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Abstract: This study proposes a new set of processing procedures based on the strain model and
the Kalman filter (SM-Kalman) to obtain high-precision three-dimensional surface deformation time
series from interferometric synthetic aperture radar (InSAR) and global navigation satellite system
(GNSS) data. Implementing the Kalman filter requires the establishment of state and observation
equations. In the time domain, the state equation is generated by fitting the pre-existing deformation
time series based on a deformation model containing linear and seasonal terms. In the space domain,
the observation equation is established with the assistance of the strain model to realize the spatial
combination of InSAR and GNSS observation data at each moment. Benefiting from the application
of the Kalman filter, InSAR and GNSS data at different moments can be synchronized. The time and
measurement update steps are performed dynamically to generate a 3-D deformation time series with
high precision and a high resolution in the temporal and spatial domains. Sentinel-1 SAR and GNSS
datasets in the Los Angeles area are used to verify the effectiveness of the proposed method. The
datasets include twenty-seven ascending track SAR images, thirty-four descending track SAR images
and the daily time series of forty-eight GNSS stations from January 2016 to November 2018. The
experimental result demonstrates that the proposed SM-Kalman method can produce high-precision
deformation results at the millimeter level and provide two types of 3-D deformation time series with
the same temporal resolution as InSAR or GNSS observations according to the needs of users. The
new method achieves a high degree of temporal and spatial fusion of GNSS and InSAR data.

Keywords: GNSS; InSAR; 3-D deformation; strain model; Kalman filter

1. Introduction

Geological disasters, including natural disasters, such as earthquakes, land subsidence,
volcanic movement and landslides and artificial disasters, such as engineering excavation,
groundwater extraction and blasting, seriously affect human life. In recent decades, the
interferometric synthetic aperture radar (InSAR) and global navigation satellite system
(GNSS) have been widely used to detect surface deformation [1–3]. They can help humans
understand the mechanism of the Earth’s movement and monitor geological disasters.

These two Earth observation technologies, GNSS and InSAR, are complementary and
suitable for combination. The existing continuous GNSS measurements can provide nearly
time-continuous and high-precision three-dimensional surface positioning information [4].
However, limited by the conditions of the ground receiving equipment, GNSS often has a
very low spatial resolution [5]. On the other hand, InSAR can measure large-scale surface
displacements with high spatial resolution and high accuracy [6]. However, InSAR can only
provide deformation measured along the line of sight (LOS) between the Earth’s surface
and the radar.
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The displacements in the LOS direction are the projection of the real 3-D (east–west,
north–south and up–down) displacements. Only relying on the monitoring in the LOS
direction may lead to the misjudgment of the real surface information [7]. In recent decades,
scholars have conducted a large amount of research on combining the two complementary
ground observation techniques, GNSS and InSAR, to obtain high-precision 3-D deformation
fields. The research results largely fall into three categories. The first type of method is
represented by the analytical optimization method [8,9], the BFGS method [10], the ant
colony optimization method [11] and the MRF-L1 regularization method [12].

The basic principle of these methods is to interpolate the deformation of discrete
GNSS points into the same spatial grid of InSAR and then solve the 3-D deformation by
establishing an optimization model based on Markov random field and Bayesian estimation
theory. The second type of method is represented by the Helmert VCE method [13],
the BQUE (best quadratic unbiased estimator) method [14] and the IAUE (iterated almost
unbiased estimation) method [15]. The core idea of this type of method is to estimate
the posterior variance components of InSAR and GNSS based on the theory of geodesy
and then solve the 3-D deformation through the principle of weighted least squares.

The third type of method is typically represented by the SISTEM (Simultaneous and
Integrated Strain Tensor Estimation From Geodetic and Satellite Deformation Measure-
ments) method [16]. Based on the strain model in structural geology [17], it can directly
combine the InSAR and GNSS data to solve 3-D deformation without the pre-interpolation
step of GNSS. In addition, statistical machine-learning methods have also been applied to
estimate 3-D deformation by fusing both GNSS and InSAR data [18].

Previous studies have obtained the 3-D surface displacement field; however, they have
needed to downsample the GNSS time series to the corresponding InSAR deformation
observation moments before fusion. Moreover, they have only focused on the displacement
extracted from the two-scene SAR images or the deformation rate from the multi-scene
SAR images. They have neither taken full advantage of the large time resolution of GNSS
nor have they been able to extract the 3-D surface deformation time series to analyze
the time evolution of deformation intuitively. In recent years, some attempts have been
made to extract 3-D deformation time series based on multi-orbit InSAR data or geological
models [19–21].

In 2013, Hu et al. proposed a method for extracting 3-D deformation time series from
multi-track InSAR data based on the Kalman filter [22]. The SBAS-based multidimensional
small baseline subset (MSBAS) method was then proposed to acquire 2-D or 3-D defor-
mation time series from multiple InSAR data [23]. In addition, Liu et al. proposed the
KFInSAR (Kalman filter InSAR) method based on the strain model and Kalman filter to
obtain 3-D deformation time series from multiple InSAR data [24].

The strain model is based on elasticity theory and can be used to model stress–strain
relationships between points in a geographic space [25]. The strain model introduced
in KFInSAR can reduce the high-frequency noises of InSAR, such as atmospheric errors.
However, due to SAR satellites’ nearly north–south flight direction, it is difficult to extract
high-precision north–south deformation time series based on multi-orbit InSAR data.
The above methods can only estimate reliable 2-D deformation time series in the east–west
and vertical directions. GNSS technology can observe very high-precision displacement in
the north–south direction. Its fusion with InSAR can largely overcome the shortcoming
mentioned above. However, there are few studies on combining the two kinds of data to
extract 3-D deformation time series.

In this paper, we present a methodology based on the strain model and the Kalman
filter (SM-Kalman) that allows the direct integration of various InSAR and GNSS datasets to
produce a 3-D deformation time series when InSAR and GNSS data sets with overlapping
temporal and spatial coverage are available. This allows the integration of InSAR data
with different wave-band, azimuth and incidence angles, as well as different spatial and
temporal sampling and resolution, including airborne and spaceborne data from sensors
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with varying parameters. In KFInSAR, which was proposed by Liu et al., the strain model
is used to attenuate the noises of InSAR.

In SM-Kalman, this model is used to build the observation equation to combine GNSS
and InSAR observations at each moment in the spatial domain. In addition, a deformation
model containing linear and seasonal terms is used to establish the state equation based
on a pre-existing deformation time series. Then, the 3-D deformation time series are esti-
mated moment by moment through Kalman filtering steps, such as time and measurement
updates. Sentinel-1 SAR and GNSS datasets in the Los Angeles area are used to verify
the effectiveness of the proposed method. The datasets include twenty-seven ascending
track SAR images, thirty-four descending track SAR images and the daily time series of
forty-eight GNSS stations from January 2016 to November 2018.

2. Methods
2.1. Correction of InSAR Observations

GNSS can provide high-precision positioning services because many errors,, such as
ionospheric delays, tropospheric delays and clock offsets, are mitigated in its design [26].
However, the accuracy of InSAR is degraded by unmodeled atmospheric delays, satellite
orbit errors and errors in interferometric processing, etc. Additionally, InSAR is a relative
observation technique, which means that the estimated displacements or deformation rates
are relative to a reference point [27].

In this paper, the Persistent Scatterer Interferometry (PSI) technique [28] is applied to
process the ascending and descending orbit SAR datasets. The PSI technique focuses on
the persistent scatterer (PS) points that exhibit relatively constant scattering properties over
time, significantly reducing the effects of geometric decorrelation. Due to the use of a radar
acquisition stack, atmospheric phase components from observations can be estimated and
removed [29]. However, PSI still only yields relative observational information. Therefore,
the unification of the two reference frames must be completed before implementing the
fusion of GNSS and InSAR.

Traditionally, the method of unifying the results of InSAR and GNSS data is to correct
the GNSS displacements to the relative reference frame as InSAR. When this method is
adopted, a certain GNSS point with small displacements that is far away from the large
deformation area, is selected as a common reference point for InSAR and GNSS [12]. This
method is generally applied in the combination of DInSAR and GNSS to monitor large
deformation scenarios, such as earthquakes, volcanoes and landslides. However, when the
deformation distribution in the entire SAR image is relatively uniform, the method is no
longer applicable [18].

Generally speaking, there is a systematic deviation between the relative InSAR and
the actual absolute measurement. It can be compensated with external data. In this
paper, a method of polynomial fitting is used to correct InSAR observations using GNSS
data [14,27]. The specific operation steps are as follows:

1. Project the GNSS 3-D displacements corresponding to the InSAR acquisition moments
to the LOS direction

dlos
gnss = [se sn su][dge dgn dgu]

T (1)

where dge, dgn and dgu are the GNSS displacements in the east–west, north–south
and up–down directions, respectively. The unit project vector [se sn su] = [−sinθsin(α−
3/2π) − sinθcos(α− 3/2π) cosθ]. θ denotes the incidence angle of the satellite site
and α represents the heading angle, that is, the clockwise angle between the north
and the flight of the satellite. Through Equation (1), the 3-D GNSS displacements are
projected to the LOS direction dlos

gnss.
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2. The polynomial fitting can establish the relationship between GNSS projection values
and InSAR observations at the same location and moment. Assuming a second-order
polynomial fit, the relationship between the two observations can be expressed as

dlos
gnss = a · d2

los + b · dlos + c (2)

where a, b and c are the fitting coefficients, and dlos is the InSAR observation in the
LOS direction. It can be seen that as long as the number of GNSS points in the study
area is greater than three, the optimal polynomial coefficients can be obtained through
the least squares method. Of course, the more GNSS points involved in the fitting,
the more accurate the coefficients will be.

3. Correct the InSAR observations for each pixel using the polynomial coefficients
obtained. The above steps will be performed independently for each observation
moment of the ascending and descending track InSAR datasets.

2.2. State Equation

The Kalman filter is a dynamic data processing method that considers the state and
relevance of the data in the time domain. Since there is no need to store a large amount of
historical data, it constantly predicts and revises the data during processing [30]. The state
and observation equations must first be established before implementing the Kalman filter.
In the time domain, the displacement of the Earth’s surface is a time-dependent evolution
process, except for in the case of sudden events, such as earthquakes and volcanoes [31].
In the spatial domain, the surface deformation of a point is also related to the surrounding
points [32]. Together, these two facts form the theoretical basis for the establishment of the
state and observation equations.

It is assumed that the deformation time series consists of an initial term, a linear term
and multiple periodic terms. If the influence of noises is not considered first, the deforma-
tion time series can be expressed as [33]

d(t) = a0 + a1t + a2cos(
2π

T
∗ t) + a3sin(

2π

T
∗ t) (3)

where t is the epoch relative to the initial moment, a0 is the initial deformation, a1 is the
linear deformation rate, and a2 and a3 are the coefficients of the seasonal items, respectively.
T is the period of seasonal deformation. If T = 1, it is an annual signal, and if T = 0.5, it is a
semi-annual signal [34]. If Equation (3) is discretized, the two deformation time series at k
and the previous moment k− 1 can be expressed as

dk−1 = a0 + a1tk−1 + a2cos(
2π

T
∗ tk−1) + a3sin(

2π

T
∗ tk−1) (4)

dk = a0 + a1(tk−1 + δt) + a2cos(
2π

T
∗ (tk−1 + δt)) + a3sin(

2π

T
∗ (tk−1 + δt)) (5)

where δt represents the time interval between moment k and k− 1. By subtracting and
shifting the terms of Equations (4) and (5), we can obtain the relationship between the
displacements at two moments

dk = dk−1 + a1δt + a2[cos( 2π
T ∗ tk)− cos( 2π

T ∗ tk−1)] + a3[sin( 2π
T ∗ tk)− sin( 2π

T ∗ tk−1)] (6)

Then, we extend the above equation to the deformation in the east, north and up
directions. The state equation can be generated by writing Equation (6) in matrix form.

xk = Fk−1xk−1 + Ak−1uk−1 + wk−1 (7)
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where the state xk = [dk,e dk,n dk,u]
T is the unknown 3-D deformation vector at k, wk−1 is

the state noise vector, and Fk−1 is a three-dimensional identity matrix

Fk−1 = I3 (8)

uk−1 =
[
δt cos( 2π

T ∗ tk)− cos( 2π
T ∗ tk−1) sin( 2π

T ∗ tk)− sin( 2π
T ∗ tk−1)

]T (9)

and

Ak−1 =

a1
e a2

e a3
e

a1
n a2

n a3
n

a1
u a2

u a3
u

 (10)

Deformation time series generally exhibit obvious seasonal signals. If the anniversary
term and the semi-annual term are both considered—that is, T takes both 1 and 0.5, then
the new uk−1 will become

uk−1 =


δt

cos(2π ∗ tk)− cos(2π ∗ tk−1)
sin(2π ∗ tk)− sin(2π ∗ tk−1)
cos(4π ∗ tk)− cos(4π ∗ tk−1)
sin(4π ∗ tk)− sin(4π ∗ tk−1)

 (11)

and

Ak−1 =

a1
e a2

e a3
e a4

e a5
e

a1
n a2

n a3
n a4

n a5
n

a1
u a2

u a3
u a4

u a5
u

 (12)

Furthermore, other models, such as polynomial functions, can also be applied for the
simulation of deformation time series. Assuming that a third-order polynomial is used for
fitting, the deformation time series is

d(t) = a0 + a1t + a2t2 + a3t3 (13)

and
uk−1 =

[
δt t2

k − t2
k−1 t3

k − t3
k−1
]T (14)

Some other fitting functions, such as the cubic splines and the orthogonal polynomials,
can also be used to construct the state equation. In any case, the establishment of the state
equation is flexible. Users may choose an appropriate fitting function according to the
actual deformation conditions of the study area, which can be easily prejudged by the time
series of GNSS.

2.3. Observation Equation

In recent years, the strain model has received extensive attention in the application of
GNSS and InSAR. There are three main categories of its applications: (1) It can be used to
interpolate the 3-D deformation of discrete GNSS points and to calculate the crustal strain
rates [35]. (2) Applying the SISTEM method based on the strain model, GNSS and InSAR
data can be directly combined to extract 3-D deformation without the pre-interpolation of
GNSS points [16]. (3) Based on the strain model, the pixels around the target point can be
linked, creating a large number of redundant observations.

Therefore, the variances of the target point can be correctly estimated using the
posterior variance component estimation method [15,36]. The advantage of the strain
model is that it is based on the elasticity theory and can be used to model the relationship
between the position gradient and displacement of the target point and surrounding pixels
in the same geographic space. This makes it possible to combine the observations of the
target point with the surrounding observations for a comprehensive analysis, rather than
focusing on individual points as before [17]. In this paper, the strain model is adopted to
construct the observation equation of SM-Kalman.
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As shown in Figure 1, in a SAR image, it assumes that the 3-D coordinates and
displacements of the target point P0 are c0 = [c0

e c0
n c0

u]
T and d0 = [d0

e d0
n d0

u]
T , respec-

tively. Similarly, the 3-D coordinates and displacements of N adjacent GNSS points are
ci = [ci

ge ci
gn ci

gu]
T and di = [di

ge di
gn di

gu]
T(i = 1, 2, · · · , N), respectively. Based on the

elastic strain model theory, the position and displacement vectors of the target point P0 and
the N GNSS points can be modeled as [37]

Figure 1. The strain model to fusion GNSS and InSAR measurements in the spatial domain.

di = B∆ci + d0, i = 1, 2, · · · , N (15)

where ∆ci = ci − c0 represents the position difference vector from the i-th GNSS point Pi to
the target point P0. B denotes the stain parameter matrix and can be divided into a strain
tensor component Bs [38]

Bs =
1
2
(Bij + Bji)ei ⊗ ej =

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

 (16)

and a rigid body tensor component Br [38]

Br =
1
2
(Bij − Bji)ei ⊗ ej =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 (17)

where ε{·} and ω{·} are the parameters of stain model. e{·} is the canonical base vector of the
Cartesian reference system and ⊗ is the tensor product. In a compact form, Equation (15)
can be written as

di = Hix, i = 1, 2, · · · , N (18)

where Hi is the strain model matrix which is given in reference [35]. The unknown vector is

x = [de dn du ε11 ε12 ε13 ε22 ε23 ε33 ω1 ω2 ω3]
T (19)

Please note that only N GNSS observations are included in d. In order to fuse InSAR
and GNSS points to estimate the 3-D deformation of P0 in the space domain, the ascending
and descending track InSAR observations of P0 can be added to the vector d. The new
d = [d1

ge d1
gn d1

gu . . . dN
ge dN

gn dN
gu da

los dd
los]

T . Similarly, when considering the geometric
relationship between the 3-D deformation in the east–west, north–south and up–down
directions and the 1-D deformation in the LOS direction, as shown in Equation (1), the ma-
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trix H can also be rewritten as shown. The superscripts a and d in the unit project vector
[sa

e sa
n sa

u] and [sd
e sd

n sd
u] denote ascending and descending orbits, respectively.

H =



1 0 0 ∆c1
ge ∆c1

gn ∆c1
gu 0 0 0 0 ∆c1

gu −∆c1
gn

0 1 0 0 ∆c1
ge 0 ∆c1

gn ∆c1
gu 0 −∆c1

gu 0 ∆c1
ge

0 0 1 0 0 ∆c1
ge 0 ∆c1

gn ∆c1
gu ∆c1

gn −∆c1
ge 0

...
...

...
...

...
...

...
...

...
...

...
...

1 0 0 ∆cN
ge ∆cN

gn ∆cN
gu 0 0 0 0 ∆cN

gu −∆cN
gn

0 1 0 0 ∆cN
ge 0 ∆cN

gn ∆cN
gu 0 −∆cN

gu 0 ∆cN
ge

0 0 1 0 0 ∆cN
ge 0 ∆cN

gn ∆cN
gu ∆cN

gn −∆cN
ge 0

sa
e sa

n sa
u 0 0 0 0 0 0 0 0 0

sd
e sd

n sd
u 0 0 0 0 0 0 0 0 0


(20)

Based on Equation (18), the observation equation at moment k can be expressed as

dk = Hkxk + vk (21)

where vk is the noise vector of observations.

2.4. SM-Kalman

It can be seen that the state Equation (7) can be established by differentiating the
deformation time series of two adjacent moments, and the observation Equation (21)
can also be successfully established by introducing the strain model. Based on the two
equations, the framework of SM-Kalman can be established. During the implementation of
SM-Kalman, the state vector in the state equation should be consistent with the state vector
in the observation equation. Therefore, Equation (7) needs to be extended to the dimension
of Equation (19). Assuming that w and v are uncorrelated white noises, the statistical
properties of the covariance matrix are

E(wkwT
j ) = Qδk−j; E(vkvT

j ) = Rδk−j; E(wkvT
j ) = 0 (22)

Figure 2 indicates the flowchart of operating the SM-Kalman to obtain the 3-D defor-
mation time series. Since the establishment of the state Equation (7) needs to fit the 3-D
time series, the SM-Kalman filter will start from k = n instead of k = 0 (n is set as the
number of coefficients in the time series). It is recommended that the 3-D displacement
time series from k = 0 to k = n− 1 are obtained using traditional SISTEM [16] or analytical
optimization methods [9].

Before the Kalman filter is executed, the initial state vector and covariance matrix of the
state vector need to be input. At k = n, the initial state vector and initial covariance matrix
for the SM-Kalman filter are provided by the results of SISTEM at k = n− 1. Then, the time
update (prediction) and measurement update (correction) can be performed according to
the general steps of Kalman filtering. The time update is performed first. We predict the
prior state x̂k,k−1 and prior covariance matrix Dx̂k,k−1 of the current k moment using the
state vector and covariance matrix of the previous k− 1 moment [30]

x̂k,k−1 = Fk−1x̂k−1 + Ak−1uk−1 (23)

Dx̂k,k−1 = Fk−1x̂k−1 + FT
k−1 + Qk−1 (24)
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Figure 2. Flow of operating the SM-Kalman method.

The observations at the current moment k can then be used to correct the prior state
and prior covariance matrices obtained from the time update. This step is called the
measurement update [30].

Kk = Dx̂k,k−1H
′T
k (H

′
kDx̂k,k−1H

′T
k + Rk)

−1 (25)

x̂k = x̂k,k−1 + Kk(d
′
k − x̂k,k−1) (26)

Dx̂k = (I−KkH
′
k)Dx̂k,k−1 (27)

where Kk is the Kalman gain, x̂k and Dx̂k are the posterior state vector and posterior
covariance matrix, respectively. It should be noted here that H

′
and d

′
cannot be directly

equivalent to H and d in Equation (21). They are expressed as follows

P
′
= CD(P) (28)

H
′
= P

′
H (29)

d
′
= P

′
d (30)
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where P is the weight matrix of the observation vector and is set as a diagonal matrix

P = diag(P1
ge P1

gn P1
gu . . . PN

ge PN
gn PN

gu Pa
los dd

los) (31)

The weights of N GNSS points and InSAR are provided by the attenuation function of
the distance and the sample semivariogram [39], respectively. CD represents the Cholesky
decomposition of the matrix. The reason for transforming strain model matrix H and
observation vector d through Equations (28)–(30) is that, for the target point, the weights
of N GNSS observation points should vary with distance. The closer the GNSS points are,
the larger the allocated weights should be; otherwise, smaller weights should be allocated.
This effect should be reflected in the estimation of the posterior state vector.

Benefiting from the application of the Kalman filter, InSAR and GNSS data at different
moments can be synchronized. At k, the three types of observations, i.e., GNSS, ascending
track InSAR and descending track InSAR, may not all be available, and thus the observation
vector dk will change dynamically. That is to say that when there are only N GNSS
observations at k, dk is a 3 ∗ N dimensional vector; when there is one InSAR observation, it
is a 3 ∗ N + 1 dimensional vector; when there are InSAR observations in both ascending
and descending orbits, it is a 3 ∗ N + 2 dimensional vector. As k continues to increase,
SM-Kalman will be executed iteratively until the end moment, as shown in Figure 2.

The variance–covariance matrix R of the observation vector d determines the obser-
vation accuracy of the N GNSS points, ascending track and descending track InSAR. R
should also be a diagonal matrix similar to Equation (31). Readers can feel the difference
between P and R here. In this paper, the elements of Rk at the current moment k are set as
the standard deviations provided by the GNSS positioning and PSI techniques. Inevitably,
there are errors between the deformation predicted by the state update at k and the actual
value.

They are measured by the variance–covariance matrix Q. In the processing of SM-
Kalman, the 3-D deformation time series from 0 to k− 1 can be fitted on N GNSS points.
Then, the fitted function is applied to predict the quasi-observed values at N GNSS points
at the current moment k, and then the matrix Q can be filled with the standard deviations
between these quasi-observed and the real observed values.

Theoretically, the 3-D deformation time series estimated using SM-Kalman can reach
the observation time resolution of InSAR or the observation time resolution of GNSS. Users
can choose the results of two temporal resolutions according to their needs. If the time
resolution of GNSS is used, SM-Kalman will make full use of the high-resolution data of
GNSS in the time domain to achieve a high degree of fusion of GNSS data and InSAR in
the space-time domain.

3. Results
3.1. InSAR and GNSS Results

In Figure 3, the blue and green solid lines outline the coverage area of the ascend-
ing and descending track SAR data used in this experiment. The study area is located
in Los Angeles, which is within the overlapping area of the ascending and descending
orbit data. Sixty-one Sentinel-1 SAR acquisitions, including 27 ascending track images
and 34 descending track images, over the area of Los Angeles from 9 January 2016 to
18 November 2018, were used in the experiment, as listed in Table 1. PSI technology
was applied to process the ascending track and descending track SAR datasets in the Los
Angeles area.

Figure 4 is a visual display of the space-time baseline of the interferometric pairs com-
posed of the ascending and descending orbit data. It can be seen that the PSI technology is
processed based on a single reference image (represented by a red star), and the composing
interferometric pairs are star-shaped. When operating PSI, the selection of the reference
image directly affects the extraction of subsequent deformation information.

Ferretti suggested that the selection of the reference image should be mainly based on
the time baseline [28]. In this experiment, the reference images for the processing of ascending
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and descending track interferometry were both dated to May 2017, near the center of the
images stack. In this way, the influence of time decoherence can be better avoided.

Figure 3. Coverage of the ascending track and descending track SAR data in the study area.

Figure 4. Temporal and spatial baselines of SAR datasets, (a) ascending track and (b) descend-
ing track.

A multi-looking operation with two looks in the range and ten looks in the azimuth
directions was also performed to reduce the phase noises in the interferograms, followed
by a filtering process with the improved Goldstein filter [40]. The AW3D digital elevation
model produced by the Japan Aerospace Exploration Agency was employed to remove
the topographic phase [41], which is shown in Figure 5. Furthermore, the interferometric
phases were unwrapped using the minimum cost flow (MCF) algorithm for pixels whose
coherence values exceeded 0.3 [42].
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Figure 5. Topographic map of the study area. The black triangles represent the position of GNSS
stations. The four characters next to each GNSS station represent its name.

Table 1. SAR data parameters used in the Los Angeles case.

Track Time Span Number Incidence Angle HEADING

Ascending Track 20160109–20181118 27 33.985 −12.948
Descending Track 20160109–20181106 34 39.271 −170.105

Figure 5 shows the distribution of 48 GNSS stations in the Los Angeles area in this
experiment. The daily coordinates of the GNSS stations were in the IGS14 Earth reference
frame and were downloaded from the Nevada Geodetic Laboratory. They were used to
correct the geocoded InSAR measurements and aid the InSAR results to obtain the derived
3-D ground displacement time series.

Figures 6 and 7 show the deformation time series of the ascending and descending
InSAR, respectively. The length of each arrow reflects the displacements of the GNSS
station at the corresponding moment. For the convenience of presentation, eight results
from the ascending track and descending track InSAR deformation time series were selected.
The deformation time series of both ascending and descending orbits identified some evident
deformation regions. However, due to the limitation, InSAR can only monitor the LOS-
directed deformation. Moreover, the area has been experiencing complex ground motion
due to a combined effect of tectonic motion and anthropogenic activities [43–45], InSAR
measurements cannot fully reflect the actual ground motion in a comprehensive manner.
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Figure 6. Deformation time series maps of ascending InSAR. GNSS sites with displacement vectors
are indicated by red arrows. The black ellipses represent the horizontal errors.

Figure 7. Deformation time series maps of descending InSAR. GNSS sites with displacement vectors
are indicated by red arrows. The black ellipses represent the horizontal errors.

Since the processing of InSAR is based on a specific reference point to provide relative
observations, and the results of GNSS are absolute measurements, there is a systematic
bias between the two types of results. They cannot be directly fused. Based the method in
Section 2.1, GNSS data were used to correct the InSAR ascending and descending results,
respectively.



Remote Sens. 2022, 14, 2816 13 of 22

In order to evaluate the effect of the correction, as shown in Figure 8, six GNSS sta-
tions were selected to compare the results before and after the correction. We conducted a
comparison between the InSAR and GNSS-derived displacement time series. The GNSS-
derived 3-D displacement time series were projected into the LOS directions of the as-
cending and descending orbits, respectively. It can be seen from the figure that the InSAR
observations showed a systematic deviation from the GNSS as a whole. Overall, the InSAR
observations were smaller because they are relative observations based on reference points.
When the InSAR observations were corrected using the polynomial fitting method, they
were in good agreement with GNSS.

For quantitative analysis, the root mean square errors (RMSEs) of the difference
between the pre- and post-correction InSAR observations and the GNSS value at the
corresponding moments are marked in blue and red in the lower right corner of each
subgraph. Taking the BGIS site as an example, the RMSE of the difference between the
GNSS and the ascending orbit InSAR observation before the correction was calculated as
34.23 mm. This reduced to 3.82 mm after the correction. Therefore, the correction effect
was noticeable. The correction results for the rest of the sites in Figure 8 also show that the
overall difference between GNSS observations and corrected InSAR was smaller than that
of uncorrected InSAR.

Figure 8. Comparison of the difference between GNSS and InSAR before and after the correction.

3.2. 3-D Deformation Time Series

Figures 9–11 show the eight deformation time series maps obtained using the SM-Kalman
method in the east–west, north–south, and vertical directions, respectively. It was evident
that Los Angles is characterized by rather uniform westward displacements (Figure 9)
that accumulate over time. In addition, the Earth plate in the Los Angeles area moved
northward as a whole and showed a trend of increasing from northeast to southwest.
From the beginning of 2016 to the end of 2018, the maximum westward movement in
the area reached 12 cm, and the northward movement reached 6 cm. The accumulated
horizontal deformation over time is mainly due to the accumulation of interseismic stress
on the San Andreas Fault [46].
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In Los Angeles, the constant motion of the plate caused long-term deformation in
the horizontal direction. In comparison, the displacement phenomena detected by the
deformation time series in the vertical direction were basically caused by human activities.
An uplift of approximately 18 mm was observed at Santa Fe Springs (near GNSS site
SNTF) due to the swelling effect of oil production. Figure 11 also reveals that there was a
prominent subsidence zone in the South El Monte area (near GNSS site WRNA), with a
maximum deformation of approximately 12 mm.

Combined with the previous research results [47,48] and the current situation of urban
development in this area, without considering the movement of the Earth, we speculate
that, from 2016 to 2018, due to the exploitation of a large amount of groundwater, the city
surface sank continuously and expanded to the surrounding area. The precipitation in
Los Angeles was not abundant, and the rapid development of the city has made the water
shortage in the area more serious [49]. In order to meet the needs of residents and industrial
water, groundwater has been exploited in large quantities, resulting in long-term land
subsidence in Los Angeles [50].

In addition, there are many faults in the Southern California area, making the region
at high risk of earthquakes. This further restricts the mutual circulation of groundwater
and makes it difficult to improve the phenomenon. A subsidence of approximately 18 mm
was also found in Beverly Hills, northwest of GNSS station P800, due to groundwater
extraction. These observed deformation positions or magnitudes are basically consistent
with previous studies, fully demonstrating the effectiveness of the proposed method.

Figure 9. East–west deformation time series maps obtained by SM-Kalman. GNSS sites are repre-
sented by red boxes.
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Figure 10. North–south deformation time series maps obtained by SM-Kalman. GNSS sites are
represented by red boxes.

Figure 11. Up–down deformation time series maps obtained by SM-Kalman. GNSS sites are repre-
sented by red boxes.

In order to show the 3-D deformation time series more numerically, in Figure 12, the 3-D
deformation time series of two types of time resolutions provided by the SM-Kalman method
are displayed for four typical GNSS stations and are compared with the 3-D deformation
time series of GNSS. The blue dots and red vertical bars with standard deviations identify
the SM-Kalman results at GNSS time resolution (SM-kalman1) and InSAR time resolutions
(SM-kalman2), respectively. The 51 moments of InSAR combine the observation moments of
27 ascending orbit data and 34 descending orbit data. Since the PSI results are only attached
to discrete PS points, there is no guarantee that SM-Kalman-provided values exist at the
location of every GNSS point.
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For the GNSS points without the SM-Kalman filtering results, a 3× 3 or larger window
over each GNSS site was used to calculate the average displacements from the SM-Kalman
filtering results.

Figure 12. Comparison of GNSS results and deformation time series provided by SM-Kalman at two
different temporal resolutions.

The 3-D displacements from k = 0 to k = n− 1 moments in Figure 12 were all obtained
in the spatial domain using the SISTEM method. The SM-Kalman method was used in the
space-time domain from the moment k = n. It can be seen from the red error bars that the
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standard deviations of the SM-Kalman method were significantly lower than those of the
SISTEM method.

This was expected because the inversion characteristics of the deformation were
included in the time domain. The RMSEs between the SM-Kalman1, SM-Kalman2 methods
and the GNSS results are also marked in blue and red and are shown at the bottom of
each subgraph. Overall, the SM-Kalman1 results were in better agreement with GNSS,
with smaller RMSEs. This shows that with the continuous increase of observation moments
in the time domain, the accuracy of the time update will also be improved. This is not
surprising, considering that the coefficients of the state equation were estimated using
least squares.

The increase in redundancy increased the accuracy of the estimation. It is more evident
that the results of SM-Kalman1 in the vertical direction better reflected seasonal changes
than the results of SM-Kalman2, although the equations for both took into account semi-
annual and one-year seasonal terms. As shown in Figure 12, the RMSEs of the SM-Kalman
results were generally more significant in the vertical direction.

This is mainly attributed to two reasons: On the one hand, the vertical displacement
in Los Angeles was affected by human factors and periodic terms, making the vertical
deformation characteristics more complex. On the other hand, the results of GNSS had
evident errors in the vertical direction, and it can be seen from Figure 12 that there were
large fluctuations, which makes the RMSEs more significant when the GNSS results are
compared with SM-Kalman as the true value.

4. Discussion

In contrast to the traditional analytical optimization method, SISTEM and other meth-
ods that only focus on the fusion of GNSS and InSAR data in the spatial dimension, the ad-
vantage of SM-Kalman is that it considers both the observation in the spatial dimension
and the evolution characteristics of the deformation in the time dimension. The Kalman
gain matrix K acts to balance them. As shown in Figure 12, the standard deviations of
SM-Kalman were smaller than the results of SISTEM in the first few moments. If the time
update step is not performed, SM-Kalman will degenerate into the SISTEM method, which
only relies on the strain model to estimate the 3-D deformation. Another advantage of the
SM-Kalman method is that the 3-D deformation can be predicted using the time update
when there are no observations.

Figure 12 also reflects a feature of SM-Kalman in that the estimated 3-D deformation
results in the north–south direction were more consistent with GNSS. This is intuitively
reflected in the RMSEs between 3-D deformation and GNSS. Except for the strong seasonal
deformation at the FGSW station, which increased the RMSEs, the RMSEs in the north–
south direction of the rest of the stations were smaller than those in the east–west and
vertical directions. This was determined using the observation geometry of the SAR
satellite flying in the near north–south direction, which made the InSAR observations very
insensitive to the deformation in the north–south direction.

In addition, due to the small incident angle of SAR satellites, InSAR is the most
sensitive to the deformation in the vertical direction [12]. These facts led to the phenomenon
in which the deformation results in the north–south direction were mainly contributed
by GNSS. The flexibility of the SM-Kalman method is that the state equation can be
established according to the actual situation of the deformation. In the Los Angeles area,
the deformation exhibited strong seasonal variation, especially in the vertical direction.

Therefore, T was set to both 1 and 0.5. This can be determined via the pre-analysis of
the GNSS deformation time series, such as the GNSS station FGSW in Figure 12. In Figure 13,
the effects of three state equations based on different deformation fitting methods on the 3-
D deformation time series are compared. Blue, red and green error bars indicate the results
of three methods, namely, SM-Kalman (Polyfit) for cubic polynomial fitting, SM-Kalman
(2PI) for fitting only one-year seasonal terms and SM-Kalman (2PI+4PI) for fitting one-year
and half-yearly seasonal terms.



Remote Sens. 2022, 14, 2816 18 of 22

The RMSEs of the three different SM-Kalman methods compared to GNSS are shown
below each figure. The results of SM-Kalman (2PI) and SM-Kalman (2PI+4PI) were very
similar in three directions. Considering that in Figure 12, the results of SM-Kalman1 in
the vertical direction better reflect seasonal changes than SM-Kalman2 (actually 2PI+4PI),
a conclusion can be drawn. This is to say that only when the data involved in deformation
fitting are extensive, for example, the estimated resolution of SM-Kalman1 is the same as
that of GNSS, the small vertical semi-annual seasonal changes can be accurately captured.

This has little to do with whether there is a seasonal term with a semi-annual cycle
in the state equation. SM-Kalman (2PI) is recommended when users pay little attention
to very small seasonal changes in the vertical direction and are only willing to obtain
3-D deformation time series at the resolution of InSAR observations. This reduces the
coefficients of fitting so that more accurate 3-D displacements can be estimated through
SM-Kalman rather than the SISTEM method from an earlier moment. The results of SM-
Kalman (Polyfit) in the east–west and vertical directions were comparable to those of the
other two methods.

However, the errors in the north–south direction were more significant, especially at
the FGSW station. The east–west deformation in the Los Angeles area had a linear trend
to the west, that is, the low-frequency signal was dominant. Both the polynomial fitting
and deformation model fitting methods can characterize this signal. As mentioned above,
under the resolution of InSAR observation, neither SM-Kalman (2PI) nor SM-Kalman
(2PI+4PI) could accurately reflect the small annual and semi-annual seasonal deformation.
Figure 13 shows that this was also the case for SM-Kalman (Polyfit).

However, in the north–south direction, when there were strong seasonal and linear
cumulative deformation trends, it was more difficult to obtain an accurate estimation
using SM-Kalman (Polyfit), than with the other methods. In this case, increasing the
polynomial order or replacing the fitting function by other methods, such as cubic splines
and orthogonal polynomials, may improve the results. However, this is not discussed in
detail here.

Figure 13. Comparison of the GNSS results with the deformation time series provided by SM-Kalman
for three different fitting functions.
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In order to further analyze the influence of the observation moments on the coefficients
in the state equation, Figure 14 shows the changes in the five coefficients of SM-Kalman
(2PI+4PI) with the increase in observation moments in the east–west, north–south and verti-
cal directions, respectively.

The fitted coefficients oscillated in the first few moments due to the small number of
observations; however, as the number of observation moments increased, the coefficients
quickly became stable. a1 mainly reflects the trend of linear deformation. The absolute
value of a1 in the east–west direction was the largest, followed by the north–south direction,
and the vertical direction was close to 0. a2 and a3 reflect the seasonal terms with a one-year
cycle. In the north–south direction and the vertical direction, a2 and a3 were the largest,
and the east–west direction was close to 0, which is consistent with the 3-D deformation
trend of the GNSS station BGIS in Figure 12.

In the east–west direction, the low-frequency signal was dominant. In the north–south
direction, the low-frequency and high-frequency signals contribute together, and in the
vertical direction, the high-frequency signal contributed the most. In addition, the absolute
value of a5 in the vertical direction was more significant than that in the other two directions.
This again indicated a more complex semi-annual seasonal variation in the vertical direction,
although the magnitude was minimal.

Figure 14. The five fitting coefficients of SM-Kalman (2PI+4PI) vary with the observation moments.

In this paper, the state equation of SM-Kalman was established based on the as-
sumption that the deformation is smooth. This assumption is valid when no significant
deformation discontinuities occur. However, in many cases, the deformation is discontin-
uous in both the time and space domains. The strain model has been demonstrated to
estimate 3-D deformation fields for spatially discontinuous deformation regions, such as
earthquakes [15] and volcanoes [16]. As for discontinuities in the time domain, SM-Kalman
cannot be used directly since it assumes that the deformations are temporally correlated.
We suggest two strategies to deal with this problem. One is that the SM-Kalman method
can estimate the deformation before and after the event, respectively. Sharp deformation
events can be easily distinguished using GNSS time series data.
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The other is to add step terms that deal with co-seismic jumps to the fitting function of
the deformation. In the Los Angeles case, 3-D deformation occurred continuously in both
time and space. The SM-Kalman method should be further validated in more scenarios in
the future.

5. Conclusions

In this paper, we demonstrated a new technique named SM-Kalman based on GNSS
and InSAR data to obtain high-precision 3-D surface deformation time series. The method
establishes the state equation by fitting the deformation time series of previous moments,
which can effectively reflect the linear and seasonal terms of deformation. The observation
equation is based on the strain model, which can utilize the observation data existing at
each moment as much as possible, such as GNSS, ascending track InSAR and descending
track InSAR.

Based on the established state equation and observation equation, the Kalman filter can
dynamically estimate high-precision 3-D surface deformation time series from InSAR and
GNSS observation data through the steps of time and measurement updates. Estimated
3-D deformation time series are beneficial in comprehensively monitoring the Earth’s
movement and surface deformation caused by human activities. SM-Kalman can estimate
two types of 3-D deformation time series with the same temporal resolution as InSAR or
GNSS observations according to users’ needs. It can be seen that the new method achieves
a high degree of fusion of GNSS and InSAR data in the time and space domains.
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