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Abstract: Object detection has made tremendous progress in natural images over the last decade.
However, the results are hardly satisfactory when the natural image object detection algorithm is
directly applied to satellite images. This is due to the intrinsic differences in the scale and orientation
of objects generated by the bird’s-eye perspective of satellite photographs. Moreover, the background
of satellite images is complex and the object area is small; as a result, small objects tend to be
missing due to the challenge of feature extraction. Dense objects overlap and occlusion also affects
the detection performance. Although the self-attention mechanism was introduced to detect small
objects, the computational complexity increased with the image’s resolution. We modified the general
one-stage detector YOLOv5 to adapt the satellite images to resolve the above problems. First, new
feature fusion layers and a prediction head are added from the shallow layer for small object detection
for the first time because it can maximally preserve the feature information. Second, the original
convolutional prediction heads are replaced with Swin Transformer Prediction Heads (SPHs) for the
first time. SPH represents an advanced self-attention mechanism whose shifted window design can
reduce the computational complexity to linearity. Finally, Normalization-based Attention Modules
(NAMs) are integrated into YOLOv5 to improve attention performance in a normalized way. The
improved YOLOv5 is termed SPH-YOLOv5. It is evaluated on the NWPU-VHR10 dataset and DOTA
dataset, which are widely used for satellite image object detection evaluations. Compared with
the basal YOLOv5, SPH-YOLOv5 improves the mean Average Precision (mAP) by 0.071 on the
DOTA dataset.

Keywords: satellite images; object detection; self-attention mechanism; Swin transformer; deep learning

1. Introduction

Earth satellite technology usually acquires high-resolution satellite photographs to
observe the Earth’s surface. However, existing interpretation algorithms face a significant
challenge in digesting plenty of satellite images. Object detection is one of the most
fundamental issues in computer vision, which means finding predefined instances reliably
and efficiently from photographs. It has wide applications in disaster monitoring, precision
agriculture, urban traffic management, etc. [1–3].

Recently, data-driven deep learning methods have promoted significant progress in
segmentation and object detection tasks [4–6]. The detection precision is affected by the
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quality and quantity of the training dataset [7]. Some comprehensive and challenging
natural image datasets, such as PASCAL VOC [8] and MS COCO [9], have driven the
advancement of object detection. However, object detection is still a difficult task for optical
satellite images. The reasons are as follows. First, unlike natural images by ground-based
cameras with horizontal views, satellite images taken from a bird’s-eye view have a wide
imaging range with comprehensive information. For complicated landscapes and urban
environments, there is an imbalanced distribution of front items and complex background
information [10]. Then, objects in satellite photographs frequently have variable visual
appearances and optical attributes due to various imaging settings, such as views, lighting,
and occlusion [11,12]. Finally, compared to larger objects, small objects often lack sufficient
information about their appearance, making them more challenging to identify from the
background or similar objects.

In this research, we focus on strengthening object detection performance in satellite
images to respond to the above challenges. In addition, as the satellite image object
detection tends to be real-time, the detection speed also poses a significant challenge to
the detection algorithm. You Only Look Once (YOLO) neural networks [13–16], which
integrate object classification and localization (two-stage) into a one-stage regression issue,
can significantly improve detection speed [17]. As far as we know, YOLOv5 is the newest
version of YOLO, which has the best performance on natural images for object detection. It
is because YOLOv5 uses the improved CSPDarknet53 [18] and Path Aggregation Network
(PANet [19]) as the backbone and neck of the network, respectively.

However, it is hard to apply YOLOv5 to satellite images for object detection directly.
In this paper, we update YOLOv5 from the following three aspects. First, the deep feature
maps fused in the neck of YOLOv5 would lose small object information due to excessive
downsampling. To avoid this issue, we added a new branch in the shallower network
layer for detecting small objects for the first time. Then, the feature information can be
preserved to the maximum. Second, a convolution neural network (CNN) is usually
used to build the backbone of the YOLO net; however, it is only good at capturing lo-
cal information. Although the transformer can compensate for global modeling ability,
the classical transformer would be subject to squared computational complexity when
processing high-resolution satellite images. Fortunately, the shift window of the Swin
transformer would bring a higher efficiency by limiting the self-attention computation to
a local window [20]. This architecture has the flexibility to model at various scales and
has linear computational complexity relative to the image size. Therefore, we replace the
regular CNN prediction heads with Swin transformer Prediction Heads (SPHs). It can be
more effective in detecting different sizes of objects with four different scales of prediction
heads. Third, the Normalization-based Attention Module (NAM) is used to progressively
construct the attention information along channel-wise and spatial-wise dimensions from
the region of interest. Finally, the modified YOLOv5 is named SPH-YOLOv5. Experimental
results show that our proposed SPH-YOLOv5 outperforms the general YOLOv5 in satellite
images for detecting objects.

Our contribution can be summarized as follows:

1. New feature fusion layers and prediction head are added from the shallow layer in
YOLOv5 for the first time to detect small objects because it can maximumly preserve
the feature information.

2. Original convolutional prediction heads in YOLOv5 are replaced with Swin Trans-
former Prediction Heads (SPHs) for the first time to reduce computational complexity.

3. Normalization-based Attention Modules (NAMs) are integrated into YOLOv5 to add
a sparsity penalty to the attention module to improve performance.

4. Our proposed SPH-YOLOv5 achieves 0.716 mean Average Precision (mAP) on the
DOTA dataset with complex objects and 0.98 on the NWPU-VHR10 dataset with
relatively simple objects, the best accuracy among the results of the existing models.



Remote Sens. 2022, 14, 2861 3 of 17

2. Related Work
2.1. Object Detection

Feature extraction is crucial for object detection because it can transform raw data
into high-level feature representations. However, traditional model-driven approaches,
such as Histogram of Oriented Gradients (HOG) [21] and Scale Invariant Feature Trans-
form (SIFT) [22], usually take considerable time and staffing to deal with large datasets.
In contrast, data-driven deep learning methods can automatically extract robust feature
representations from the raw data, outperforming traditional extraction approaches. Fur-
thermore, they can relieve the heavy load of traditional feature modeling and engineering.
Recently, object detection frameworks based on deep learning have been broadly divided
into two types: two-stage detection frameworks and one-stage detection frameworks [23].

The two-stage methods use the selective search algorithm to extract candidate regions
in the first stage. Then, they take CNN to extract features from the candidate regions
and finally apply the classifier for classification at the second stage. Region-CNN (R-
CNN) [24] is a typical two-stage object detection algorithm. However, R-CNN fixes the
size of the input image. To avoid this drawback, Spatial Pyramid Pooling Network (SPP-
Net) [25] introduces spatial pyramid pooling, which can extract features from arbitrary
regions, allowing the network to detect objects from the input images of various sizes and
significantly reduce computational effort. Fast R-CNN [26] incorporates the strengths of
SPP-Net and avoids the considerable overlap of region proposals in R-CNN. It proposes a
shared feature extraction network for all candidate regions, which brings improvements in
detection speed and accuracy. Unlike region proposal generation with the selective search
in Fast-RCNN, Faster R-CNN [27] designs a Region Proposal Network (RPN) and proposes
an anchor frame mechanism for region proposal generation, which brings a considerable
boost. However, none of the above methods are end-to-end frameworks. The detection
speed would be limited.

In contrast, one-stage methods directly predict bounding boxes and class probabilities
end-to-end. They are faster and less computationally expensive than the two-stage models
and have the capability of detection in real time. For example, Single Shot MultiBox Detector
(SSD) [6] uses a fully convolutional network (FCN) for feature extraction and detects small
and large objects from shallow and high-level feature maps, respectively. However, the
one-stage object detector has a category imbalance problem; thus, its detection accuracy is
lower than that of the two-stage object detector. RetinaNet [5] utilizes a focal loss to address
the category imbalance problem, which guarantees detection speed while outperforming
all two-stage detection algorithms simultaneously. YOLO [13] is another representative one-
stage object detection algorithm that pursues extreme speed, which results in a low recall
rate. YOLOv2 [14] replaces GoogleNet in YOLO with Darknet-19 as the feature extraction
network to improve detection performance. Darknet-19 has fewer convolutional layers
and more efficient performance. Meanwhile, YOLOv2 also introduces the prior anchor
frame from the RPN to improve the recall rate. YOLOv3 [15] updates its feature extraction
network from Darknet-19 into Darknet-53 with the multiscale framework and adds residual
connection from ResNet [28]. It uses feature maps with three different scales for object
detection to improve the detection accuracy of small objects. YOLOv4 [16] designs a Cross
Stage Partial (CSP) structure based on Darknet53 to form a backbone network to reduce
the computational effort further and enhance the gradient performance. Furthermore, it
introduces CIoU loss [29] and Mish activation functions [30] to further improve detection
accuracy. Besides, the powerful Scaled-YOLOv4 [31] offers a range of linearly scaled object
detection models for engineering applications. As the latest and strongest generation of
the YOLO series, the YOLOv5 model inherits all the above advantages. On the MS COCO
Val 2017 dataset, YOLOv5 reports the highest mAP of 55.4%, with an inference time of
19.4 ms per picture, and is now rated top among state-of-the-art object detectors. Therefore,
in this paper, we used YOLOv5 as a benchmark framework for detecting satellite optical
image objects.
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2.2. Data Augmentation

Datasets are crucial for deep learning. However, creating plenty of satellite datasets is
expensive and impractical. Data augmentation is a popular and effective way to improve
detection performance. Multiple data augmentation strategies can expand the number of
training datasets and enrich the diversity of datasets, thus enhancing the robustness and
generalization ability of the detection model. Early data enhancement methods utilized
distortion, rotation, and scaling to improve image classification accuracy [32]. Subsequently,
geometric transformation data enhancement methods were developed, including random
scaling, cropping, panning, and clipping. In addition, photometric transformations are
also widely used. For example, changing the training data’s hue, saturation, and value to
expand the dataset. There are also some more unique methods for enhancing multi-image
fusion data. Mixup [33] expands the dataset by randomly weighting and mixing images
from different categories in the training dataset. Cutout [34] randomly erases parts of the
sample image and fills them with zero-pixel. CutMix [35] improves Cutout by not filling
the erased part with zero-pixel, but with pixel values from other training images. Mosaic
combines the advantages of the above methods. It is first proposed in YOLOv4, and the
main idea is to randomly crop four images and stitch them into one image as training data.
It greatly enriches the background of the images. However, stitching four images together
inevitably increases the batch size. Therefore, batch normalization is required to calculate
the four images. In YOLOv5, the combination of Mixup and Mosaic effectively expands
the satellite dataset and dramatically improves object detection performance, especially for
small objects. Therefore, our benchmark network combined Mixup, Mosaic, and traditional
data augmentation strategies.

2.3. The Attention Mechanism

The attention mechanism originated from the studies of selective human attention to
information. It allows neural networks to have the perception-adapted ability in computer
vision tasks, specifically by making the model pay more attention to the essential parts of the
input and thus extracting key features. The attention mechanism has also derived different
representations in practice. Recurrent Attention Model (RAM) [36] pioneers the combi-
nation of attention mechanism with deep neural network. Recurrent Neural Networks
(RNN) are fundamental tools for attention mechanism early. In order to implement spatial
attention in CNN, Spatial Transformer Network (STN) [37] was proposed to automatically
select the features of the region of interest and perform a spatial transformation of data with
various deformations. Different from spatial attention, Squeeze-and-Excitation Network
(SENet) [38] demonstrates a unique channel attention network that adaptively predicts
possible essential features. Convolutional Block Attention Module (CBAM) [39] combines
channel attention and spatial attention and is one of the most widely used lightweight
attention modules to capture both spatial and channel features. The latest phase of research
on attention mechanisms comes from self-attention, which originates from natural language
processing. A novel non-local network [40] introduces self-attention into computer vision
tasks and makes excellent progress in the field of object detection. Recently, without any
convolutional and recurrent operations, various pure self-attention deep networks (named
visual transformers) [41,42] have emerged, showing great potential for attention-based
models with overall improvements in detection speed and detection performance and
generalization capabilities [43]. For example, TPH-YOLOv5 with a transformer prediction
head is developed for UAV images [44]. However, the transformer encounters obstacles in
processing high-resolution images because the computational complexity of self-attention is
quadratic to image size. Recently, the Swin transformer proposes a hierarchical transformer
with shifted windows, significantly improving computational efficiency and detection
performance [20].

Satellite images include both sparsely and densely distributed objects. Complex objects
place higher demands on the feature extraction network. Generally, CNN extracts features
with translational invariance, while the transformer does not have such visual features.
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CNN is good at extracting local information, while the Swin transformer is good at global
modeling and has a stronger anti-interference ability. Due to the above characteristics,
we expect to enhance the extraction of information features by combining CNN and the
Swin transformer, to explore the representation potential of attention mechanisms, and to
advance the development of object detection in satellite images.

3. Theoretical Model
3.1. Review of YOLOv5

The framework architecture of YOLOv5 consists of three main parts: backbone, neck,
and predict head. The backbone extracts feature information from input pictures, and
the neck combines the gathered feature information and creates three different scales of
feature maps. The prediction head detects objects based on these created feature maps.
YOLOv5 employs the CSPDarknet53 framework with an SPP layer as the backbone, the
PANet as the neck, and the YOLO detection head. YOLOv5 can calculate the best anchor
frame value by adapting the clustering algorithm in different training datasets. In addition,
YOLOv5 has tried various combinations of activation functions, such as sigmoid, leaky-
ReLU, and SiLU [45]. There are five derived models for YOLOv5, including YOLOv5n,
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. They have the same model architecture,
but different model widths and depths. The smaller models are faster and are usually
designed for mobile deployment. The larger model is more computationally intensive, but
has a better performance.

3.2. SPH-YOLOv5

The architecture of our proposed SPH-YOLOv5 for object detection on optical satellite
images is depicted in Figure 1.
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Figure 1. The architecture of SPH-YOLOv5. The red lines and boxes represent the added residual
connections and feature fusion layers, respectively, compared to the original version. We also added
five NAM modules and four Swin transformer encoders to improve performance.
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3.2.1. Proposed Prediction Head for Small Objects

The SPH-YOLOv5 backbone network contains continuous down-sampling convolu-
tional layers, so the feature map decreases as the network deepens during feature infor-
mation extraction. The small size of the feature map affects the detection of small objects
in the image. Unfortunately, satellite images contain a large number of small objects. To
enhance the feature fusion effect of small objects, we added an extra prediction head and
residual connections from the shallower backbone network. They bring the low-level, high-
resolution feature information into the feature fusion layer, making the added prediction
head more sensitive to small objects. Finally, four different scale features of the prediction
head are more adaptable to the dramatic changes in the scale of the satellite image objects.

3.2.2. Normalization-Based Attention Module (NAM)

The NAM is the variant of the CBAM module [44,46], which was originally proposed
for image classification. As shown in Figure 2, it includes redesigning channel and spatial
attention submodules in sequence. They can reweight attention by adjusting the variance
measurement of the training weights in both channel and spatial dimensions. One of the
vital scaling factors comes from batch normalization (BN).

Bout = BN(Bin) = γ
Bin − µb√

σ2
b + ε

+ β, (1)

where γ and β represent the trainable scale and shift parameters, respectively; and µb and
σb are the mean and standard deviation in each batch b, respectively. The scaling factor γ is
the variance in BN. A larger variance means more variation and richer information. More
attention can be given to important channels based on γ normalized correlation weights
Wγ for the channel attention module, and less informative weights will be suppressed. Let
us suppose F1 ∈ RH×W×C is the input feature map, where H, W and C represent the height,
width, and number of channels, respectively. The output Mc of the channel attention can
be expressed as

Mc = sigmoid(Wγ(BN(F1))). (2)

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 17 
 

 

3.2.1. Proposed Prediction Head for Small Objects 

The SPH-YOLOv5 backbone network contains continuous down-sampling convolu-

tional layers, so the feature map decreases as the network deepens during feature infor-

mation extraction. The small size of the feature map affects the detection of small objects 

in the image. Unfortunately, satellite images contain a large number of small objects. To 

enhance the feature fusion effect of small objects, we added an extra prediction head and 

residual connections from the shallower backbone network. They bring the low-level, 

high-resolution feature information into the feature fusion layer, making the added pre-

diction head more sensitive to small objects. Finally, four different scale features of the 

prediction head are more adaptable to the dramatic changes in the scale of the satellite 

image objects. 

3.2.2. Normalization-Based Attention Module (NAM) 

The NAM is the variant of the CBAM module [44, 46], which was originally proposed 

for image classification. As shown in Figure 2, it includes redesigning channel and spatial 

attention submodules in sequence. They can reweight attention by adjusting the variance 

measurement of the training weights in both channel and spatial dimensions. One of the 

vital scaling factors comes from batch normalization (BN). 

 

Figure 2. The architecture of the NAM. Two consecutive attention sub-modules refine feature maps 

in channel and space, respectively. 

2
( ) ,in b

out in

b

B
B BN B


 

 


  


 (1) 

where γ  and β  represent the trainable scale and shift parameters, respectively; and b

and b  are the mean and standard deviation in each batch b , respectively. The scaling 

factor γ  is the variance in BN. A larger variance means more variation and richer 

information. More attention can be given to important channels based on γ  normalized 

correlation weights W  for the channel attention module, and less informative weights 

will be suppressed. Let us suppose 
1

H W CF R    is the input feature map, where H , W

and C  represent the height, width, and number of channels, respectively. The output 

cM  of the channel attention can be expressed as 

1( ( ( ))).cM sigmoid W BN F  (2) 

Figure 2. The architecture of the NAM. Two consecutive attention sub-modules refine feature maps
in channel and space, respectively.



Remote Sens. 2022, 14, 2861 7 of 17

In the manner of the channel attention module, its spatial attention module applies
BN to pixels in the spatial dimension. It is the so-called pixel normalization (PN). It focuses
on the more informative pixels according to the scaling factor λ and adjusts the associated
weights Wλ. Similarly, F2 ∈ RH×W×C is the input feature map and the output Ms of the
spatial attention models is:

Ms = sigmoid(Wλ(PN(F2))). (3)

To suppress the less important weights, NAM adds a regularization term to the
loss function,

Loss = ∑
(x,y)

l( f (x, W), y) + p∑ g(γ) + p∑ g(λ), (4)

where l(·) and g(·) represent the loss function and l1 norm penalty function, respectively;
x and y are the input and output, respectively; W is the network weight; and p is the
equilibrium penalty factor.

In satellite images, the comprehensive imaging coverage can introduce complex back-
ground interference. It has been demonstrated that CBAM in TPH-YOLOv5 for UVA
images can inform the network on what to focus on and where to focus using spatial and
cross-channel feature connections. Nevertheless, NAM improves CBAM in weight nor-
malization, bringing a clean module and higher computational efficiency. The neck is the
crucial link between the top and bottom of the object detection framework. It reprocesses
and rationalizes the important features extracted from the backbone to facilitate the object
prediction of the head in the next step. Therefore, we inserted the NAM module after each
concatenation operation before inputting the following feature layer in YOLOv5’s neck.
It can help to refine the fused feature information in the neck. In this study, we added
five NAM modules to the neck of SPH-YOLOv5, aiming to refine the channel and spatial
information of the feature fusion layer. It can help the model to focus more on the object’s
key messages in a complex environment. Furthermore, the increased computational cost is
inconsiderable because of its lightweight design.

3.2.3. Swin Transformer Encoder Block

Inspired by the visual transformer, researchers have developed a superior network
by combining CNN with the transformer. The transformer has a more vital ability to
capture global information than CNN and performs better for dense and occluded objects
in satellite datasets. We took both and fused them in the network by adding four Swin
transformer encoder blocks to every prediction head.

Given a feature map X ∈ RH×W×C, after linear projection and reshape operations, the
feature map becomes Q, K, V ∈ RN×C′ to feed self-attention, where N = H ×W. The
output of self-attention is expressed as:

Z = AV, (5)

A = so f tmax(QKT), (6)

where A ∈ RN×N is the attention matrix representing the relationship between all elements
on the feature map and other elements. The output Z aggregates global information. The ac-
tual computation of the transformer is performed in parallel, where the inputs are computed
separately and then integrated, considering the correlation. It is called Multi-head Self
Attention (MSA). MSA generates an attention matrix by integrating multiple independent
subspaces used to compute self-attention. This process is the core of transformer.

However, we found in our experiments that the transformer consumes enormous
computational resources when processing high-resolution satellite images because the
computational complexity of MSA in transformer is proportional to the quadratic image
size. To improve the computational efficiency of self-attention, we introduced the Swin
transformer encoder blocks into the prediction header of our SPH-YOLOv5. Its structure
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is shown in Figure 3. Each Swin transformer encoder contains two sub-layers. The first
sub-layer is Window Multi-head Self-Attention (W-MSA). It divides the feature map into
separate windows in a non-overlapping manner, and then self-attention is computed in
these local windows. For a feature map X ∈ RH×W×C with a local window of size m×m,
the computational complexity Ω are:

Ω(MSA) = 4HWC2 + 2(HW)2C, (7)

Ω(W−MSA) = 4HWC2 + 2(HW)2C. (8)
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Figure 3. The Swin transformer encoder’s architecture contains two main blocks, a Window Multi-
head Self-Attention (W-MSA) and a Multi-Layer Perceptron (MLP). LayerNorm and Dropout layers
help the network to converge better and prevent the network from overfitting.

The computational complexity is significantly reduced since the window size is much
smaller than the image size. The second sublayer (MLP) is a fully connected layer. A resid-
ual connection between W-MSA and MLP is added to counteract gradient disappearance
and degradation of the weight matrix.

3.2.4. Comparison with TPH-YOLOv5

According to the above statements, it is easy to deduce the difference between our
proposed SPH-YOLOv5 from TPH-YOLOv5 in ref. [44]. First, TPH-YOLOv5 focuses on
UAV images, while our SPH-YOLOv5 aims for satellite images with smaller objects and
weaker information than the UAV images. Second, TPH-YOLOv5 only adds a transformer
prediction head. In contrast, we added not only a Swin transformer prediction head, but
also another C3 module in the backbone network. The backbone network in TPH-YOLOv5
has only three C3 modules, but we had four C3 modules to retain the features of small
objects better. Third, TPH-YOLOv5 uses a general transformer that is not adaptable to
processing higher resolution satellite images. In contrast, our SPH-YOLOv5 introduces
the Swin transformer to compute self-attention with sliding windows to achieve a higher
computational efficiency and a better performance on higher resolution satellite images.
Finally, we upgraded the CBAM in TPH-YOLOv5 to NAM to reduce fully connection layers
and improve the attention module in a normalized way. As a result, our proposed SPH-
YOLOv5 has a competitive performance on the public higher resolution satellite images
dataset, as demonstrated in the following section.
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4. Experiments

To validate the effectiveness of our proposed model, we conducted experiments on
two widely used satellite image datasets, NWPU-VHR10 [47] and DOTA [48].

4.1. Datasets and Evaluation Metrics

The NWPU-VHR10 dataset contains 800 high-resolution RGB satellite images, includ-
ing 715 images with a spatial resolution of 2 m and 85 images with a spatial resolution of
8 cm. The image size is almost close to 1000 × 1000. It was cropped from the Google Earth
and Vaihingen datasets and then manually annotated by experts. The dataset is divided
into ten categories (aircraft, ships, storage tanks, baseball fields, tennis courts, basketball
courts, surface runways, ports, bridges, and vehicles) and includes background images
without objects.

The DOTA dataset is derived from Google Earth, the Gaofen-2 (GF-2) satellite, the
Jilin-1 (JL-1) satellite, etc. It contains 2806 RGB images ranging in size from 800 × 800 to
4000 × 4000. It contains 16 types of objects (plane, ship, storage tank, baseball diamond,
tennis court, basketball court, ground track field, harbor, bridge, large vehicle, small vehicle,
helicopter, roundabout, soccer ball field, swimming pool, and container crane).

As shown in Table 1, objects between 10–50 pixels in size are called small objects, and
objects larger than 300 pixels are called large objects. Object sizes of 50 to 300 pixels are
called medium objects. So, the DOTA dataset has more small objects than the NWPU-
VHR10 dataset, and the corresponding detection will be more challenging. For the NWPU-
VHR10 dataset, we kept its original size for input to the network. A total of 75% of the
images were randomly selected as the training set and 25% as validation. For the DOTA
dataset, we cropped the more prominent images so that there were overlaps and upscaled
the smaller images. Finally, approximately 15,000 images with a size of 1024 × 1024
were generated. Similarly, 75% were randomly selected for training, and 25% were left
for validation.

Table 1. The distributions of the instance size for the NWPU-VHR10 and DOTA datasets.

Dataset 10–50 Pixels 50–300 Pixels >300 Pixels

NWPU-VHR10 15% 83% 2%
DOTA 79% 20% 10%

We chose the frequently used Precision (P), Recall (R), Average Precision (AP), and
mean Average Precision (mAP) as evaluation metrics. P and R are defined with the True
Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN) as:

P =
TP

(TP + FP)
, (9)

R =
TP

(TP + FN)
. (10)

After creating the precision–recall curve (P-R curve) from the precision and recall, AP
can be calculated using the area under the P-R curve,

AP =
∫ 1

0
P(R)dR, (11)

and mAP is the average of all APs for N categories,

mAP =
1
N ∑ AP. (12)
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4.2. Implementation Details

Our proposed SPH-YOLOv5 were implemented in the PyTorch framework, and all
variant models were trained and tested on an NVIDIA RTX3090 GPU with 24 GB memory.
In the training phase, we used the pre-trained model of YOLOv5’s backbone on the COCO
dataset [9] for transfer learning, saving considerable training time. We used the SGD
optimizer for training with an initial learning rate of 0.01. The NWPU-VHR10 dataset was
trained with 50 epochs, while the DOTA dataset was trained with 150 epochs. The first
three epochs were trained using warm-up, which is a common learning rate optimization
method. The learning rate of 0.1 was decreased at the first 3 epochs approximately, and a
learning rate of 0.01 was subsequently used. Warm-up allows a deeper model to remain
stable. It should be noted that all images are enlarged to 1280 × 1280 automatically by the
SPH-YOLOv5 to facilitate the detection of small objects. Thanks to the GPU memory saved
by the Swin transformer encoder, the batch size can be no less than 16. In contrast, for the
transformer encoder, the batch size can only be set to 2.

The implementation of TPH-YOLOv5 is different from the SPH-YOLOv5. We trained
the model at the first 2 epochs for warm-up. We used the Adam optimizer for training and
used 3e-4 as the initial learning rate with the cosine learning rate schedule. The learning
rate of the last epoch decays to 0.12 of the initial learning rate. The batch size is only 2.

Other detection models, such as Faster R-CNN [27], RetinaNet [5], SSD [6], YOLOv3 [15],
Scaled-YOLOv4 [31], and YOLOv5, were verified using the default settings in the corre-
sponding literatures.

4.3. Experimental Results

We demonstrated the SPH-YOLOv5 on the NWPU-VHR10 and DOTA test datasets
and compared the results with other representative models. The results are shown in
Tables 2 and 3. The highest mAP was obtained in the NWPU-VHR10 dataset. On the DOTA
dataset, our method achieves a mAP of 0.716, which is 0.071 higher than that of YOLOv5,
proving its effectiveness for small object detection on satellite images. These results indicate
that our model can maintain medium object detection performance, while improving small
object detection capability.

Table 2. Test results on the NWPU-VHR10 test dataset for different detection models.

Method P R mAP

Faster R-CNN 0.925 0.917 0.936
RetinaNet 0.912 0.912 0.928

SSD 0.903 0.908 0.906
YOLOv3 0.913 0.919 0.927

Scaled-YOLOv4 0.957 0.921 0.940
YOLOv5 0.961 0.955 0.975

TPH-YOLOv5 0.963 0.956 0.978
SPH-YOLOv5 0.965 0.967 0.980

Table 3. Test results on the DOTA test dataset for different detection models.

Method P R mAP

Faster R-CNN 0.710 0.594 0.631
RetinaNet 0.714 0.585 0.622

SSD 0.696 0.522 0.561
YOLOv3 0.715 0.546 0.587

Scaled-YOLOv4 0.728 0.583 0.632
YOLOv5 0.760 0.601 0.645

TPH-YOLOv5 0.785 0.643 0.683
SPH-YOLOv5 0.806 0.683 0.716
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We first drew the P-R curve for each category as shown in Figure 4. The AP, the
integrated area under the curve, is calculated in legend. The larger the AP, the better
the detection performance. Generally, the Intersection over Union (IoU) threshold and
confidence threshold are two essential metrics for deep learning models. We then calculated
the confusion matrix of the SPH-YOLOv5 results for the DOTA test set with the IoU
threshold 0.5 and the confidence threshold 0.25, respectively. As shown in Figure 5, the
confusion matrix visualizes the classification of each category. Each row represents the
predicted categories, each column represents the actual categories, and the data on the
diagonal line represents the proportion of categories that were correctly classified. However,
it is shown that the high FN for the container crane category means that most objects are
missed. The corresponding AP is also very low. It is mainly because the container-crane
category training samples are much less than other categories. The lack of training samples
leads to a limited extraction of features and results in a high FN. In addition, the FP is high
for the small vehicle category, producing false alarms. Although the training samples of
small vehicle are sufficient, they belong to tiny objects, which are very hard to detect in a
dense environment with objects blocking each other.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 17 
 

 

SPH-YOLOv5 0.806 0.683 0.716 

We first drew the P-R curve for each category as shown in Figure 4. The AP, the in-

tegrated area under the curve, is calculated in legend. The larger the AP, the better the 

detection performance. Generally, the Intersection over Union (IoU) threshold and confi-

dence threshold are two essential metrics for deep learning models. We then calculated 

the confusion matrix of the SPH-YOLOv5 results for the DOTA test set with the IoU 

threshold 0.5 and the confidence threshold 0.25, respectively. As shown in Figure 5, the 

confusion matrix visualizes the classification of each category. Each row represents the 

predicted categories, each column represents the actual categories, and the data on the 

diagonal line represents the proportion of categories that were correctly classified. How-

ever, it is shown that the high FN for the container crane category means that most objects 

are missed. The corresponding AP is also very low. It is mainly because the container-

crane category training samples are much less than other categories. The lack of training 

samples leads to a limited extraction of features and results in a high FN. In addition, the 

FP is high for the small vehicle category, producing false alarms. Although the training 

samples of small vehicle are sufficient, they belong to tiny objects, which are very hard to 

detect in a dense environment with objects blocking each other. 

 

Figure 4. The P-R curve from the SPH-YOLOv5 results on the DOTA test set. 
Figure 4. The P-R curve from the SPH-YOLOv5 results on the DOTA test set.

We show some representative detection results from the SPH-YOLOv5 on the DOTA
dataset in Figure 6. The SPH-YOLOv5 is suitable for several small- and medium-sized
objects, such as planes, small vehicles, and ships, demonstrating the value of contextual
knowledge in providing further assistance. However, these objects are frequently clumped
together and difficult to differentiate. Furthermore, the SPH-YOLOv5 shows super per-
formance in object categories with significant scale variation, such as tennis court, soccer
ball field, and harbor. The SPH-YOLOv5 can simultaneously extract the detailed low-level
characteristics for localization and the high-level semantics for identification.
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We tested the inference speed of several comparison algorithms on satellite images on
our device in Table 4. There is a speed advantage of our proposed model SPH-YOLOv5
compared to TPH-YOLOv5, proving the computational effect advantage of the Swin trans-
former and NAM. However, it is still slower than YOLOv5, probably because of the
redundancy caused by the many modules we added to improve the accuracy. Streamlining
the model to improve the speed in the future is an essential direction of work.

Table 4. Inference time on the DOTA test dataset for different detection models.

Method Inference Time (per Picture)

YOLOv5 10.5 ms
TPH-YOLOv5 32.5 ms
SPH-YOLOv5 19.5 ms
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storage tank, soccer ball field, roundabout, harbor, swimming pool, helicopter, and container crane.

4.4. Ablation Experiments

First, we investigated the fusion of kinds of modules in the YOLOv5 framework, as
shown in Table 5. It is interesting to find that embedding the additional feature layers in
the added detection head (termed as P2) can expectedly improve the mAP by about 0.03.
In contrast, the fusion of the attention modules, such as transformer, Swin transformer,
or NAM, introduces a relatively moderate improvement on mAP (about 0.01~0.02). It is
mainly because the fusion of P2 changes the whole architecture of the YOLOv5, making it
more significant than the other local modules. Although the introduction of self-attention
modules can improve the detection performance of satellite objects, the Swin transformer
can reduce the computational complexity with a larger batch size at the same time.

Table 5. The effects of the YOLOv5 combining different modules on the DOTA dataset, where P2
represents the additional feature fusion layers and prediction head.

Methods P R mAP

YOLOv5 0.76 0.601 0.645
YOLOv5 + P2 0.818 0.625 0.675

YOLOv5 + P2 + Transformer 0.804 0.643 0.683
YOLOv5 + P2 + Swin Transformer 0.805 0.661 0.690

YOLOv5 + P2 + CBAM 0.812 0.667 0.689
SPH-YOLOv5 0.806 0.683 0.716
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Second, we only analyzed the NAM module. The NAM is formed in four ways: using
channel attention, using spatial attention only, using both attention modules simultaneously,
and using a normalization-based method. As shown in Table 6, the normalization-based
way is better than the others. Spatial attention is more effective than channel attention,
mainly because spatial information is more affluent than channel information on satellite
RGB images. Therefore, spatial attention captures more delicate features and plays a vital
role in detection.

Table 6. The effects of using the attention method.

Type P R mAP

Only using spatial attention 0.802 0.664 0.709
Only using channel attention 0.801 0.663 0.706

CBAM 0.805 0.672 0.714
NAM 0.806 0.683 0.716

4.5. Hyperparameter Exploration

The detection performance of SPH-YOLOv5 is also affected by different hyperparam-
eter settings, such as scaled image size, batch size, and optimizer. To obtain the optimal
hyperparameters for the SPH-YOLOv5 model, we manually adjusted the parameters to
observe the performance of the DOTA dataset. The experimental results are shown in
Table 7. It is noted that the optimal performance is obtained when using the SGD optimizer
with a batch size of 16 and the scaled image size of 1280 × 1280. However, we observed
that the Adam optimizer converges faster, although the detection accuracy is not as good
as the SGD. It is well known that the GPU memory generally limits the batch size. It was
found that the maximum batch size is 2 for the use of transformer prediction head, while
the maximum batch size is 32 for the use of the Swin transformer prediction head. It means
that the Swin transformer can effectively reduce the computational complexity and save
GPU memory. Furthermore, the scaled image size refers to the input size that conforms to
the YOLOv5 network limits and anchor box settings. We compared the impact of different
scaled sizes, while keeping the original image size constant. It should be noted that the
default scaled image size that inputs into the YOLOv5 is 640, which just adapts to the
small sizes of natural images. However, the sizes of satellite images are intrinsically larger.
Therefore, the larger scaled size of 1280 can retain more detailed feature information about
the small object and improve detection accuracy.

Table 7. The effects of adjusting hyperparameters.

Methods Image Size Batch Size Optimizer mAP

SPH-YOLOv5 1280 16 SGD 0.716
SPH-YOLOv5-2 1024 16 SGD 0.711
SPH-YOLOv5-3 640 16 SGD 0.705
SPH-YOLOv5-4 1280 16 Adam 0.697
SPH-YOLOv5-5 1280 8 SGD 0.703
SPH-YOLOv5-6 1280 32 SGD 0.694

5. Conclusions

This paper updated the state-of-the-art YOLOv5 model for detecting natural images to
the SPH-YOLOv5 model for adapting satellite images. We improved the YOLOv5 network
structure according to the characteristics of satellite images. The novel feature fusion layers
and the prediction heads (SPHs) were added in YOLOv5. The shallow features acquired
from the backbone network were brought into the feature fusion layer, effectively reducing
the feature information loss of small objects and improving the detection performance in
satellite images. In addition, multiple NAM attention modules were introduced for specifi-
cally focusing on objects in complex scenes. Both spatial attention and channel attention
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were used to find attention regions in dense scenes. The use of the Swin transformer can
effectively improve the model detection performance and overcome the computational
complexity of transformer. The proposed SPH-YOLOv5 was tested on the widely used
NWPU-VHR10 dataset and the DOTA dataset, and the resulting mAPs reached 0.980 and
0.716, respectively, which are better than other models’ performance. The effectiveness of
the proposed SPH-YOLOv5 for object detection on satellite images was fully demonstrated.
Multispectral images have the advantage of rich spectral information compared with RGB
images, which can theoretically improve the detection effect. Still, there are few large-scale
multispectral remote sensing datasets with detailed annotation. So, it is not confident that
our proposed model is valid on multispectral data. However, the proposed method does
not fully utilize the spectral information, and the subsequent fusion of RGB images with
multispectral data can be considered to improve the detection efficiency.
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