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Abstract: On 9 January 2018, Carpinteria Salt Marsh Reserve received a large quantity of sediment
following debris flows in Montecito, California. Because disturbances potentially impact the ecosys-
tem services and functions that wetlands provide, an understanding of how the ecosystem responded
to the debris flows is important for the management of salt marsh systems. However, a lack of field
data before and after this disturbance makes this task impossible to complete by field methods alone.
To address this gap, we used Sentinel-2 satellite imagery to calculate landcover fractions and spectral
indices to produce maps of landcover before, during, and after the debris flow using a random forest
classifier. Change detection showed that vegetation extent in November 2020 approached pre-debris
flow conditions. While total vegetated area experienced little net change (0.15% decrease), there was
a measurable change in the areal extent of vegetation type, with high marsh vegetation transitioning
to mid marsh vegetation in regions that initially showed an increase in bare soil cover. These results
are uniquely quantifiable using remote sensing techniques and show that disturbance due to debris
flows may affect ecosystem function via plant community change. These impacts will need to be
taken into consideration when managing wetlands prone to depositional events.

Keywords: remote sensing; wetland change; change detection; random forest classifier; Salicornia pacifica

1. Introduction

Coastal salt marshes are dynamic ecosystems found at the interface between marine
and terrestrial environments. These productive ecosystems play important roles in coastal
resilience via a variety of ecosystem services, such as accreting sediments, sequestering
carbon, and providing habitat for a rich range of biota [1,2]. However, as little as 10% of
California’s historical wetland cover remains today [3]. This decrease in wetland cover is
likely to worsen with the potential increased frequency of disturbances that further reduce
and degrade wetland cover, such as sea level rise, coastal erosion, deposition, and anthro-
pogenic marine debris [4–6]. In Santa Barbara County, CA, a series of large debris flows
known as the Montecito Debris Flows exemplify a large-scale depositional disturbance
to both built and natural environments, including wetlands. The increasing frequency of
events related to climate change, such as fires, hurricanes, and altered hydrology, will likely
increase the potential for further debris flows, both locally and globally [7]. To mitigate the
impacts of disturbance, management should include the effects of disturbances from debris
flows in the understanding of marsh form and function. For instance, sediment deposition
is a common and important process in many marshes, with deposition due to hurricanes
frequently studied and found to provide sediment important for nutrient delivery and the
ability to offset sea level rise [2,5]. In contrast, anthropogenic marine debris, such as fishing
gear and wooden poles, has been found to damage plant tissues in marshes [4]; meanwhile,
oiling has been found to temporarily increase shoreline loss of affected wetlands [8].

Debris flows are an episodic depositional disturbance event; however, there is little
literature studying them in wetlands. Furthermore, many studies examining disturbance
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events in salt marshes have focused on the Gulf of Mexico and the east coast of the
U.S. [4,5,8–11]. However, the disturbances that are common in those regions, such as
hurricanes, are not common on the west coast of the U.S., where debris flows are more
common. As such, the question of how the Montecito Debris Flows impacted the marsh
is of interest. However, addressing this question with field methods is complicated by
the fact that the unpredictability of the event meant that field data could not be collected
prior to the event. Furthermore, a combination of manager-led mechanical dredging and
inundation by exceptionally high tides, also known as king tides, removed sediment from
the marsh and limited the ability to collect field data following the event. Remotely sensed
data, however, were collected before and following the event and could be used to assess
impacts of the debris flow on the marsh.

Remote sensing has been used for change detection, biomass estimation, and land
cover classification in wetlands with a large range of applications [9,12]. Due to recent
advances in sensor design and data analysis, remote sensing is becoming more practical
for monitoring natural and anthropogenic changes in coastal systems [12]. Prior studies
have recommended a variety of sensors (e.g., Landsat, imaging spectrometers, LiDAR,
Planetscope, and drone data), techniques (e.g., maximum likelihood classification, Multiple
Endmember Spectral Mixture Analysis (MESMA), reclassification, random forest, and post-
classification change detection), and indices (e.g., normalized difference vegetation index)
to monitor coastal wetland conditions [6,8,9,11,13–17]. Sensor and spectral vegetation
index recommendations vary depending on the wetland type and the characteristics that
are being assessed. Index recommendations are more dependent on the type of wetland
being assessed.

Several approaches have been used to classify land cover in wetlands. One study
implemented the use of fractional cover of different endmembers—spectra from pixels
that are representative of a land cover, obtained by spectral mixture analysis (SMA) and
MESMA [18]—in the classification of a marsh in the southern San Francisco Bay [12]. While
both MESMA and SMA have challenges, MESMA was found to provide a more accurate
representation of fractional cover, especially if 4- or 5-endmember models were used with
more than one endmember per class [12]. Peterson et al. (2015) used MESMA on airborne
visual/infra-red imaging spectrometer (AVIRIS) data to detect oil-impacted regions of
coastal salt marsh in Barataria Bay, Louisiana with high accuracy of detecting oiled vs. non-
oiled marshes (87.5% to 93.3%) [11]. Beland et al. (2017) used these maps and image change
analysis to determine that oiling temporarily accelerated land loss in coastal marshes [8].
These studies highlight the effectiveness of MESMA as a technique for classifying wetland
landcover and detecting areas affected by disturbance.

Other classification methods have also been used for tracking change. Tuxen et al.
(2008) used NDVI to track vegetation colonization in Petaluma River Marsh after tidal
restoration via post-classification change detection [19]. They concluded that NDVI can
be used to discriminate vegetated and non-vegetated portions of marshes and is robust to
human interpretations of NDVI [19]. Another study used Breaks For Seasonal and Trend
(BFAST) and random forest classification on monthly NDVI products made from Landsat
(5, 7, 8) and MODIS/Landsat fill-in images to perform change detection in forested wetlands
with a classification accuracy of 92.96% and change detection accuracy of 87.8% [17]. Parihar
et al. (2012) used maximum likelihood classification on Landsat MSS and TM data to track
changes in the East Kolkata Wetlands in the absence of ground data, although the accuracy
of this method was between 73.80% and 79.33% [14]. Im et al. (2008) showed that object-
based land cover classification with high accuracies (>90%) can be achieved with solely
using a high point density LiDAR data [20].

In this study, we use random forest classification and change detection to assess how
the Montecito Debris Flows impacted landcover in Carpinteria Salt Marsh Reserve. Our
main objectives were: (1) classification of marsh landcover before and after the debris flows,
(2) identification of what change in landcover had occurred and possible implications,
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(3) identification of important classification variables, and (4) assessment of how accurately
random forest classification could map marsh landcover.

2. Materials and Methods
2.1. Event and Site Description

In December 2017, the Thomas Fire burned an area of 1140 km2 in the Santa Ynez
Mountains, making it the largest fire in California’s history at the time [21,22]. Following
the fire, the burned areas experienced an increased risk of debris flows, and, in early January
2018, a heavy rain event mobilized soils from the burn area and triggered a depositional
event known as the Montecito Debris Flows [22]. The debris flows deposited approximately
680,000 m3 of sediment across urban and natural areas along the Santa Barbara Coast [22].
In addition to at least 3 fatalities, 167 injuries, and 408 damaged homes, the Carpinteria
Salt Marsh Reserve, an ecological study reserve operated by the University of California,
received a large deposition of sediment.

Carpinteria Salt Marsh Reserve (CSMR), located in Carpinteria, CA (34.4012◦ N,
119.5379◦ W), is situated between California Highway 101, downtown Carpinteria, and the
Pacific Ocean (Figure 1). The wetland is a heterogeneous landscape made up of 93 hectares
of annual and perennial herbs and grasses, transitional upland habitat, water channels,
and mud flats [6]. The plant community can be split into two main categories: mid marsh,
primarily dominated by Salicornia pacifica (formerly Salicornia virginica, pickleweed), and
high marsh, which is a mix of Salicornia pacifica, Jaumea carnosa (marsh jaumea), Distichlis
littoralis (shore grass), Arthrocnemum subterminale (Parish’s glasswort), Frankenia salina
(alkali heath), and a few other less abundant species [6,23]. Water inputs come largely from
tidal inundation and from water inlets in the eastern portion of the marsh that allow for
input from further inland [24].
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Figure 1. Carpinteria Salt Marsh Reserve with study extent outlined. Imagery courtesy of USDA
National Agriculture Inventory Program.

2.2. Data Description and Correction

The imagery used in this study is Sentinel-2 A and B data produced by the European
Space Agency. The mission is composed of two multispectral satellites that collect images
that cover a large spatial extent, have a fine spatial resolution (up to 10 m for half the
electromagnetic bands they detect), and a five day revisit time using both sensors. Both
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satellites carry optical sensors that sample in 13 spectral bands at varying spatial resolutions
(Table 1) [25,26]. The high temporal resolution of the two satellites allowed us to assemble
a time series for quantifying marsh change despite the variable cloud cover and inundation
of CSMR which would prevent accurate image analysis. Imagery dates were selected
to represent similar times of year, tide, and cloud cover. Four dates were selected to
establish pre-flow, immediate, and post-flow conditions (approximately one and three
years after the initial Montecito Debris Flows). Imagery from 13 November 2017 was
used for pre-flow conditions as it was the date closest to the debris flow in which the
marsh was not flooded or covered by clouds. Imagery from 12 January 2018 represented
the immediate conditions as the data were collected three days after the flow occurred
and before mechanical clean up and king tides occurred. Lastly, 3 November 2018 and
12 November 2020 imagery represented two recovery steps and were chosen to be consistent
with the pre-flow November image. No November 2019 imagery was selected, as all
available images were collected when there was either dense cloud cover or the marsh was
inundated by high tide. All Sentinel-2 imagery was downloaded from the USGS Earth
Explorer portal [27].

Table 1. Sentinel-2 band descriptions.

Band Resolution
(m)

Central
Wavelength (nm)

Bandwidth
(nm) Description

B1 60 443 21 Ultra blue (Coastal and Aerosol)

B2 10 490 66 Blue

B3 10 560 36 Green

B4 10 665 31 Red

B5 20 705 15 Visible and Near Infrared (VNIR)

B6 20 740 15 Visible and Near Infrared (VNIR)

B7 20 783 20 Visible and Near Infrared (VNIR)

B8 10 842 106 Visible and Near Infrared (VNIR)

B8a 20 865 21 Visible and Near Infrared (VNIR)

B9 60 940 20 Short Wave Infrared (SWIR)

B10 60 1375 31 Short Wave Infrared (SWIR)

B11 20 1610 91 Short Wave Infrared (SWIR)

B12 20 2190 175 Short Wave Infrared (SWIR)

Imagery was preprocessed in the Sentinel Application Platform (SNAP) prior to being
implemented in ENVI Classic 5.5.3 [28,29]. First, the Sen2Cor SNAP add-on was used to
perform atmospheric correction to obtain bottom of atmosphere L2A imagery from the
top of atmosphere L1C imagery downloaded from the USGS [30]. This process produced
12 atmospherically-corrected L2A bands. Once corrected, bands 1, 9, and 10 were removed
as they are primarily used for atmospheric properties and are too coarse (60 m resolution) to
be used in assessment of the fine scale change in the marsh. The remaining 20 m resolution
bands (bands 5, 6, 7, 8A, 11, and 12) were then resampled using pixel replication to match
the 10 m resolution of bands 2, 3, 4, and 8. Resampled and native 10 m resolution bands
were layer stacked for further processing in ENVI.

High density LiDAR was also used in addition to Sentinel-2 imagery to assess condi-
tions immediately after the debris flows occurred (January 2018). The LiDAR data were
collected over the areas affected by the debris flows soon after the event by the Federal
Emergency Management Agency (FEMA) at a density of at least 4 points per square me-
ter [31]. LiDAR data were corrected and processed using the BCAL add-on for ENVI [29,32].
Data were height filtered at a threshold of 30 m with a 10 m search window. Height filtered
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data were then processed using last returns into a digital terrain model (DTM) with 10 m
resolution to match Sentinel-2 data.

2.3. Spectral Analysis

Before classification, corrected Sentinel-2 images were processed to obtain fractional
cover and to calculate the normalized difference vegetation index (NDVI) and modified
anthocyanin reflectance index (mARI).

Fractional cover was obtained via MESMA using the following steps. First, two
spectral libraries were generated using the November 2017 and January 2018 processed
images. Endmembers were selected based on site knowledge and similarity of spectra to
those that would be expected for each landcover class (November endmember spectra
are shown in Figure 2). Both libraries had endmembers selected to represent four broad
landcovers that are expected in the marsh: non-photosynthetic vegetation (NPV), green
vegetation, bare soil, and subtidal (water). Libraries were optimized using the endmember
average root mean square error (RMSE) (EAR) [33], minimum average spectral angle
(MASA) [34] and count-based endmember selection (CoB) [35], or the EMC option in VIPER
Tools, and included a minimum of four sample endmembers per landcover class [36]. The
November library was used for the pre-debris and two recovery images. The January 2018
image had a separate spectral library for the unique conditions that were expected around
the debris flow.
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Figure 2. Spectral library for November 2017. Axes are (x-axis) wavelength in nm and (y-axis)
reflectance values. Spectral signatures for (a) bare soil, (b) green vegetation, (c) non-photosynthetic
vegetation (senesced), and (d) subtidal cover classes. Colors used for visual differentiation of the
different endmembers.

With the libraries generated, MESMA was performed to obtain fractional cover for all
four dates. Endmember models used were 2-, 3-, 4-, and 5-endmember models to ensure
the inclusion of the model approaches recommended by Rosso et al. (2005) [12]. All models
were constrained to fractional cover between 0.0 and 1.0, shade fraction between 0.0 and
0.8, and a maximum RMSE of 0.025. This process produced fractional cover for the four
endmember classes for each date (Figure 3 for example).
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To further build on the data that would guide the classification of CSMR, two vege-
tation indices were calculated from the Sentinel-2 imagery: NDVI (Equation (1)) [37] and
mARI (Equation (2)) [38,39].

NDVI =
(NIR − RED)

(NIR + RED)
=

(Band8 − Band4)
(Band8 + Band4)

, (1)

NDVI is one of the vegetation indices recommended in the literature for wetland
analysis and was found to be one of the more important factors in classifying landcover
classes in CSMR in prior work [6,9,10,19].

mARI = 800 nm ·
(

1
550 nm

− 1
700 nm

)
= Band8 ·

(
1

Band3
− 1

Band5

)
, (2)

mARI is used to detect the levels of anthocyanins, a family of red pigments that can be
related to stress and senescence in plants [40]. Anthocyanin content in Salicornia pacifica
has been found to increase in the fall and winter [41]. Therefore, mARI has the potential
to further help the classification of both senesced vegetation and a dominant marsh plant
in CSMR.

Once the Sentinel-2 and LiDAR products were produced, data were layer stacked prior
to the creation of training data. Training data were produced for five landcover classes—
bare soil, high marsh, mid marsh, senesced, and subtidal—by selecting reference polygons
that matched regions of corresponding landcover from an expert map and from a report of
landcover prior to the debris flow developed by Myers et al. (2017) (see Table 2) [23]. The
high marsh class represents a mixed plant community of Salicornia pacifica, Arthrocnemum
subterminale, Frankenia salina, and Distichlis spicata. Mid marsh represents portions of the
marsh dominated by S. pacifica. The senesced landcover is composed of upland regions
dominated by non-native shrubs and grasses [23]. Training data were collected for each
date by creation of rectangular polygons in ArcGIS (Table 2 and Supplementary Materials
Table S1) [42]. Training data and layer stacked images were analyzed in R [43].
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Table 2. Polygon counts and decision metrics for training data generation.

Polygon Counts

Class November 2017 January 2018 November 2018 November 2020 Metric

Bare soil 10 11 17 13 High Bare Soil Fractions, Low
NDVI, Low mARI

High Marsh 5 5 10 7 High Green Vegetation Fraction,
High NDVI, High mARI

Mid Marsh 12 7 16 13
Moderate-High NDVI, Mixed

Green Vegetation Fractions and
Bare Soil Fractions

Senesced 8 5 8 5
High Non-photosynthetic
Vegetation Fractions, Low

NDVI, High mARI

Subtidal 20 7 21 19 High Subtidal Fractions,
Low NDVI

2.4. Random Forest and Change Detection

We used a random forest classifier to assign landcover class to each pixel. Random
forest is a machine learning technique that automates the categorization of data by running
a datapoint (e.g., a pixel) through a set number of decision trees and picking a finalized
landcover class via majority vote. Pixel values were first extracted from the layer stacked
images with the values and associated landcover recorded into a data frame, which was
then filtered to remove variables with NA/NULL values. The data frame was then read
into the random forest algorithm, with n = 500 decision trees. This process produced
classified maps of the five landcover classes. Additional outputs include: (1) variable
importance, a measure that identifies which layer stack inputs were important in the
landcover classification; (2) mtry accuracy, an accuracy assessment metric of the final model;
and (3) kappa values, a secondary accuracy assessment metric. Final model selection and
accuracy assessment were done via k-fold cross validation. Post-classification change
detection was performed in ENVI using the change detection statistics option. Dates were
compared to each other in both chronological order (i.e., November 2017 to January 2018,
November 2018 to November 2020) and net order (November 2017 to November 2020).
Comparing the dates this way allowed us to track landcover and to obtain extent for all
five classes as time progressed, thus obtaining net change for each landcover class in the
system. ENVI reported change statistics in terms of pixel count, area in square meters,
and percentage change. These statistics include class differences and image differences.
Percentage change was recalculated using both pixel count and area and used in place of
the ENVI reported percentages.

3. Results
3.1. Random Forest

Variable importance was used to determine which of the random forest inputs were
most important in the landcover classification of CSMR. Variable importance was measured
by the mean decrease in Gini index (Gini value), a measure in which higher values indicate
higher importance in the model (Table 3) [44]. From this measure, NDVI and green
vegetation fraction were the most important variables in three of the four years. NDVI
and green vegetation fractions did not have the highest importance in January 2018 and
November 2020, respectively. Secondary variables that also had high importance were
mARI, bare soil fractions, and senesced vegetation. Recovery time steps had greater mARI
importance compared to the earlier dates. Shade fractions and subtidal fractions had
the lowest amount of importance in many of the dates. The bare surface model (digital
elevation) was only available and used for January 2018 but had moderate importance in
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the model. LiDAR was not used for other dates due to expected differences in surface from
time of the debris flow to later dates. Additionally, January 2018 had the lowest values for
decrease in Gini index, and this could be linked to having more variables to use and/or
high solar zenith angle.

Table 3. Variable importance across dates (mean decrease in Gini index).

Date Soil
Fraction

Green Veg
Fraction

Senesced
Fraction

Subtidal
Fraction

Shade
Fraction NDVI mARI Digital

Terrain

November 2020 62.24 58.33 45.79 31.21 46.56 109.52 99.69

November 2018 55.01 63.01 25.91 50.83 20.55 60.63 17.14

January 2018 31.07 43.72 41.79 28.53 8.96 17.28 4.87 23.17

November 2017 40.61 94.05 60.13 23.08 34.99 83.23 21.95

Final model selection was done via k-fold cross validation where models with the
lowest error were selected as the final model, with accuracies being reported for each
number of splits tested. The number of splits that occur at each node within a decision tree is
indicated by mtry; the random forest model then selects the mtry with the highest accuracy
as the final prediction. The final mtry accuracy values (mtry = 2, 8, 2, and 2 respectively,
Table 4) were high for all four dates—99.5%, 93%, 95.6%, and 97.1%, respectively—with
similar kappa values—99.3%, 91.1%, 94.3%, and 96.3%.

Table 4. Class error and final model accuracy across dates.

Class

November 2017 January 2018 November 2018 November 2020

User’s
Error

Producer’s
Error

User’s
Error

Producer’s
Error

User’s
Error

Producer’s
Error

User’s
Error

Producer’s
Error

Bare Soil 0.103 0.062 0.038 0.05 0.020 0 0.061 0.013

High Marsh 0 0 0.017 0.048 0 0 0.006 0.011

Mid Marsh 0.030 0.072 0.171 0.105 0 0.024 0.071 0.064

Senesced Veg. 0.019 0.088 0 0 0.018 0 0 0.009

Subtidal/Water 0.12 0.029 0.1 0.1 0 0 0.061 0.089

Accuracy Kappa Accuracy Kappa Accuracy Kappa Accuracy Kappa

Final Model Accuracy 0.995 0.993 0.930 0.911 0.956 0.943 0.971 0.963

Landcover class accuracy was measured via producer’s and user’s error and allows
for the assessment of the mapping of individual landcover classes (Table 4). High marsh
vegetation was most accurately mapped with low user’s and producer’s error across all
dates. Subtidal and mid marsh had the greatest amount of user’s and producer’s error,
especially in January 2018. Subtidal cover had the greatest confusion with mid marsh
vegetation and bare soil, while mid marsh was confused with bare soil and subtidal. Error
within the subtidal and mid marsh classes was below 10% for most dates, and classification
for the two classes remained relatively accurate.

3.2. Post-Classification Change Detection

The random forest classifier produced four landcover maps for CSMR (Figure 4). Each
map shows the extent of the five landcover classes—bare soil, high marsh, mid marsh,
senesced, and subtidal—and represents different states of disturbance and recovery. The
high marsh landcover had the most area in November 2017 and January 2018, and mid
marsh vegetation was the largest landcover class in November 2018 and 2020 (Figures 5
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and 6). Senesced vegetation and subtidal landcover experienced little change compared to
bare soil, high marsh, and mid marsh vegetation (Figures 5 and 6).
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The post-classification change detection showed a 19.1 ha increase in bare soil coverage
between November 2017 and January 2018 (Figure 6). This amounted to 27.69 ha (~29%) of
the marsh being covered in bare soil immediately following the debris flow (Figure 5). In
November 2020, bare soil coverage decreased by 15.52 ha when compared to January 2018,
a decrease of bare soil coverage to 12.17 ha (~16%) of total marsh area (Figure 5). Between
November 2017 and November 2020, there was a 2.66 ha (~31%) net increase in bare soil
coverage in the marsh (Figure 6).

On the other hand, overall marsh vegetation (high marsh + mid marsh) coverage
experienced little change, with only a 0.1 ha (0.15%) net decrease in total vegetation
coverage between November 2017 and November 2020 (Figure 5). However, when split
into the two respective vegetation landcover classes, we find that high marsh vegetation
coverage decreased as mid marsh vegetation increased (Figure 6). There were a few areas
where change in landcover was prominently seen in the landscape, especially areas that
were high marsh vegetation and/or near areas covered by bare soil that changed to mid
marsh vegetation, such as near the salt pan in the northeast (Figure 7c) and some of the
mudflat region in the western portion of the marsh (Figure 7a,b).
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4. Discussion
4.1. Model Accuracy

The accuracy metrics (mtry accuracy, kappa, producer’s and user’s error) suggested
that landcover was accurately mapped by the random forest classifier and that the pro-
duced maps were reliable for use in change detection. The accuracy of the random forest
classification is comparable to that of other wetland classifications. For example, Wu et al.
(2020) also performed a random forest classification for a subtropical wetland that had a
similar overall accuracy value of 92.96% compared to this study’s average of 96.3% [17].
The model also performed as well as or better than classifications done using other methods
such as maximum likelihood classification, iso-cluster unsupervised classification, or reclas-
sification/recoding of vegetation indices [14,16,19]. The random forest classification done
here was more accurate than the maximum likelihood classification done by Parihar et al.
(2012), with an average accuracy of 96.3% vs. 76.5%, respectively [14]. When compared to
Tuxen et al. (2007), the random forest did approximately the same or slightly better than
reclassification, with reclassification having accuracy values of 81.4% and 96.3% compared
to our average accuracy of 96.3% [19]. Iso-cluster classification on NDVI did somewhat
better than the random forest, with accuracy values of 97.3%, 97.5%, 97.6%, and 98.0% for
the respective dates [16].

High marsh had the highest accuracy, while the mid marsh class had high user’s and
producer’s errors. As mid marsh is one of the classes that experienced the most change
following the debris flow, any error present in its classification presents a problem; however,
this error only exceeds 10% in January 2018 (user’s: 17.1%, producer’s: 10.5%) and is within
acceptable margins for all other dates. Possible sources for the error include: (1) training
data may have included misclassified pixels and introduced error to the corresponding
landcover class, (2) pixels may have had values similar to that of multiple landcover classes,
(3) resampled 20 m resolution Sentinel-2 bands may have still been too coarse to assess
changes in the marsh, and (4) the use of a different spectral library for January 2018 may
have led to lower accuracies for this date. To remedy this, the use of data from higher
spatial resolution sensors may be useful in reducing the frequency of mixed pixels and the
need for fractional cover. Additionally, higher spectral resolution may improve the building
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of spectral libraries that can better differentiate between endmember classes, which then
improves inputs into the random forest model.

4.2. Landcover Change and Ecological Implications

A majority of the landcover change occurred in bare soil, high marsh, and mid marsh
vegetation. Bare soil area increased by 222% following the debris flows and dropped
considerably in area by November 2018, likely due to the mechanical clean-up effort and
king tides which removed a large amount of the sediment. Bare soil continued to decrease
until there was only a net 31% increase in bare soil by November 2020. This may indicate
that the marsh was still recovering from the debris flows and would continue to change
over time.

Total vegetated area in the marsh showed little change over the 3 years, with only a
0.15% decrease in total marsh vegetation between November 2017 and November 2020.
However, change was occurring, which is apparent when total vegetation is broken down
into community types (high vs. mid marsh) and compared. High marsh (a mixed commu-
nity of Salicornia pacifica, Arthrocnemum subterminale, Frankenia salina, and Distichlis spicata)
area decreased by about the same amount that mid marsh (primarily only S. pacifica) area
increased, creating the illusion of little change in vegetated area. The post-classification
change detection showed that this shift from high to mid marsh community primarily
occurred near areas that had been covered by bare soil following the debris flow.

The conversion to mid marsh vegetation from high marsh vegetation signifies a
decrease in plant biodiversity as the community shifts from a mixed community to one
that is largely composed solely of S. pacifica. This change in diversity poses some ecological
challenges important to long-term wetland management. Studies have shown that a less
diverse community is less resilient to the effects of disturbance, and spatial heterogeneity is
important in the enhancement of the resilience of ecosystem functions [45]. Less resilience
may dictate a need for more management intervention following disturbances, especially
as the frequency of disturbances, such as wildfire, sea level rise and flooding, and landslide
and mudslide damage, are predicted to increase with global climate change [7]. Studies
have found that the addition of sediment via depositional events can promote plant growth
by the delivery of mineral nutrients [5]. These nutrients may promote increased primary
productivity by providing limiting nutrients. However, biodiversity has also been found
to be positively linked to primary productivity and its temporal stability [46]. A trend of
conversion from a mixed community of several plant species to one made of primarily
only one plant species may have harmful repercussions for marsh productivity and other
ecosystem services and functions. Determining whether this change to a less diverse
community is a permanent change or only a short-term condition as the marsh recovers
from the debris flow would require analysis of a longer time series of imagery over several
years following the debris flows.

Sea level rise (SLR) is a challenge for the conservation of coastal wetlands, especially
in developed regions, as rising sea levels contribute to coastal squeeze, leading to landcover
change, fragmentation, and eventual loss of coastal marshes [47]. Sediment deposition
and soil accretion are viewed as important processes for the offsetting of SLR [5,48]. How-
ever, our results imply that debris flow deposition is also leading to landcover and plant
community change. While there are not clear policy implications from this work, beyond
possibly assisted restoration, landcover change may become an important consideration
when planning for the management of coastal wetlands that can be prone to depositional
events; this study is an important example of how to inform those plans in the absence of
field data.

4.3. Limitations and Challenges

As discussed above, the resolution of remotely sensed data is important in the assess-
ment of the fine scale changes that occur in marsh ecosystems. Some Sentinel-2 bands do
not have a native 10 m resolution and, therefore, have pixels that represent an average
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of a larger mix of landcover types. Resampling, as conducted in this study, only splits
this coarser data into smaller pixels and not into its disaggregated components. Therefore,
landcover classification would benefit from a sensor where all bands have the same fine
spatial resolution, such as unmanned aerial vehicles. High density LiDAR for more dates
would also help in the assessment of biomass and vertical landcover differences such as
water in channels vs. plants in upland regions. In addition, the baseline landcover prior
to the debris flow was limited to a single date due to cloud cover, tide, and the length of
historical record. Baseline assessments could be improved by using a sensor with a longer
history or by using multiple dates per year. Ground reference data were also scarcely
available due to the lack of prior field data to compare against classification of historical
imagery and due to the COVID-19 pandemic limiting ability to go into the field to collect
such data, hence the emphasis on other accuracy metrics. The results are also limited in
their predictive power. For example, the rate at which sediment is being removed from the
system or identification of whether the recently mapped sediment was the same sediment
that had been deposited during the debris flow cannot be properly ascertained from these
data. The processes leading to the conversion of high marsh to mid marsh vegetation also
cannot be directly detected from these data.

5. Conclusions

Post-classification change detection tracked change in the five different landcover
types in CSMR and found that mid marsh, high marsh, and bare soil landcover changed
most dramatically in the dates studied. Total marsh vegetation (high marsh + mid marsh)
cover returned to similar levels to those before the debris flows; however, assessing change
as total marsh vegetation, as was the initial frame of the research question, does not
lead to a robust conclusion. Areas that were covered in debris transitioned from high
marsh vegetation to mid marsh vegetation despite total vegetated area remaining relatively
unchanged. This transition has important ecological implications for marsh productivity
and resilience to disturbance that continue after the debris is removed from the system.

The method used here shows promise in being applied to other depositional distur-
bances to wetland systems. For example, the random forest model identified important
classification variables that can be used to classify marsh landcover without field-based
data. The method can also serve as an important first step in the identification of regions of
interest that can be used to inform field campaigns to address further questions that arise
from the use of remote sensing (e.g., a field campaign to assess the factors that are leading
to the transition from high marsh to mid marsh vegetation).

The Montecito Debris Flows provided a unique opportunity to study debris interac-
tions with marshes in a context different than what is known from previous studies which
more commonly focused on hurricane deposition. Data and information are an impor-
tant part of making informed management decisions, and this study provides a successful
demonstration of the use of post-classification change detection to assess wetland landcover
response to an episodic event and the data that can be expected from such an assessment.
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//www.mdpi.com/article/10.3390/rs14122819/s1, Table S1. Descriptive Statistics for Training Data
Parameters, including min. and max. values, mean, and standard deviation for all variables used.

Author Contributions: G.D.S., D.A.R., J.P.M., and J.Y.K. contributed to study conception and design.
Material preparation, data collection, and analyses were performed by G.D.S. The first draft of the
manuscript was written by G.D.S., and all authors commented on previous versions of the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Science Foundation Graduate Research Fellow-
ship to GDS (Grant number: 2139319).

Data Availability Statement: Original Sentinel-2 data obtained from USGS Earth Explorer, available
here: https://earthexplorer.usgs.gov/ (accessed on 2 February 2021). Code and end products

https://www.mdpi.com/article/10.3390/rs14122819/s1
https://www.mdpi.com/article/10.3390/rs14122819/s1
https://earthexplorer.usgs.gov/


Remote Sens. 2022, 14, 2819 14 of 15

generated during this study, such as layered images, classified maps, etc., available here: https:
//github.com/German-Sil/carpinteria_debris_thesis (accessed on 10 November 2021).

Acknowledgments: The authors would like to acknowledge a few individuals and organizations:
First, Kristin Morell for providing the FEMA LiDAR data set used in the January 2018 assessment and
Andy Brooks for providing helpful insight into the landscape and work being done at Carpinteria
Salt Marsh Reserve. Second, Alex Feldwinn for his computer support through the duration of the
pandemic. And last, but certainly not least, the National Science Foundation Graduate Research
Fellowship Program for funding the graduate work of G.D.S. that this manuscript is derived from.

Conflicts of Interest: The authors declare no conflict of interest. The funder had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Gibbs, J.P. Wetland Loss and Biodiversity Conservation. Conserv. Biol. 2000, 14, 314–317. [CrossRef]
2. Callaway, J.C.; Borgnis, E.L.; Turner, R.E.; Milan, C.S. Carbon Sequestration and Sediment Accretion in San Francisco Bay Tidal

Wetlands. Estuaries Coast 2012, 35, 1163–1181. [CrossRef]
3. California Department of Fish and Wildlife. Coastal Wetlands-Emergent Marshes. California’s Living Marine Resources: A Status

Report. 2001. Available online: https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=34250 (accessed on 16 May 2021).
4. Uhrin, A.V.; Schellinger, J. Marine Debris Impacts to a Tidal Fringing-Marsh in North Carolina. Mar. Pollut. Bull. 2011, 62,

2605–2610. [CrossRef] [PubMed]
5. Tweel, A.W.; Turner, R.E. Landscape-Scale Analysis of Wetland Sediment Deposition from Four Tropical Cyclone Events. PLoS

ONE 2012, 7, e50528. [CrossRef] [PubMed]
6. Doughty, C.L.; Cavanaugh, K.C. Mapping Coastal Wetland Biomass from High Resolution Unmanned Aerial Vehicle (UAV)

Imagery. Remote Sens. 2019, 11, 540. [CrossRef]
7. Erwin, K. Wetlands and Global Climate Change: The Role of Wetland Restoration in a Changing World. Wetl. Ecol. Manag. 2009,

17, 71–84. [CrossRef]
8. Beland, M.; Biggs, T.; Roberts, D.; Peterson, S.; Koklay, R.; Piazza, S. Oiling Accelerates Loss of Salt Marshes, Southeastern

Louisiana. PLoS ONE 2017, 12, e0181197. [CrossRef]
9. Klemas, V. Remote Sensing of Coastal Wetland Biomass: An Overview. J. Coast. Res. 2013, 29, 1016–1028. [CrossRef]
10. Klemas, V. Remote Sensing of Emergent and Submerged Wetlands: An Overview. Int. J. Remote Sens. 2013, 34, 6286–6320.

[CrossRef]
11. Peterson, S.H.; Roberts, D.A.; Beland, M.; Kokaly, R.F.; Ustin, S.L. Oil Detection in the Coastal Marshes of Louisiana Using

MESMA Applied to Band Subsets of AVIRIS. Remote Sens. Environ. 2015, 159, 222–231. [CrossRef]
12. Rosso, P.H.; Ustin, S.L.; Hastings, A. Mapping Marshland Vegetation of San Francisco Bay, California, Using Hyperspectral Data.

Int. J. Remote Sens. 2005, 26, 5169–5191. [CrossRef]
13. Eastwood, J.A.; Yates, M.G.; Thomson, A.G.; Fuller, R.M. The Reliability of Vegetation Indices for Monitoring Saltmarsh Vegetation

Cover. Int. J. Remote Sens. 1997, 18, 3901–3907. [CrossRef]
14. Parihar, S.M.; Sarkar, S.; Dutta, A.; Sharma, S.; Dutta, T. Characterizing Wetland Dynamics: A Post-Classification Change

Detection Analysis of the East Kolkata Wetlands Using Open Source Satellite Data. Geocarto Int. 2013, 28, 273–287. [CrossRef]
15. Miller, G.J.; Morris, J.T.; Wang, C. Estimating Aboveground Biomass and Its Spatial Distribution in Coastal Wetlands Utilizing

Planet Multispectral Imagery. Remote Sens. 2019, 11, 2020. [CrossRef]
16. Nasser Mohamed Eid, A.; Olatubara, C.O.; Ewemoje, T.A.; Farouk, H.; Talaat El-Hennawy, M. Coastal Wetland Vegetation

Features and Digital Change Detection Mapping based on Remotely Sensed Imagery: El-Burullus Lake, Egypt. Int. Soil Water
Conserv. Res. 2020, 8, 66–79. [CrossRef]

17. Wu, L.; Li, Z.; Liu, X.; Zhu, L.; Tang, Y.; Zhang, B.; Xu, B.; Liu, M.; Meng, Y.; Liu, B. Multi-Type Forest Change Detection Using
BFAST and Monthly Landsat Time Series for Monitoring Spatiotemporal Dynamics of Forests in Subtropical Wetland. Remote
Sens. 2020, 12, 341. [CrossRef]

18. Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping Chaparral in the Santa Monica Mountains
Using Multiple Endmember Spectral Mixture Models. Remote Sens. Environ. 1998, 65, 267–279. [CrossRef]

19. Tuxen, K.; Schile, L.; Kelly, M.; Siegel, S. Vegetation Colonization in a Restoring Tidal Marsh: A Remote Sensing Approach. Restor.
Ecol. 2008, 16, 313–323. [CrossRef]

20. Im, J.; Jensen, J.R.; Hodgson, M. Object-Based Land Cover Classification Using High-Posting-Density LiDAR Data. GISci. Remote
Sens. 2008, 45, 209–228. [CrossRef]

21. Andone, D. The Largest Wildfire in California’s Modern History is Finally Out, More Than 6 Months After It Started. CNN. Cable
News Network. 2018. Available online: https://www.cnn.com/2018/06/02/us/thomas-fire-officially-out/index.html (accessed
on 16 May 2021).

https://github.com/German-Sil/carpinteria_debris_thesis
https://github.com/German-Sil/carpinteria_debris_thesis
http://doi.org/10.1046/j.1523-1739.2000.98608.x
http://doi.org/10.1007/s12237-012-9508-9
https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=34250
http://doi.org/10.1016/j.marpolbul.2011.10.006
http://www.ncbi.nlm.nih.gov/pubmed/22051039
http://doi.org/10.1371/journal.pone.0050528
http://www.ncbi.nlm.nih.gov/pubmed/23185635
http://doi.org/10.3390/rs11050540
http://doi.org/10.1007/s11273-008-9119-1
http://doi.org/10.1371/journal.pone.0181197
http://doi.org/10.2112/JCOASTRES-D-12-00237.1
http://doi.org/10.1080/01431161.2013.800656
http://doi.org/10.1016/j.rse.2014.12.009
http://doi.org/10.1080/01431160500218770
http://doi.org/10.1080/014311697216739
http://doi.org/10.1080/10106049.2012.705337
http://doi.org/10.3390/rs11172020
http://doi.org/10.1016/j.iswcr.2020.01.004
http://doi.org/10.3390/rs12020341
http://doi.org/10.1016/S0034-4257(98)00037-6
http://doi.org/10.1111/j.1526-100X.2007.00313.x
http://doi.org/10.2747/1548-1603.45.2.209
https://www.cnn.com/2018/06/02/us/thomas-fire-officially-out/index.html


Remote Sens. 2022, 14, 2819 15 of 15

22. Kean, J.W.; Staley, D.M.; Lancaster, J.T.; Rengers, F.K.; Swanson, B.J.; Coe, J.A.; Hernandez, J.L.; Sigman, A.J.; Allstadt, K.E.;
Lindsay, D.N. Inundation, Flow Dynamics, and Damage in the 9 January 2018 Montecito Debris-Flow Event, California, USA:
Opportunities and Challenges for Post-Wildfire Risk Assessment. Geosphere 2019, 15, 1140–1163. [CrossRef]

23. Myers, M.R.; Cayan, D.R.; Iacobellis, S.F.; Melack, J.M.; Beighley, R.E.; Barnard, P.L.; Dugan, J.E.; Page, H.M. Santa Barbara Area
Coastal Ecosystem Vulnerability Assessment. CASG-17-009 2017. California. Available online: https://caseagrant.ucsd.edu/
sites/default/files/SBA-CEVA-final-0917.pdf (accessed on 13 January 2021).

24. Brooks, A. (University of California, Santa Barbara, Santa Barbara, CA, USA). Personal communication, 2019.
25. Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.;

et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36.
[CrossRef]

26. European Space Agency. Overview—Sentinel Online. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-
2/overview (accessed on 16 May 2021).

27. U.S. Geological Survey. Earth Explorer. Geological Survey (U.S.) FS 083-00. 2000. Available online: https://earthexplorer.usgs.
gov/ (accessed on 15 November 2020).

28. SNAP—ESA Sentinel Application Platform v8.0. Available online: https://step.esa.int (accessed on 15 November 2020).
29. Harris Geospatial. Exelis Visual Information Solutions; Harris Geospatial: Boulder, CO, USA, 2013. Available online: https:

//www.l3harrisgeospatial.com/ (accessed on 15 November 2020).
30. Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. Proc. SPIE 2017, 10427,

1042704. [CrossRef]
31. Federal Emergency Management Agency. Montecito Debris Flow LiDAR; Federal Emergency Management Agency: San Francisco,

CA, USA, 2018.
32. Streutker, D.R.; Glenn, N.F. LiDAR Measurement of Sagebrush Steppe Vegetation Heights. Remote Sens. Environ. 2006, 102,

135–145. [CrossRef]
33. Dennison, P.E.; Roberts, D.A. Endmember Selection for Multiple Endmember Spectral Mixture Analysis using Endmember

Average RSME. Remote Sens. Environ. 2003, 87, 123–135. [CrossRef]
34. Dennison, P.E.; Halligan, K.Q.; Roberts, D.A. A Comparison of Error Metrics and Constraints for Multiple Endmember Spectral

Mixture Analysis and Spectral Angle Mapper. Remote Sens. Environ. 2004, 93, 359–367. [CrossRef]
35. Roberts, D.A.; Dennison, P.E.; Gardner, M.; Hetzel, Y.; Ustin, S.L.; Lee, C. Evaluation of the Potential of Hyperion for Fire Danger

Assessment by Comparison to the Airborne Visible/Infrared Imaging Spectrometer. IEEE Trans. Geosci. Remote Sens. 2003, 41,
1297–1310. [CrossRef]

36. Roberts, D.; Halligan, K.; Dennison, P.; Dudley, K.; Somers, B.; Crabbé, A. VIPER Tools. 2019. Available online: https:
//drive.google.com/drive/folders/0B0zkcpjAaSqFbUVacVJCSURtSzQ (accessed on 15 November 2020).

37. Rouse, J.W.; Haas, H.R.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave
Effect) of Natural Vegetation; NASA/GSFC Type III Final Rep.; The Goddard Space Flight Center: Greenbelt, MD, USA, 1974; 371p.

38. Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-Band Model for Noninvasive Estimation of Chlorophyll Carotenoids and
Anthocyanin Contents in Higher Plant Leaves. Geophys. Res. Lett. 2006, 33, L11402. [CrossRef]

39. Gitelson, A.A.; Chivkunova, O.B.; Merzlyak, M.N. Non-Destructive Estimation of Anthocyanins and Chlorophylls in Anthocyanic
Leaves. Am. J. Bot. 2009, 96, 1861–1868. [CrossRef] [PubMed]

40. Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical Properties and Nondestructive Estimation of Anthocyanin Content in
Plant Leaves. Photochem. Photobiol. 2001, 74, 38–45. [CrossRef]

41. Farrens, G. Color Change and Succulence in Salicornia pacifica. Master’s Thesis, San Jose State University, San Jose, CA, USA, 1971.
42. Environmental Systems Research Institute. ArcGIS. Version 10.7.1; Environmental Systems Research Institute, Inc.: Redlands, CA,

USA, 2019.
43. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing, Vienna,

Austria. 2019. Available online: https://www.R-project.org/ (accessed on 15 November 2020).
44. Lee, C. Feature Importance Measures for Tree Models—Part 1. 2017. Available online: https://medium.com/the-artificial-

impostor/feature-importance-measures-for-tree-models-part-i-47f187c1a2c3 (accessed on 11 December 2020).
45. Oliver, T.H.; Heard, M.S.; Issac, N.J.B.; Roy, D.B.; Procter, D.; Eigenbrod, F.; Freckleton, R.; Hector, A.; Orme, C.D.L.; Petchey, O.L.

Biodiversity and Resilience of Ecosystem Functions. Trends Ecol. Evol. 2015, 30, 673–684. [CrossRef]
46. Oehri, J.; Schmid, B.; Schaepman-Strub, G.; Niklaus, P.A. Biodiversity Promotes Primary Productivity and Growing Season

Lengthening at the Landscape Scale. Proc. Natl. Acad. Sci. USA 2017, 114, 10160–10165. [CrossRef] [PubMed]
47. Torio, D.D.; Chmura, G.L. Assessing Coastal Squeeze of Tidal Wetlands. J. Coast. Res. 2013, 29, 1049–1061. [CrossRef]
48. Rosencranz, J.A.; Ganju, N.K.; Ambrose, R.F.; Brosnahan, S.M.; Dickhudt, P.J.; Guntenspergen, G.R.; MacDonald, G.M.; Takekawa,

J.Y.; Thorne, K.M. Balanced Sediment Fluxes in Southern California’s Mediterranean-Climate Zone Salt Marshes. Estuaries Coast
2016, 39, 1035–1049. [CrossRef]

http://doi.org/10.1130/GES02048.1
https://caseagrant.ucsd.edu/sites/default/files/SBA-CEVA-final-0917.pdf
https://caseagrant.ucsd.edu/sites/default/files/SBA-CEVA-final-0917.pdf
http://doi.org/10.1016/j.rse.2011.11.026
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/overview
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/overview
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://step.esa.int
https://www.l3harrisgeospatial.com/
https://www.l3harrisgeospatial.com/
http://doi.org/10.1117/12.2278218
http://doi.org/10.1016/j.rse.2006.02.011
http://doi.org/10.1016/S0034-4257(03)00135-4
http://doi.org/10.1016/j.rse.2004.07.013
http://doi.org/10.1109/TGRS.2003.812904
https://drive.google.com/drive/folders/0B0zkcpjAaSqFbUVacVJCSURtSzQ
https://drive.google.com/drive/folders/0B0zkcpjAaSqFbUVacVJCSURtSzQ
http://doi.org/10.1029/2006GL026457
http://doi.org/10.3732/ajb.0800395
http://www.ncbi.nlm.nih.gov/pubmed/21622307
http://doi.org/10.1562/0031-8655(2001)074&lt;0038:OPANEO&gt;2.0.CO;2
https://www.R-project.org/
https://medium.com/the-artificial-impostor/feature-importance-measures-for-tree-models-part-i-47f187c1a2c3
https://medium.com/the-artificial-impostor/feature-importance-measures-for-tree-models-part-i-47f187c1a2c3
http://doi.org/10.1016/j.tree.2015.08.009
http://doi.org/10.1073/pnas.1703928114
http://www.ncbi.nlm.nih.gov/pubmed/28874547
http://doi.org/10.2112/JCOASTRES-D-12-00162.1
http://doi.org/10.1007/s12237-015-0056-y

	Introduction 
	Materials and Methods 
	Event and Site Description 
	Data Description and Correction 
	Spectral Analysis 
	Random Forest and Change Detection 

	Results 
	Random Forest 
	Post-Classification Change Detection 

	Discussion 
	Model Accuracy 
	Landcover Change and Ecological Implications 
	Limitations and Challenges 

	Conclusions 
	References

