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Abstract: Mesoscale eddies occurring in the world’s oceans typically exist in pairs known as mesoscale
dipole eddies or simply dipole eddies. Tropical cyclones (hereafter TCs) that move over the world’s
oceans often encounter and interact with these dipole eddies. Through this interaction, TCs induce
significant perturbations in the mesoscale eddies. However, the specific influences that the passage
of a TC on a dipole eddy have not been addressed. In this paper, a case study of the dipole eddy’s
response to the passage of a TC is conducted by using satellite observations and numerical simulation.
The passage of a TC induces a long-duration response in the dipole eddy. First, the cyclonic ocean
eddy component (COE) of the dipole is amplified, and the anticyclonic ocean eddy component (AOE)
is weakened or even destroyed during the interaction. The amplification of the COE and weakening
of the AOE primarily manifests as a change in their amplitudes and radii and as the adjustment
of their vertical structure. The dipole eddy’s response to the interaction with a TC manifests as
an upwelling anomaly and the injection of positive relative vorticity. Following the passage of the
TC, the COE gradually stabilizes, and AOE slowly recovers after the disturbance energy from the
interaction dissipates, which facilitates the reestablishment of the dipole eddy. The dipole reaches
an equilibrium state through a quasi-geostrophic adjustment process. As a consequence, the overall
effect of the interaction of the dipole with the TC leads to an asymmetric signature on the dipole eddy.
The eddy–eddy interaction in a dipole may allow it to stabilize in a shorter time relative to that of a
solitary eddy.

Keywords: tropical cyclone; mesoscale dipole eddy; dynamic response; satellite data; numerical model

1. Introduction

Mesoscale eddies play an important role in laterally transporting considerable amounts
of mass, volume, heat, and biochemical components in the world’s oceans. A dipole eddy
(hereafter dipole) is composed of a pair of coupled counterrotating COE and AOE [1].
These dipoles are unsteady coherent phenomena that are nonetheless widespread in the
global oceans [2,3]. Laboratory experiments have demonstrated that dipoles even occur in
the homogeneous fluids [4]. Early observations also showed that two component eddies in
a dipole rotate about the dipole center and deform during their movement [5]. Numerical
models have been shown to properly simulate the formation and evolution of mesoscale
dipoles in the ocean [6]. The central jet of dipoles is usually found to be a strong ocean front
associated with significant upwelling and downwelling [7]. These dipoles have also been
found to cause upwelling as a result of the horizontal divergence during its propagation
along the continental shelf [8]. The dipole-induced extrusions of cold water in coastal zones
leads to horizontal or vertical transport, which can interrupt the coastal upwelling [9].
Eddy–eddy interactions in dipoles enhance the nonlinear strain of vortices, which results
in unstable vortex pairs relative to the deformation, rotation, or decay [10]. Observations
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have also verified that oceanic dipoles have noticeable effects on ecosystems through their
trapping of water masses [11,12]. Therefore, dipole eddies have some very specific roles in
the oceans different from individual mesoscale eddies.

It is known that TC–eddy interactions occur from time to time [13–15]. Because of their
warm core nature, warm core eddies tend to strengthen TC’s through the additional heat
flux supplied by their warm signature in the upper ocean [16]. However, the interaction
between a TC and a warm mesoscale eddy depends upon the relative position of the centers
of the TC and the warm eddy. When a warm eddy is within (outside) the maximum wind
radius, the TC can be intensified (weakened) [17]. Conversely, the interaction with a TC
also affects mesoscale eddies over long time scales [18]. For example, due to the increase
in the sea level anomalies and upwelling in its core region, a COE can be significantly
strengthened by the passage of a TC [19]. Subsequent to this interaction, a cyclonic eddy
enters a stage of elliptical deformation and re-axisymmetrization arising from the quasi-
geostrophic response [20]. However, the perturbations induced in cyclonic and anticyclonic
eddies interacting with TCs are completely different. This is primarily because a cyclonic
eddy gains much more energy than does an anticyclonic eddy through the interaction [21].
The strength of response of either type of eddy depends upon the distance between the
eddy and the TC [22].

Wind–dipole interaction has also been studied by both observation and numerical
simulation. The dipole structure and its temporal variability are related to the changes in the
wind field [23]. It has been found that this specifically TC-type wind forcing can significantly
enhance the nonlinear Ekman pumping in a dipole relative to that in a solitary eddy [3].
Therefore, it is speculated that TC–dipole interaction may also leave significant imprints
on the state of the ocean. In this paper, the influence of the passage of a TC on mesoscale
dipoles is studied using altimeter-based data and numerical simulation. A case observation
is presented that demonstrates the entire interaction process between a TC and a dipole.
An idealized TC–dipole model is then designed to simulate the interaction processes. The
model is a simplified one that excludes the influences from the forcing of the large-scale
wind field [24,25], the interaction with background currents [26], the damping effect of
topography [27,28], the interaction between dipole eddies and other adjacent eddies [10,29],
and the air–sea interactions [13–15]. Consequently, only the dynamic response of a dipole
interacting with a TC is explored in this study.

2. Data, Model, and Method
2.1. Data

The daily altimetry-derived sea level anomaly (SLA) products from the Copernicus
Marine Environment Monitoring Service on a 0.25◦ × 0.25◦ grid were used in this paper.
The daily satellite derived SLA from 31 August 2002 to 12 October 2002 (43 days) were
selected for the analysis of the surface evolution of the TC–dipole interaction process. The
TC data were taken from the best track dataset of the Typhoon Center of the Japanese
Meteorological Agency. The TC dataset contains latitude and longitude of the TC center,
maximum sustained wind speed, central pressure, and other components every 6 h. In
this case study, the TC Hernan was used because it was observed to pass over a dipole, so
the TC data were from 30 August 2002 to 6 September 2002. The climatological summer-
time temperature and salinity from the World Ocean Atlas 2013 (WOA13) was used for
initializing the model background field. Only the temperature and salinity profile at 19◦N,
119◦E was extracted to represent the climatological horizontal and vertical temperature
and salinity structure of the COE and AOE in the dipole [20,22,30].

2.2. Model Settings

The numerical simulations were conducted in the Regional Ocean Modeling System
(ROMS) [31] to reproduce the main dynamic response in the observed case of the TC–dipole
interaction process. A flat-bottomed, stratified f-plane ocean (f ≈ 4.75 × 10−5 s−1, 19◦N)
was employed in the model. The initial background temperature and salinity stratification
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in the model ocean were horizontal averages from WOA13 summer data in the study region.
The horizontal model domain was 6204 × 4389 km in the zonal and meridional directions,
respectively, with a grid resolution of 11 × 11 km. The depth was set to 1880 m, and
there were 25 vertical S-coordinate layers with stretching parameters THETA_S = 5.0 and
THETA_B = 0. The advection scheme was third-order upstream-biased, which permitted
no additional explicit horizontal viscosity or diffusivity [32,33]. The vertical mixing was
parameterized using MY2.5 turbulent closure scheme [34] with a vertical mixing coefficient
(AKV_BAK) of 1.0 × 10−4 m2·s−1. The quadratic bottom drag coefficient (RDRG) was set
to 2.5 × 10−3 [32,33]. The dipole was located at X = 3080 km, Y = 2090 km near the center
of the model domain and far away from the lateral closed boundaries [18].

To avoid introducing unnecessary distractions from background field, the sea surface
wind forcing in our model was only the TC forcing [18,20]. As the dipole’s response to
wind divergence can be neglected, an axisymmetric wind field was considered [22,35],
and a dual-exponential parametric model was used for the TC wind field [36]. Previous
research suggested that the wind field should follow the equation [36–39]:

θ = arctan
(

y − y0

x − x0

)
(1)

{
u(x, y) = VTsinθ

v(x, y) = −VTcosθ
x < x0 (2){

u(x, y) = −VTsinθ
v(x, y) = VTcosθ

x ≥ x0 (3)

where (x0, y0) is the center of the TC, VT is the tangential wind speed, and θ is the the
deviation angle of the wind.

The TC was an idealized, two-dimensional, cyclonic wind field with a maximum wind
speed of Vm = 35 m·s−1, and the radius of maximum wind rm = 33 km (Figure 1). The wind
stress was calculated by the bulk formula:

τ = ρaCDV2
T (4)

where ρa = 1.26 kg·m−3 is the air density, and CD is the drag coefficient. Based on the calcula-
tions of CD by Large and Pond [40], the drag coefficient is given by CD = (0.49+ 0.065VT)× 10−3

under the low wind speed [22] and reaches a maximum value of 2.6 × 10−3 under high
wind speed conditions.

The TC was initially placed at X = 4180 km, Y = 2090 km and then translated
from east to west, passing directly over the dipole at a speed of U = −5 m·s−1 (about
18 km·h−1). Both the TC wind structure and the translation speed are similar to those seen
in the observations.

The simulated dipole in the model was designed as a combination of a COE and an
AOE, with the radii and amplitudes of these eddies determined from the observations. The
spatial structure of the initial dipole followed that in Lu et al.’s vortex model [22,30]. The
ocean eddy structure can be written as:

Teddy(r, z) = Aeddy × Reddy(r)× Tz(z) + Tc(z) (5)

Seddy(r, z) = Aeddy × Reddy(r)× Sz(z) + Sc(z) (6)

Reddy(r) = [1 −
( r

R

)2
/2]× e[−( r

R )2/2] (7)

where Teddy and Seddy are the initial temperature and salinity structure in the radial direction
of the eddy, respectively; Reddy is the functional form of the radial structure; R is the
radius of eddy; Tz and Sz are the vertical temperature and salinity structure of the eddy,
respectively [30]; and Tc and Sc are the climate mean states of the vertical temperature
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and salinity structure of the background field, respectively. The cyclonic eddy and an
anticyclonic eddy are joined together to form a dipole.

To produce a stable dipole, the model was spun-up for 10 days without external
forcing, and then the TC–dipole simulation was carried for 40 days by adding the TC
forcing. Consistent with the observations, the TC center was set to arrive directly above
the dipole center 3 days into the simulation for better comparison of the observed and
simulated results.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 14 
 

 

𝑅 (𝑟) = [1 − 𝑟𝑅 /2] × 𝑒[ / ] (7)

where 𝑇  and 𝑆  are the initial temperature and salinity structure in the radial direc-
tion of the eddy, respectively; 𝑅  is the functional form of the radial structure; 𝑅 is the 
radius of eddy; 𝑇𝑧 and 𝑆𝑧 are the vertical temperature and salinity structure of the eddy, 
respectively [30]; and 𝑇𝑐 and 𝑆𝑐 are the climate mean states of the vertical temperature 
and salinity structure of the background field, respectively. The cyclonic eddy and an an-
ticyclonic eddy are joined together to form a dipole. 

To produce a stable dipole, the model was spun-up for 10 days without external forc-
ing, and then the TC–dipole simulation was carried for 40 days by adding the TC forcing. 
Consistent with the observations, the TC center was set to arrive directly above the dipole 
center 3 days into the simulation for better comparison of the observed and simulated 
results. 

 
Figure 1. Idealized TC employed in the numerical model: (a) Two-dimensional wind field (m·s−1), 
vectors represent the wind directions, and the gray shading represents the wind speed value; (b) 
Zonal wind speed profile (m·s−1) at X = 0; (c) Zonal wind stress profile (N·m−2) at X = 0. 

2.3. Method 
The oceanic potential vorticity can be used for analyzing the temporal and spatial 

evolution of dipole [20,22,26,29,30]. The potential vorticity (PV) is defined as: 𝑃𝑉 = − 𝜁 + 𝑓𝜌 𝜕𝜌𝜕𝑧 (8)

where, 𝜁 = −  is the relative vorticity, 𝑓 is the planetary vorticity, and 𝜌 is the sea-
water density. The potential vorticity anomaly (PVA) is defined as: 𝑃𝑉𝐴 = 𝑃𝑉 − 𝑃𝑉  (9)

where 𝑃𝑉  is initial background PV prior to the introduction of the TC. 

Figure 1. Idealized TC employed in the numerical model: (a) Two-dimensional wind field (m·s−1),
vectors represent the wind directions, and the gray shading represents the wind speed value;
(b) Zonal wind speed profile (m·s−1) at X = 0; (c) Zonal wind stress profile (N·m−2) at X = 0.

2.3. Method

The oceanic potential vorticity can be used for analyzing the temporal and spatial
evolution of dipole [20,22,26,29,30]. The potential vorticity (PV) is defined as:

PV = − ζ + f
ρ

∂ρ

∂z
(8)

where, ζ = ∂v
∂x − ∂u

∂y is the relative vorticity, f is the planetary vorticity, and ρ is the seawater
density. The potential vorticity anomaly (PVA) is defined as:

PVA = PV − PV0 (9)

where PV0 is initial background PV prior to the introduction of the TC.

3. Results
3.1. Evolution of Dipole Structure after TC Passage

On 30 August 2002, TC Hernan formed in the northeastern Pacific Ocean at about
103.1◦W, 13.5◦N and moved close to a dipole at about 119◦W, 19◦N. On 3 September 2002,
TC Hernan passed over a mesoscale dipole eddy and caused significant disruption to the
dipole. The temporal and spatial evolution of the dipole observed in the satellite SLA are
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shown in Figure 2. The dipole axis was aligned roughly east–west with the COE located
to the west of the AOE. From 3 September to 6 September, the TC nearly passed over the
center of the dipole from east to west with a translation speed of ~5 m·s−1

.
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Figure 2. Observed temporal and spatial evolution in the surface structure of a mesoscale dipole
eddy before and after the passage of TC Hernan: (a–f) are satellite-observed SLA (unit: cm) at −3, 0,
10, 20, 30, and 40 days after the TC, respectively. The dotted lines represent the track of the TC, the
small black dots represent the location of the TC center every 6 h, and the black arrows represent the
direction of the TC’s translation. The dashed and solid contours outline the approximate edges of the
COE and the AOE, respectively. The large black dots represent the locations of the centers of the COE
or the AOE. The gray dashed rings represent the equivalent area circles of the COE or the AOE.

The passage of the TC induced two significant stages of evolution in the dipole. During
the direct interaction period, the COE intensified, as seen by a rapid drop in the SLA and a
radius increase from 80 km to 110 km. Here, the radius is defined as the average radius of
an equivalent area of the COE’s or AOE’s outmost contour [29]. Concurrently, the AOE was
dramatically weakened as the TC passed over, as its SLA declined and its radius decreased
from 100 km to being effectively destroyed after several days. In the adjustment stage
following the passage of the TC, energy was transferred into the geostrophic flow [35,41];
hence, the COE tended to stabilize and the AOE gradually reappeared. After this quasi-
geostrophic adjustment, a weak dipolar structure was re-established with radii of the AOE
and COE being 110 km and 70 km, respectively.

Because of the limitations of the satellite observations, we only observe the surface
signature of the dipole. To further explore the changes to the three-dimensional structure
of the dipole after the interaction with the TC, an idealized simulation was designed using
the ROMS model. In this model, the three-dimensional dipole was aligned in the east–west
direction with the COE directly to the west of the AOE. An idealized TC passed over
the dipole from east to west, and the TC track is aligned with COE’s and AOE’s centers.
To maintain consistency with the initial observed dipole, the dipole size is estimated
from the observations. The initial radii of the COE and AOE were set to 80 km and
100 km, respectively.

Note that the simulation is idealized, as it cannot be completely consistent with the
observations because the background circulation was ignored and an idealized TC was
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used to better explore the dipole response. However, the numerical simulation roughly
reproduced the evolution of the dipole seen in the observational results (Figure 3). After
the passage of the TC, the COE was obviously enhanced, while the AOE decayed and
then recovered. As a result of the passage of the TC disturbance, the radius of the COE
increased to about 110 km while the AOE slowly faded away and subsequently recovered
back to a radius of 80 km. These temporal changes of the two eddies’ radii were consistent
with the observations.
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Figure 3. Temporal and spatial evolution in surface structure of a dipole before and after the passage
of an idealized TC in the model. (a–f) are simulated SSHA (unit: cm) at −3, 0, 10, 20, 30, and 40 days
after the passage of the TC, respectively. The TC passed from east to west over the dipole at Y = 0.
The dashed and solid contours outline the edges of the COE and AOE, respectively. The black
dots represent the locations of the centers of the COE or AOE. The gray dashed rings represent the
equivalent area circles of each eddy. All of these subgraphs are the numerical results filtered with a
5◦ × 5◦ high pass spatial filter.

The dipole intensities (SLA amplitude) in the comparison of the satellite observations
and the model simulation are shown in Figure 4. Note the SLA amplitude is defined as
the estimated SLA difference between the eddy core and the eddy’s edge [29]. In both
the observation and simulation, the initial SLA amplitudes of the COE and AOE were
about −5 cm and +8 cm (t = −3 d), respectively. After the passage of the TC disturbance
and the adjustment (t = 30 d), the SLA amplitudes of COE and AOE in the observations
had dropped to −9 cm and +3 cm and −11 cm and +2 in the model. This suggests
that the COE’s strengthening and AOE’s weakening from the influence of the TC is a
robust behavior. Subsequent to the interaction with the TC, satellite observations and
the numerical simulation both demonstrated that the COE was slightly strengthened,
while AOE was slightly weakened, until both stabilized. During the adjustment, the
COE radius was increasing and intensifying, while the AOE radius was decreasing and
significantly weakening.
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Figure 4. Time series of observed (blue) and simulated (black) amplitudes (unit: cm) of the COE and
AOE in the dipole. The horizontal axis represents days after the TC. The observations and numerical
results are daily data and the latter processed by 3-day smoothing. The gaps in the observational
time series for the AOE represent the temporary disappearance of the AOE.

However, there are some notable differences between the model and observational
results. For example, the observed COE(AOE) amplitude nearly reached the steady state in
about two weeks, while the simulated COE (AOE) lagged (led) the observations. These
differences are likely due to several reasons: First, because of the lack of a background
circulation, the model has a weaker dissipation of eddies. Secondly, the gridded satellite
SLA misses some of the high-frequency responses in the ocean. Although the model is not
perfect, it does capture the dominant dynamic response. Thus, the model is an efficient tool
that can be further applied to diagnose the dynamic processes acting in the dipole response
to the passage of a TC.

3.2. Dynamics of Dipole after the TC

The ocean has robust responses to the passage of a TC. These include upwelling
and mixing, which can be clearly seen in changes to the vertical structure of temperature.
Therefore, vertical section analysis is useful for analyzing the evolution of vortex dynam-
ics [41,42]. Based on the sectional views of the dipole’s thermal structure (Figure 5), the
change in the dynamics of the dipole through the interaction with the TC was analyzed.
Note the temperature anomaly is defined as the temperature difference between the state
on a certain day and the initial background value. At the initial time (t = −3 d), the dipole
was represented as a pair of positive and negative temperature anomalies of amplitude
1.5 ◦C and −1.0 ◦C in the thermocline. This suggests that the AOE was stronger than the
COE in the upper layer, which can also be seen on the surface. As the TC passed over the
dipole (t = 0 d), the cooling in the upper layer was induced or strengthened by the enhanced
entrainment in the mixed layer or the upwelling [43]. The sea surface temperature was
reduced by about 2 ◦C as a result. A stronger cooling associated with a −4 ◦C anomaly oc-
curred in the thermocline because of the large upwelling anomaly and strong entrainment.
This cooling changes the thermal structure in the dipole. The thermal structure will further
undergo a quasi-geostrophic adjustment processes after the passage of the TC [18,22]. As
a result, the temperature gradient around the COE center strengthens, while around the
AOE center, it weakens. Consequently, the COE was amplified and the AOE was rapidly
weakened during their interaction with the TC disturbance. After the passage of the TC, the
cold anomaly in the thermocline moderately abated as the cold water was entrained into
the mixed layer due to the intensified Ekman pumping in the upper layers of the dipole [3],
leading to a more stable COE. Due to the subsurface warm anomaly at the periphery of the
TC track [44], the AOE slightly recovered through the advection of warm water. As a result
of the amplified COE and the recovered AOE in the adjustment stage, a modified dipolar
thermal structure reappeared.
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Figure 5. Vertical sections of thermal structure across the simulated dipole before and after the TC in
the model: (a–f) are simulated sectional temperature anomalies (unit: ◦C) at −3, 0, 10, 20, 30, and
40 days after the TC, respectively. The sections transect the COE and AOE at their centers. Colored
shading represents the temperature anomaly. Contours represent the isotherms with a contour
interval of 1 ◦C, where contours in bold represent the 20 ◦C isotherm.

Note that upwelling can also affect the temperature structure below the thermocline,
although this response was not as strong as that in thermocline. The weak impact from the
TC disturbance and/or the remaining warmth of the AOE beneath the thermocline also
contributed to the recovery of the upper structure. Due to the coupled structure of the COE
and the AOE, the strong upwelling inside the COE can also act on the contiguous zone
between the COE and the AOE (hereafter junction), which will simultaneously impact the
AOE and expedite its weakening. Meanwhile, the advection or entrainment of warm water
from the AOE restrains the strengthening of the COE, while the advection or entrainment of
cold water from the COE expedites the AOE’s weakening, through the mixing between cold
and warm water near the junction. As a consequence, the dipole may show a significant
response from the passage of the TC, which differs from the response for a solitary eddy.

Due to a strong baroclinic response to the wind, the changes in the thermocline depth
roughly mirrors the fluctuations in the sea surface height [45]. We selected the 10 ◦C
isotherm as the location representing the interior of the dipole below the thermocline to
explore the changes before and after the passage of the TC. The depths of the 10 ◦C isotherm
(D10) at different times are shown in Figure 6. Prior to the interaction with the TC, the
COE and the AOE appeared as the convex and the concave shapes of the isothermal layers,
respectively. At the initial time (t = −3 d), the D10 was about 315–320 m in the COE and
330–345 m in the AOE. As the TC passed (t = 0 d), the 10 ◦C isotherms in the COE and the
AOE were uplifted due to the upwelling anomaly caused by the TC. The D10 shallows
by about 20 m in both the COE and the AOE. After the passage of the TC (t = 10 d), the
TC induced cyclonic circulation drives an upper layer divergence [44]; thus, these lifted
isotherms were associated with the sharp declines in sea surface heights. These changes
also caused variations in the vertical temperature gradients, which were associated with
the strengthening of the COE and the weakening of the AOE. After the passage of the TC
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disturbance and the subsequent quasi-geostrophic adjustment (t = 30 d), the D10 in the
dipole is basically stabilized as the dipole reached its new equilibrium state. Note that it
can also be seen that the upwelling range of the COE after the passage of the TC has been
somewhat expanded in both the along-track and cross-track directions. This is manifested
as an increase in the radius of the COE in the SLA field. Conversely, the opposite process
occurs in the AOE led to its compression. This kind of eddy distortion in the surface and
in the stratification indicates a change of relative vorticity or the divergence of horizontal
flow, which will synchronously act on the vertical motions [46]. Afterwards, the adjusted
upward or downward motion modulate the dipole deformations until it reaches a new
equilibrium state.
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Figure 6. The temporal and spatial evolution of the depth of the 10 ◦C isotherm (D10) of the model
dipole. (a–f) are simulated D10 (unit: m) at −3, 0, 10, 20, 30, and 40 days after the TC, respectively.
Cold (blue) colors represent the COEs, and warm (red) colors represent the AOEs. The contour
interval is 10 m. The initial depth of background 10◦C isotherm is at ~325 m. All the subgraphs are
the numerical results filtered by a 1◦ × 1◦ lowpass spatial filter.

Vorticity analysis is an another effective measure for discussing the dynamics of the
dipole response to the passage of the TC [20,22,27]. TCs usually induce a positive relative
vorticity anomaly in the ocean because of the wind-driven current divergence [18,20]. The
PVA on two isopycnal surfaces crossing the dipole are shown in Figure 7. The PVA is used
for describing the spatial and temporal evolution in the dynamic response of the dipole
after the passage of the TC. The PVA on the σ = 26.0 isopycnal surface, which occurred
in the thermocline, is shown in Figure 7a1–a6. Through the interaction with the TC, the
PVA inside the COE (AOE) increased (decreased), indicating that the TC injected PV into
the thermocline primarily through the geostrophic response [22]. However, the PVA in the
COE and AOE on the σ = 26.5 isopycnal surface, which lies below the thermocline, showed
little change from the interaction with the TC, as shown in Figure 7b1–b6. Therefore,
we can conclude that the positive PV injected into the dipole by the interaction with
the TC was more significant above and down to the thermocline but rarely extended
below it. To quantify the total response of the dipole to the TC, the vertical integral
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of relative vorticity was calculated as a function of time and shown in Figure 8. It is
obvious that the total relative vorticity inside the COE (AOE) was increased (decreased)
after the interaction with the TC. Thus, we propose that the dynamic response of the
dipole to the TC occurs as follows: The TC injects positive relative vorticity into the dipole
especially above and down to the thermocline, which strengthens the horizontal pressure
gradients [46] and induce a strengthened cyclonic circulation anomaly. Accompanying the
density anomaly due to upwelling, the PVA in the COE (AOE) is significantly increased
(decreased). Through this dynamic response, the COE is amplified and enlarged, and AOE
is weakened and compressed.
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Figure 7. Temporal and spatial evolution in the dipole’s PVA (unit: 10−11 m−1·s−1) on the σ = 26.0 and 26.5
isopycnal surfaces in the model: (a1–a6) are simulated PVA on the σ = 26.0 isopycnal surface located
in the thermocline at −3, 0, 10, 20, 30, and 40 days after the TC, respectively; (b1–b6) are simulated
PVA on the σ = 26.5 isopycnal surface below the thermocline at −3, 0, 10, 20, 30, and 40 days after
the TC, respectively. The contour interval in (a1–a6) is 2 × 10−11 m−1·s−1, and that in (b1–b6) is
0.25 × 10−11 m−1·s−1. All the subgraphs are the numerical results of 1◦ × 1◦ lowpass spatial filtering.

During the disturbance and adjustment phases of the dipolar structure, eddy-eddy
interaction [2,10,29,47] occurs concurrently inside the dipole. From the evolution of the
PVA and relative vorticity inside the dipole (Figures 7 and 8), the obvious stretching can be
seen during the passage of the TC disturbance, especially in the thermocline because of the
instability of the disturbance energy around the COE and the AOE. After the dissipation of
most of the disturbance energy, the COE or the AOE became much more circular and stable
(t = 40 d) through the action of several dynamic processes: (1) geostrophic adjustment, as
indicated before; (2) eddy–eddy interaction, including the warm and cold water exchange
between the COE and the AOE and the kinetic energy dissipation caused by the turbulent
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mixing near the junction. As a consequence, the dipole reaches a new equilibrium state
more easily through the eddy–eddy interaction than a solitary eddy does.
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4. Discussion

To exclude the effects of the background field, an idealized stably stratified vertical
structure determined from the climatological oceanic data was implemented in the simula-
tion model. The advantage of this approach is to isolate the dipole response to the passage
of a TC, while ignoring the interaction between eddies and large-scale circulation. In our
simulation experiments, an idealized TC wind field was also applied to eliminate the com-
plicated dynamic processes from the observed wind forcing because the spatial structure
also has a remarkable impact on the dipole response. This study only considered how a
westward-propagating TC affects a zonally oriented dipole (AOE to the east while COE to
the west). However, because dipoles can have any orientation, and they could encounter a
TC propagating in any direction, a more complete range of interaction situations between
TCs and dipoles needs to explored in the future. Moreover, future work should also be
focused on developing a full picture of the TC–dipole interaction with the air–sea coupled
model and more real data, as performed in many other simulation studies [48,49].

5. Conclusions

Mesoscale dipole eddies are ubiquitous in the world’s oceans. This paper addressed
the question of the interaction of dipole eddies with TCs using both satellite observations
and numerical simulation. Both the observations and simulations confirm that the inter-
action with a TC leads to a significant and permanent impact on the dipole. Through the
interaction with a TC, the dipole undergoes two distinct stages in its evolution.

In the direct interaction stage, the COE in the dipole is strengthened while the AOE
is weakened to near extinction. The increase (decrease) in the COE (AOE) amplitude and
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size is a robust feature of the interaction with a TC. The TC wind stress induces strong
abnormal upwelling inside the dipole, leading to the three-dimensional cooling of the
dipole. In addition, the TC injects positive relative vorticity into the dipole especially near
the thermocline through the dipole’s geostrophic response. This also acts to enhance the
COE while weakening or even destroying the AOE.

In the adjustment stage, after the dissipation of the disturbance energy, the COE
gradually stabilizes, and a weaker AOE reappears with warm structure, thus rebuilding
a stable dipole structure in a new equilibrium state. Different from a solitary eddy, the
warm water in the AOE and the cold water in the COE can mix through the eddy-eddy
interaction as a dipole. As a result, both the COE strengthening and the AOE weakening
are restrained. Therefore, the new equilibrium state for a dipole can be reached more easily
than it can for a solitary eddy.
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