit is the basis of the research. Erener
and Düzgün (2018) statistically classified the mapping units into three categories, which
were pixels (grid cells), slope units, and unique condition units [31]. Considering the
frequency of use and the model characteristics of ML, pixels were widely used due to fast
and efficient processing and excellent applicability to model applications. Relevant studies
indicated that whether a landslide slides or not is closely related to itself and the surround-
ing pixels, and the spatial structure information of neighboring pixels has a strong influence
on LSM [21]. Tobler (1970) proposed the first law of geography: “everything is related
to everything else, but near things are more related than distant things [32].” A Gaussian
heatmap is able to model this relationship between landslides and their surroundings.
The following four accepted assumptions also exist in the field of landslide susceptibility
research: first, future landslides are built on the basis that landslides are happening now.
Second, landslide features are detectable by images or field surveys. Third, landslides are
closely related to causative factors. Last, algorithmic analysis of the complex relationship
between landslides and causative factors can predict the location of future landslides [33].

Based on the above hypothesis, we hypothesize that the Gaussian heatmap sampling
technique can improve model accuracy and mapping results. We can use this hypothesis to
explain the reason for the improved model accuracy. This hypothesis can be understood
in landslide susceptibility studies as follows: on a large scale, the closer the location of
a landslide, the greater the probability of a landslide occurring. Figure 3 shows how to
create a landslide Gaussian heatmap. First, we used remote sensing images to interpret the
landslide range and extracted the coordinates of the central point of the planar landslide.
Second, a 2D Gaussian kernel was used to generate a Gaussian heatmap of the landslide
point by point. From the heatmap, we obtained decimals with susceptibility between zero
and one and divided these decimals into five equal intervals. Finally, some samples were
randomly selected from each interval as the landslide inventory.

As shown in Figure 4, for a single landslide point, the Gaussian heatmap is drawn
through a circumscribed square with a side length of 2R. The boundary value is set to 0.1,
and the part outside the circle is set to 0. Similarly, for all landslide points, the heatmap
is drawn through the entire image and a circle with radius R. The setting method of the
boundary and the external value is the same as a single landslide point. However, several
issues might also be encountered in the process of generating the Gaussian heatmap of
landslides in the entire region. If the chosen radius of the Gaussian kernel is too large, the
heatmap will overlap according to the principle that the closer the distance, the greater
the influence. It is reasonable to take the maximum value of the overlap, as shown in the
following formula:

Fmax(O1, O2 . . . On) (1)

O1, O2 . . . On = LGH1, LGH2 . . . LGHn ∩ LGHi (i = 1, 2...n) (2)
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where LGHn represents the landslide Gaussian heatmap that has an intersection with the
target landslide; On represents the overlapping area where LGHn and LGHi intersect.
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2.3. Model and Improved Strategies
2.3.1. LSGH-Net

In this paper, we proposed the landslide susceptibility Gaussian heatmap network
LSGH-Net based on a convolutional neural network and the Gaussian heatmap sampling
technique. As shown in Figure 5, LSGH-Net is an improved model based on a CNN. The
common components of CNN models are convolution, pooling, and fully connected layers.
The convolution layer is the most important part of the CNN structure, which is based on
the principle of filtering the image by filters of different sizes. In this way, different feature
maps, such as edges, corners, lines, etc., can be obtained by multiple convolutions [34].
The pooling layer is an essential part of the CNN structure, and its role is to reduce the
computational parameters of the model and improve the model efficiency while increasing
the perceptual field. Its forward propagation is done by moving the filter over the image to
complete the convolution calculation, and the process requires downsampling to reduce
the matrix size, but the number of feature layers remains unchanged. The fully connected
layer is the final link in the CNN structure to complete the result output. Depending on
the actual classification or regression task, the fully-connected layer plays an important
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role as a pivot for the transformation from features to the final result. Each neuron in this
layer is fully connected to the node in the previous layer, which essentially implements the
dimensional transformation.
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The network includes operations such as convolution, concurrent spatial and channel
squeeze and channel excitation, maxpooling, dropout, flatten, and densify. The model
skeleton is mainly built through the first four operations. After these operations, the feature
size was 1 × 1 × 256, and then it was converted to 256 × 1 by the flatten operation. To
improve the efficiency and accuracy of the model, batch normalization (BN) is added after
each convolutional layer of the network. Early stopping strategy can save the optimal
model under high efficiency to get better accuracy. Different from traditional models, a
Gaussian heatmap can generate more reliable hard-to-classify samples to improve the
robustness and generalization ability of the model.

2.3.2. Improved Strategies

Attention Model. The attention model simulates the visual mechanism of the human
eye to detect the target in the image while ignoring irrelevant information. The squeeze
& excitation (SE) block can be effectively integrated into any CNN to make the attention
mechanism widely used in DL [35]. The SE block can be divided as follows: the channel
squeeze and spatial excitation block (sSE) and spatial squeeze and channel excitation block
(cSE). In this paper, we used a combination of two blocks, namely, spatial and channel
squeeze and excitation block (scSE). This strategy can better strengthen important features
while ignoring secondary features. The structure of the scSE block is illustrated in Figure 6.
By stacking the channel (EcSE) and spatial (EsSE) excitation, scSE (EscSE) can be expressed by
the following formula:

EscSE = EsSE + EcSE (3)

The operation of cSE is a global average pooling and two convolutions, multiplied
with the original feature map. Similarly, the acquisition step of sSE is convolution and
sigmoid activation function and finally multiplying the feature map.

Dropout. The dropout strategy appeared to solve the efficiency and overfitting prob-
lems of the deep neural network training process. The core idea of this strategy is to
inactivate some neurons and their connections [36]. The reason why this strategy can
make the model more general is that it does not rely too much on some local features. In
LSM studies, nonlinear causative factors have complex internal relationships. The dropout
strategy can theoretically solve the model’s excessive dependence on certain factors.

Batch Normalization. Batch Normalization (BN) is a data standardization method
to unify scattered data. This strategy is proposed to alleviate the phenomenon of data
distribution deviations being transmitted to the network. Therefore, the BN layer is
usually used after the convolutional layer to re-adjust the data distribution to reduce
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error accumulation. The advantage of BN is to reduce the sensitivity of initial parameters,
improve training efficiency, and increase generalization ability [37]. BN is a parameterized
and learnable network layer. The formula can be expressed as

y(k) = γ(k)x(k) + β(k) (4)

where y(k) and x(k) represent the BN result and standard deviation normalized of the k-th
layer, respectively. γ(k) and β(k) represent learning parameters.
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Early Stopping. As an important parameter, the number of epochs plays an important
role in a DL model. If the number of model epochs is insufficient, the learned features cannot
truly predict the results. On the contrary, if there are too many epochs, the model will overfit,
which will also reduce the accuracy of the prediction results [38]. The implementation
process of the early stopping strategy is as follows: we set a suitable maximum number
of epochs for training. When the accuracy of the validation set no longer increases, stop
training and save the best model.

2.4. Landslide Causative Factors

The DL model was applied to LSM requiring not only accurate landslide inventories
but also landslide causative factors at the corresponding geographic locations. These factors
could be classified as geology, topography, precipitation, land use, etc., according to the
geological environment source [39]. Several factors such as slope are commonly considered
effective for LSM studies, while others are selected based on regional natural conditions
characteristics and data availability [40].

In this paper, we used the following 16 factors: slope direction, distance from the
road, rainfall, slope, curvature, distance from the water system, distance from the epicenter,
vertical fracture distance, distance from the fracture, gully density, land use, slope position,
NDVI, slope and local terrain relief, stratigraphic units, and elevation. Due to the ununified
format of these data and the fact that some factors need to be calculated, further processing
is required, mainly including calculation, mask, resampling, and grading. The Pearson
correlation coefficient matrix and random forest importance ranking are considered mea-
sures of landslide causative factors. Finally, slope, aspect, curvature, stratigraphic units,
NDVI, land use, slope position, distance from the road, and distance from the water system
were selected as causative factors in the study area. Slope, aspect, slope position, and
curvature were calculated in ArcMap 10.6 with a 30 m resolution DEM from the geospatial
data cloud platform (http://www.gscloud.cn/, accessed on 5 July 2021). Stratigraphic
data were provided by the National Mineral Resource Potential Evaluation Project Team
of China University of Geosciences (Beijing). The classification standard was the physical
and mechanical properties of the rocks in study area. NDVI was an annual average based
on the Google Earth platform using Landsat images. Land use data were collected from
the 2017 Global Land 30 (http://www.globallandcover.com/, accessed on 10 July 2021)

http://www.gscloud.cn/
http://www.globallandcover.com/
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product. Distance from the road and distance from the water system were obtained from
the road and the water system vector data by buffer calculation. Since some factors were
continuous and others were discontinuous, all factors were handled in a hierarchical ap-
proach. The classification of landslide causative factors and the details are illustrated in
Table 2.

Table 2. Detailed information of landslide causative factors.

Factors Classes Details

1 Slope 11 <10◦; 10◦~20◦; 20◦~30◦; 30◦~35◦; 35◦~40◦; 40◦~45◦; 45◦~50◦; 50◦~55◦; 55◦~60◦;
60◦~65◦; >65◦

2 Aspect 9 Flat; North; South; East; West; Northeast; Northwest; Southeast; Southwest

3 Curvature 12 <−3.50; −3.50~−1.00; −1.00~−0.75; −0.75~−0.50; −0.50~−0.25; −0.25~0.00;
0.00~0.25; 0.25~0.50; 0.50~0.75; 0.75~1.00; 1.00~2.50; >2.50

4 Stratigraphic units 8 Middle Triassic; Pliocene; Middle Carboniferous; Lower Triassic; Lower Permian;
Upper Permian; Lower Carboniferous

5 NDVI 12 <0.00; 0.00~0.05; 0.05~0.10; 0.10~0.15; 0.15~0.20; 0.20~0.25; 0.25~0.30; 0.30~0.35;
0.35~0.40; 0.40~0.45; 0.45~0.50; >0.50

6 Land use 8 Arable; Woodland; Grassland; Shrubland; Wetland; Water; Impervious bed; Barren

7 Slope position 10 Valley; Downslope; Flat; Mesoslope-1; Meseslope-2; Meseslope-3; Meseslope-4;
Meseslope-5; Upslope; Ridge

8 Distance from the road 13 0.0~0.5; 0.5~1.0; 1.0~1.5; 1.5~2.0; 2.0~2.5; 2.5~3.0; 3.0~3.5; 3.5~4.0; 4.0~4.5; 4.5~5.0;
5.0~5.5; 5.5~6.0; >6.0

9 Distance from the water system 11 0.0~0.1; 0.1~0.2; 0.2~0.3; 0.3~0.4; 0.4~0.5; 0.5~0.6; 0.6~0.7; 0.7~0.8; 0.8~0.9;
0.9~1.0; >1.0

3. Experiments and Results
3.1. Implementation Details

The hardware configuration of this experiment was as follows: the processor was
an Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHZ (Santa Clara, CA, USA), the graphics
card was an NVIDIA GeForce RTX 3090 (Santa Clara, CA, USA), and the memory (RAM)
was 64.0GB. The software environment was a Windows 10 Professional 64-bit operating
system (version number: 21H1), the programming language used was Python, and the
tensorflow-gpu-1.4.0 and Keras-2.0.8 DL framework was selected as tool to build the model,
corresponding to the Python-3.6 version.

The application of a CNN to LSM needs to solve the problem of model applicabil-
ity, that is, to convert a one-dimensional landslide causative factor vector into a two-
dimensional image. We referred to the CNN-2D method proposed by Wang, Fan, and
Hong (2019), which followed one-hot encoding [41]. By extracting 3592 landslide points,
the Gaussian heatmap of landslide in the whole Jiuzhaigou earthquake area was generated
by a two-dimensional Gaussian kernel function (Figure 7). The values of the corresponding
pixels in the heatmap were equally divided into five parts and randomly selected as new
samples at equal intervals. It should be noted that since the selection of landslides and
non-landslides was based on credible traditional methods, we only needed to generate
new samples in the middle three intervals. We had a total of 10,376 samples and divided
them into a training set and test set according to a 7:3 ratio. In the end, we converted these
samples into 2D images to participate in model building.

For LSGH-Net, the attention model was added after each convolution operation. By
comparing the loss of the training set and the validation set, we set the dropout rate to 0.5.
Considering the size of the data set, the batch size in BN was set to 32. We set the maximum
number of epochs to 200 in order to ensure adequate training. When the accuracy of
the validation set did not increase significantly in 50 epochs, it was terminated early to
avoid invalid training. The Adam algorithm was used as an optimizer to accelerate model
training. Since LSM is a regression problem between factors and samples, we chose MSE as
the loss function. In the DL model, the final feature map is obtained from the activation
function to obtain the landslide susceptibility index (between 0 and 1).
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3.2. Evaluation Metrics

In the study of landslide susceptibility based on the DL method, the results of evalua-
tion mapping are often reflected by various metrics. At the same time, the effectiveness of
different models or improved methods is verified by comparing the differences in metrics.
In this paper, five single thresholds, i.e., accuracy, precision, specificity, sensitivity, and
the F1 score, were selected as evaluation metrics. The calculation formula and detailed
description of each evaluation metric are illustrated in Table 3. The mean square error (MSE)
was used to compare model errors, which reflects the degree of difference between the
two estimated quantities. The PR curve and AP value of multi-threshold metrics can more
intuitively reflect the predictive ability of the model. The PR curve was chosen because
it focuses more on positive samples than the ROC curve. The AP value is the area of the
graph enclosed by the PR curve and the X-axis.

Table 3. Detailed information of evaluation metrics.

Metrics Formulas Descriptions

Accuracy (TP + TN)

(TP + TN + FP + FN)
The proportion of landslides/non-landslides correctly predicted in the overall sample.

Precision (TP)
(TP + FP)

Among results whose predicted value was a landslide, the proportion predicted to be correct.

Specificity (TN)

(TN + FP)
Among results whose true value was a landslide, the proportion predicted to be correct.

Sensitivity (TP)
(TP + FN)

Among results whose true value was a non-landslide, the proportion predicted to be correct.

F1 Score 2× TP
(2× TP + FP + FN)

The harmonic mean of specificity and sensitivity.

TP and FN represent landslides that are correctly or incorrectly predicted, respectively.
TN and FP represent non-landslides that are correctly or incorrectly predicted, respectively.
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3.3. Comparative Experiments of Different Methods

In this part, we first compared the differences between the proposed LSGH-Net,
Random forests (RF), and CNN models. The difference between the RF and CNN methods
is that the input data are one-dimensional and two-dimensional, respectively. The structure
of the CNN was consistent with the proposed network. The difference was that the
Gaussian heatmap sampling technique to generate smooth samples was not applied to the
CNN. We compared the impact of adopting improved strategies such as the scSE block in
the proposed model. The results of comparative experiments are shown in Table 4.

Table 4. Multi-model metrics comparison.

Index
Model

Accuracy Precision Specificity Sensitivity F1 Score MSE

RF 89.94% 94.84% 95.41% 84.48% 89.36% 0.0814
CNN 93.67% 98.46% 98.61% 88.73% 93.34% 0.0523

LSGH-Net 95.30% 98.73% 98.82% 91.79% 95.13% 0.0485
LSGH-Net (remove scSE) 94.26% 99.15% 99.23% 89.28% 93.96% 0.0492

First, we used GridSearchCV for RF parameter tuning. The RF model, as a statistical
machine learning method, is generally less accurate than deep learning. On the one hand,
a deep learning model has a deep network structure and strong feature learning ability.
On the other hand, one-hot encoding is used to convert a one-dimensional vector into
a two-dimensional vector. Using one-hot encoding for discrete features will make the
calculation of the distance between features more reasonable. For overall accuracy, the
proposed network and improved strategy using the Gaussian heatmap sampling technique
performed better than the traditional CNN (93.67%). LSGH-Net outperformed the CNN
in terms of all metrics, especially sensitivity (about 3% improvement). The FI score is an
indicator reflecting the overall performance of a DL model. The score of the CNN (93.34%)
was lower than that of LSGH-Net (95.13%), indicating that the proposed approach has better
predictive performance in LSM. Compared with LSGH-Net, removing the scSE strategy will
make some changes to the model, namely, higher specificity (99.23%) and lower sensitivity
(89.28%). The implementation of the scSE strategy improved the overall accuracy (1.04%)
and F1 score (1.17%) of the model. Figure 8 shows the comparison of the PR curves and
AP values of different models. If the PR curve of classifier A completely wraps around
another classifier B, then A outperforms B. Through analysis and comparison of AP values,
the regression performance of the three models all achieved excellent scores, of which
LSGH-Net was the best and the CNN was relatively poor. The MSE value of LSGH-NET
was the smallest (0.0485), indicating that this predicted value was more consistent with the
real value.

3.4. LSM Results

This paper used the Python package Keras with Tensorflow as the backend for LSM.
The generated results were imported into ArcGIS 10.6, and Jenks natural break approach
was used to divide the susceptibility index into five categories from low to high. It is worth
noting that this paper mainly studied the influence of smooth samples generated by the
Gaussian heatmap sampling technique on landslide susceptibility. Although the improved
strategies such as the scSE block improved the model performance, the difference was not
significant in the mapping results, and they had a similar susceptibility index frequency
distribution. Therefore, this paper only compared the mapping results of the optimized
LSGH-Net and the traditional CNN.
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Figure 9 shows that the two maps were similar in the spatial distribution of landslides.
Landslides were mainly concentrated in the northwest and southeast of the earthquake
region. From the perspective of the landslide susceptibility index, there was a significant
difference between the two models. For the CNN, high and very high landslide susceptibil-
ity occupied approximately 52% (108.16 km2) of the total area. Pourghasemi et al. (2013)
proposed that susceptibility mapping should consider reasonableness [42]. There is the
reasonable expectation that LSM will have the ground-truthed landslides occupying the
high and very-high areas. Meanwhile, the proportion of highly and very highly prone areas
should be as small as possible because the occurrence of landslides is still small relative to
the entire area. Compared with the results of the CNN, the proportion of highly and very
highly prone areas in LSGH-Net (approximately 33%) is more reasonable.
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As shown in Figure 10, the quantitative relationship between index and frequency is
more intuitively reflected through the frequency histogram of the landslide susceptibility
index. For the CNN, most of the susceptibility indexes were in the range of 0~0.2 and
0.8~1.0. This phenomenon quantitatively explains why highly and very highly prone
areas accounted for a large proportion. For LSGH-Net, the frequency distribution of the
susceptibility index was more reasonable, that is, there was still a considerable frequency
distribution in the moderately prone areas. Therefore, the Gaussian heatmap sampling
technique can improve the frequency distribution of the susceptibility index. This result
can provide more precise mapping details and accurate predictions.

Remote Sens. 2022, 13, x FOR PEER REVIEW 13 of 19 
 

 
Figure 9. The results of LSM (a) CNN (b) LSGH-Net. 

As shown in Figure 10, the quantitative relationship between index and frequency is 
more intuitively reflected through the frequency histogram of the landslide susceptibility 
index. For the CNN, most of the susceptibility indexes were in the range of 0~0.2 and 
0.8~1.0. This phenomenon quantitatively explains why highly and very highly prone areas 
accounted for a large proportion. For LSGH-Net, the frequency distribution of the suscep-
tibility index was more reasonable, that is, there was still a considerable frequency distri-
bution in the moderately prone areas. Therefore, the Gaussian heatmap sampling tech-
nique can improve the frequency distribution of the susceptibility index. This result can 
provide more precise mapping details and accurate predictions. 

 
Figure 10. Frequency histograms of the landslide susceptibility index. 

4. Discussion 
4.1. Effectiveness of the LSGH-Net and Improved Strategies 

The main research of this paper is the development of an LSM method based on the 
Gaussian heatmap sampling technique and a CNN. The application of the method is 
mainly based on the first law of geography and the accepted assumptions of landslide 
susceptibility research. Traditional CNN models trained only by landslide and non-land-
slide samples tend to show several drawbacks. As shown in Figure 9 and Table 4 in the 
previous chapter, if model prediction accuracy is the primary concern, the mapping re-
sults of the CNN model often show that the high and extremely high susceptibility levels 

Figure 10. Frequency histograms of the landslide susceptibility index.

4. Discussion
4.1. Effectiveness of the LSGH-Net and Improved Strategies

The main research of this paper is the development of an LSM method based on the
Gaussian heatmap sampling technique and a CNN. The application of the method is mainly
based on the first law of geography and the accepted assumptions of landslide susceptibility
research. Traditional CNN models trained only by landslide and non-landslide samples
tend to show several drawbacks. As shown in Figure 9 and Table 4 in the previous chapter,
if model prediction accuracy is the primary concern, the mapping results of the CNN model
often show that the high and extremely high susceptibility levels account for a large pixel
proportion. The reason for this phenomenon is that the large number of epochs cause
the model to overfit. The contradiction is that if the number of epochs is reduced, the
risk of overfitting can be decreased but the accuracy of the model will be greatly reduced.
Similarly, if overfitting is avoided by simplifying the network such as reducing the feature
map, it will also affect the prediction accuracy.

Therefore, the advantage of the LSGH-Net proposed in this paper is that it can ef-
fectively avoid the contradiction between overfitting caused by excessive epochs and
hard-to-classify reduced accuracy caused by model simplification or reduced epochs. This
method can ensure a sufficient number of epochs without overfitting, and it is suitable
for complex networks and improved strategies to extract advanced features of landslide
causative factors. These hard-to-classify smooth samples make the model more complex
and robust. Therefore, these smooth samples generated by the Gaussian heatmap sam-
pling technique can effectively improve the generalization ability of the model and avoid
overfitting. The successful application of various strategies in the network improved the
evaluation metrics and efficiency of the LSM. In the attention mechanism, the performance
improvement can be explained as follows: the scSE block strengthens the important feature
maps and ignores the minor ones.

4.2. Reasonableness Analysis of Landslide Density

As previously expressed, the frequency histogram of landslide susceptibility index
should consider the rationality of the mapping. The study of landslide susceptibility was
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to use past landslides to predict the probability of occurrence in the future, but it was
often difficult to verify whether a landslide would happen in the future. Analysis of the
spatial distribution relationship between the susceptibility index and known landslides
could further evaluate the rationality and scientificity of the model. Landslide susceptibility
zoning is used to divide the probability of landslide susceptibility and the number and
proportion of evaluation units and landslide units. It is also possible to calculate the
landslide density and analyze the trend, and through the evaluation, landslide unit ratio,
and landslide density analysis, it is possible to better quantify the intrinsic difference
between LSM and the interpretability of model differences. The specific zoning statistics
are shown in the table.

Although there are similarities between the two models in terms of the LSM results,
it can be seen from Tables 5 and 6 that there are large differences in the models in terms
of statistical performance. First, in terms of the proportion of evaluation units, the CNN
model takes up a large proportion in the range of 0–0.2 and 0.8–1, with a total of 87.2%,
that is, most of the assessment results show extremely low or extremely high susceptibility,
which is obviously overestimated. Compared with the LSGH-Net model, there is a certain
proportion in each interval, and the proportion of 0.8~1.0 in the evaluation unit is the
smallest (10%), which is consistent with the actual situation. At the same time, for the
proportion of landslide units, a large number of landslides are distributed in the interval of
0.6–1, while compared with the CNN model, there are 6.9% of landslides in the interval of
0–0.2, which is a large error. In the range of 0.6~0.8, there should be a higher landslide ratio,
but the ratio of 2.3% is much smaller than that of the LSGH-Net model. This is because the
CNN has overestimated it and predicted it into the extremely high susceptibility range.

Table 5. Landslide susceptibility zoning based on the LSGH-Net model.

Index
Zoning

0~0.2 0.2~0.4 0.4~0.6 0.6~0.8 0.8~1

Evaluation unit ratio 22.3% 16.9% 14.4% 36.5% 10.0%
Landslide unit ratio 1.3% 4.0% 5.6% 52.1% 37.0%
Landslide density 0.09% 0.38% 0.62% 2.28% 5.93%

Table 6. Landslide susceptibility zoning based on the CNN model.

Index
Zoning

0~0.2 0.2~0.4 0.4~0.6 0.6~0.8 0.8~1

Evaluation units ratio 37.7% 5.7% 3.5% 3.6% 49.5%
Landslide units ratio 6.9% 2.6% 1.6% 2.3% 86.5%

Landslide density 0.29% 0.74% 0.76% 1.03% 2.79%

Landslide density refers to the proportion of a landslide inventory in the total mapping
units within a certain susceptibility index interval. Through landslide density analysis, the
predicted susceptibility index and landslide inventory can be better explained in terms
of rationality. Figure 11 illustrates the landslide density results of the CNN and LSGH-
Net in different index intervals. From the overall trend, landslide density increases with
increasing susceptibility index. This trend is particularly significant for LSGH-Net, which
is manifested in exponential growth. For the CNN, the landslide density in the interval
of 0~0.2 still has a higher value than the model proposed in this paper. This phenomenon
may be a result of overfitting that causes the CNN model to overpredict the very low prone
areas, and there is no significant difference in landslide density in the 0.2~0.8 interval.
Compared with the CNN, LSGH-Net had a higher landslide density in the 0.8~1 interval,
which shows that the model has more accurate spatial prediction. Through the above
analysis and comparison, the network proposed in this paper satisfied the assumption of
reasonableness in landslide density.
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To sum up, the Gaussian heatmap sampling technique can adjust the susceptibility
index histogram, which makes the landslide more accurately distributed in the very highly
prone areas. This method makes the distribution of landslide density at different levels of
susceptibility more reasonable.

4.3. Sensitivity of the Gaussian Heatmap Sampling Technique

The application of the Gaussian heatmap sampling technique is based on the fact
that the occurrence of landslides is closely related to the surrounding environment. The
area near the landslide will be more susceptible due to similar geographical environment
factors. However, determination of the extent or scale of surrounding environmental factors
affected by landslides remains a challenge. Different scale parameters were set to explore
the effect on landslide susceptibility based on the Gaussian heatmap diameter size. The
size of the diameter (7, 13, and 19) was classified into small, medium, and large scales in
LSM. The small scale was more concerned with information about the landslide itself while
the large scale was more focused on information about the surrounding environment.

Figure 12 shows the performance of different scale data sets by comparing the PR
curve and AP value. The AP values corresponding to small, medium, and large scales
were 97.60%, 98.51%, and 98.27%, respectively. This indicates that excellent fits were
obtained for data sets of different scales. Furthermore, the medium scale achieved the best
overall score, indicating the suitability of the scale for landslide susceptibility studies in the
Jiuzhaigou region. The results show that the appropriate scale selection takes into account
the information of the landslide itself and the surrounding causative factors. Meanwhile,
the causative factors selected in this paper, such as the distance from the road, distance
from the water system, etc., showed a high susceptibility index at the mesoscale. To sum
up, the Gaussian heatmap scale parameters had a certain impact on LSM, and different
regions and environments may require trial and error to select the best parameters.
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5. Conclusions

In this paper, a novel intelligent CNN-based approach, LSGH-Net, was proposed for
landslide susceptibility based on the Gaussian heatmap sampling technique. To address the
inadequacy of traditional landslide inventory sampling, the Gaussian heatmap sampling
technique was added to LSGH-Net to optimize the performance of the model. A series
of optimization strategies such as attention mechanism, dropout, etc., were applied to
the network to improve the accuracy and efficiency. The new landslide inventory and
causative factors were input into the designed network for training and prediction. The
main conclusions were as follows: (1) The accuracy and F1 score of the LSGH-Net approach
were 95.30% and 95.13%, respectively, approximately 1.63% and 1.79% higher than that of
the traditional CNN sample selection approach. The results demonstrated that LSGH-Net
had strong predictive performance and generalization ability. (2) The frequency histogram
of the susceptibility index was effectively improved by the Gaussian heatmap sampling
technique. The improved histogram provided more fine-grained mapping details and a
more reasonable landslide density. (3) The final evaluation results of landslide susceptibility
show that the northwest and southeast of the Jiuzhaigou earthquake area are highly and
extremely prone areas, and the possibility of landslides in the future is very high. (4) Based
on scale sensitivity analysis, the medium-scale Gaussian heatmap was more suitable for
the mapping of landslide susceptibility in the Jiuzhaigou earthquake region. Given the
above, based on the basic laws and assumptions of susceptibility, the Gaussian heatmap
sampling technique is considered to be effective and feasible in different regions and other
disaster susceptibility studies.
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Abbreviations
The following abbreviations are used in this manuscript:

LSM Landslide Susceptibility Mapping
CNN Convolutional Neural Network
ML Machine Learning
DL Deep Learning
LSGH-Net Landslide Susceptibility Gaussian Heatmap Network
PR Precision and Recall
AP Average Precision
SE Squeeze & Excitation
sSE spatial Squeeze & Excitation
cSE channel Squeeze & Excitation
scSE spatial and channel Squeeze & Excitation
BN Batch Normalization
TP True Positive
FP False Positive
FN False Negative
TN True Negative
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