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Abstract: The star tracker is a prerequisite device to realize high-precision attitude determination
for a spacecraft. However, due to the errors in optical lens machining, optical path assembly, and
temperature alternation, optical instruments suffer from some amount of optical geometric distortion,
resulting in declining star tracker accuracy. The on-orbit distortion correction of star images is
indispensable for precise performance. In this paper, a novel single-layer 2D Legendre neural
network (2DLNN) to automatically correct the geometric distortion of the star tracker is proposed.
An offline training method grounded on batch star images and an online training algorithm based
on sequential star images are designed, respectively. The 2DLNN realizes the ground-based and
on-orbit online correction of optical geometric distortion for the star tracker. The 2DLNN features
self-learning, lifelong learning, and good adaptability. The single-layer neural network is simple,
quick convergence, which is suitable for on-orbit implementation. The simulations demonstrate that
the average distortion error can be reduced to less than 0.04 px after ground-based training. In the
earth-orientation mode of the LEO satellite, the on-orbit sequential training algorithm can converge
in 2500 star images under 1 frame/s. The proposed 2DLNN can achieve high-precision correction at
the sub-pixel level, effectively improving the star tracker’s attitude determination accuracy.

Keywords: star tracker; distortion correction; star image processing; Legendre neural network

1. Introduction

Star trackers are the most accurate attitude measurement instruments for spacecraft.
They are widely applied in multiple fields and missions, such as self-contained naviga-
tion, environmental monitoring, global communication, national security, and deep-space
exploration [1–5]. In recent years, with the release and implementation of satellite constella-
tions [6,7], the developing trend of star trackers is miniaturization and low cost. However,
the requirements for star trackers are surging rather than falling, which brings greater
challenges to star trackers.

Regardless of the the craftsmanship of the optical system of the star tracker, all-optical
instruments, whether ground-based or space-based, suffer from some amount of optical
geometric distortion. Optical lenses with a large field of view (FOV) will generate a large
amount of nonlinear distortion, and the distortion can reach more than two pixels at the
image plane edge. These distortions have multiple origins that induce different behavior.
They may be static, resulting from unavoidable errors in the shape and placement of the
optics or from the imperfect fabrication of the detectors. In general, laboratory calibration
and testing are conducted to obtain true values of all parameters, and these errors contribute
little to the distortion of the star images [8–13].

Distortion may be dynamic; many factors, such as intense vibration during launching,
component aging, temperature effects [14–16] and a variable environment during operation,
alter the systematic errors and change the camera parameters on orbit [17,18], resulting in
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the star spot imaging being uneven in energy distribution and asymmetrical shape. Star
trackers use a detector with a rolling shutter, usually active pixel sensors (APS). Under
dynamic conditions, it is well-known that the detected star image is deformed. The centroid
of the starspot is shifted [19–21]. Consequently, the accuracy of extracting the centroid is
directly impacted. To guarantee and ensure the attitude accuracy and the safety of the
spacecraft, it is essential to establish and optimize the distorted models to complete the
correction of distorted star images.

The on-orbit calibration or distortion correction for spacecraft attitude star trackers
was first proposed by Samaan [22], in which the method makes use of residuals between
measured inter star cosine angles and the inter star cosine angles between the corresponding
cataloged stars to learn the calibration corrections on orbit. The approach makes use of
the truth that inter star angles are an invariant of rotational transformations. Therefore the
correction process is naturally divided into two major parts, calibration of the principal
point offset and focal length and then calibration of the focal plane distortions.

Based on Samaan’s method, various on-orbit calibration algorithms have been devel-
oped. The attitude-dependent methods [23–26], gyroscopes, infrared horizon sensors, sun
sensors and other attitude devices are required to determine the initial attitude information
first. However, the error of the star tracker frame attitude affects the correction inevitably.
Thus, the attitude-independent approach has been proposed. Many attitude-independent
algorithms estimate the star tracker optical parameters by directly utilizing the star coordi-
nate in the star image plane and the corresponding star vector in the inertial coordinate
frame. The most commonly used of these methods are the least-squares method and the
Kalman Filter algorithm [17,18,22,23,27–33].

In these methods, the simple second-order radial distortion model is considered. To
correct the starspot position error caused by the rolling shutter exposure, the authors
of [20] used a first-order approximation of the real motion of the stars across the detector.
The proposed strategy set the centroids to the same time instant. In Ref [21], the authors
corrected the starspot position at an asynchronous time to the same time based on time-
domain constraints. The focal length errors and the principal point will affect the accuracy
of star identification, and the above methods are based on the assumption that the principal
point and focal length change greatly. In this paper, the errors caused by the change of
principal point are considered systematic errors, and the random error is not considered.

Methods based on polynomial fitting have been developed to correct other complex
distortions. Ordinary polynomials fit the mapping relationship between distorted stars and
reference stars. Wei [34] used the improved genetic algorithm to obtain the optimal coeffi-
cient, while Liu [35] utilized machine learning to solve the polynomial fitting. However,
according to the author of the paper [36], it has been proven that the solution of ordinary
polynomials is the system of linear equations, known as the normal equations.

As the order or the numbers of polynomials increases, however, solving a large system
of equations becomes unstable and inaccurate. Compared with ground-based correction,
the biggest problem of on-orbit correction is that the types of distortion are often unknown.
Some distortions are stable, such as radial distortion and tangential distortion caused by
the change of the optical system parameters. There are also some image distortions caused
by other factors, such as perspective distortion.

We aim to design an algorithm that can automatically correct the star coordinates of the
on-orbit star tracker and is insensitive to the type of image distortion. In this paper, a novel
on-orbit geometric distortion correction method that combines 2D Legendre polynomials
and a neural network is proposed. To avoid the problem of instability and inaccuracy, 2D
normalized Legendre polynomials that are orthogonal polynomials are used to replace the
ordinary polynomials. A 2D Legendre neural network (2DLNN) is constructed to obtain
the optimal coefficient of the Legendre polynomial.

The neural network has strong adaptability and fast convergence speed, and can also
correct any distorted star images. For the different distortions that may occur in the lifelong
period of on-orbit star trackers, we can adaptively learn the distortion model by adjusting
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the number of neurons. Simulations and experiments are conducted to show effectiveness
and superiority. The proposed correction method has the potential to become a universal
geometric distortion correction framework for star trackers.

Our main contribution is to propose learning-based methods to correct a wide range
of geometric distortions of star trackers blindly. More specifically, we propose:

• A single-layer 2D Legendre neural network, which learns the coefficients of 2D Legen-
dre polynomial.

• An offline training method grounded on the batch star images, which realizes the
initial correction of the star tracker.

• An on-orbit online learning algorithm based on the sequential star images, which
realizes lifelong autonomous distortion correction of the star tracker.

The paper is organized as follows. In Section 2, measurement models related to the star
tracker are described. In Section 3, the architectures of 2DLNN are described. Two training
methods of offline and online learning are given in detail. In Section 4, the simulation
results are shown, and in Section 5, our conclusions and final remarks are reported.

2. Measurement Model of the Star Tracker
2.1. Ideal Model

The star tracker is designed to measure the stars’ direction vector. The ideal measure-
ment model of the star tracker can be considered as a pinhole imaging system [1], as shown
in Figure 1.

Figure 1. Pinhole imaging system and real star tracker measurement model. Under the ideal
condition, the centroid of stars is (xi, yi) in the pinhole imaging system. Due to noise and distortion,
there are inevitable errors in the real star tracker measurement model. The real centroid is (x′i , y′i).
The real imaging system is based on the pinhole imaging system.

The i-th measurement star vector ωi ∈ R3×1 in imaging frame (X, Y, Z) can be ex-
pressed by Equation (1),
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ωi =
1√

x2
i + y2

i + f 2

−xi
−yi

f

 (1)

where (xi, yi) is the i-th star centroid, and f is the focal length of the optical system.
The relationship between ωi and vi can be expressed as follows,

ωi = Avi (2)

where vi is the direction vector of the navigation star, and A is the attitude matrix of the
star tracker. When the number of navigation stars exceeds two, the attitude matrix can be
estimated by the QUEST [37,38] algorithm.

2.2. Typical Star Image Distortion Model

The existence of errors and noise in the optical imaging system is inevitable. Noise in
the CMOS APS sensor is a combination of dark current, single point noise, Gaussian readout
noise, Poisson noise, fixed pattern noise, etc. [39]. The aberrations in the optical system
usually consist of radial distortion [40], tangential distortion [41], thin prism distortion [42]
and image transformation [43]. Due to the various influencing factors in space, the optical
system parameters may change, and various types of geometric distortion will inevitably
occur in star images. Hence, the pinhole model cannot fit with real star imaging exactly.

The relationship between the distorted star spot coordinates (x′i , y′i) and the real star
spot coordinates (xi, yi) can be expressed by Equation (3),

x′i = xi + ∆xi

y′i = yi + ∆yi
(3)

where (∆xi, ∆yi) is the distorted magnitude of star coordinates caused by the change in
the parameters of the star tracker. In this paper, five distortions and their causes are
briefly described. The manifold distorted star images, the distorted flow of pixels, and the
changing of starspot coordinates are shown in Figure 2. Several common distortions of the
on-orbit star tracker are shown below.

1. Radial Distortion
The vertical magnification of the optical system in different fields of view is different.
The light is more crooked from the center to the edge of the lens, which results in radial
distortion and is the main source of distortion. The expression of radial distortion is
shown in Equation (4),

∆xr
i =

n

∑
k=1

qkxir2k

∆yr
i =

n

∑
k=1

qkyir2k
(4)

where n is the order of Taylor expansion, r =
√
(xi − x0)2 + (yi − y0)2 is the distance

of the distortion star and the center of the image plane, and qi is the i-th radial
distortion coefficient. Barrel distortion typically has a negative term for qi, whereas
pincushion distortion will have a positive value.

2. Tangential Distortion
The coaxial error of the optical components in the optical system leads to tangential
distortion, and the expression of this type of distortion is shown in Equation (5),

∆xt
i = p1(3x2

i + y2
i ) + 2p2xiyi + O[(xi, yi)

4]

∆yt
i = 2p1xiyi + p2(x2

i + 3y2
i ) + O[(xi, yi)

4]
(5)
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where p1 and p2 are the tangential distortion coefficients.
3. Thin Prism Distortion

The thin prism distortion is caused by the tilt of the optical component, which is
equivalent to inserting a thin prism into a non tilted optical component. The thin
prism distortion can be expressed by Equation (6),

∆xtp
i = s1(x2

i + y2
i ) + O[(xi, yi)

4]

∆ytp
i = s2(x2

i + y2
i ) + O[(xi, yi)

4]
(6)

where s1 and s2 are the thin prism distortion coefficients.

Generally, typical distortions of the star trackers are often a superposition of the three
distortions described above. Image transformation is also considered in this paper to test
the extendability and adaptability of the proposed method. Different image transformations
can be expressed as follows,

1. Shear Distortion xsh
i

ysh
i
1

 =

tan φx 0 0
0 tan φy 0
0 0 1

xi
yi
1

 (7)

where tan φx and tan φy are the coefficients of shear distortion.
2. Perspective Distortion

Perspective distortion can be regarded as an imaging plane transformed into a new
imaging plane [8], and the relationship between two imaging planes is transformed
by a 3× 3 transformation matrix.x′i

y′i
w

 =

h11 h12 h13
h21 h22 h23
h31 h32 1

xi
yi
1

 (8)

xpe
i =

x′i
w

=
h11xi + h12yi + h13

h31xi + h32yi + 1

ype
i =

y′i
w

=
h21xi + h22yi + h23

h31xi + h32yi + 1

(9)

where h11, h12, h13, h21, h22, h23, h31, h32 are the elements of the transformation matrix.
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(a)star image

(b)  SH (c)  PE

(d)  B (e)  P (f)  TA

(g)  TP

Figure 2. Various optical distortions models, (a) the star image without distortion and star images
with distortion of (b) shear, (c) perspective, (d) barrel, (e) pincushion, (f) tangential and (g) thin prism.
The second line is the distortion flow of pixels for various distortion models. The third line is the
distortion flow of the starspot position.
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2.3. Legendre Polynomial Distorted Modeling

The coordinate of measured star i is noted as (Xmea
i , Ymea

i ), the corresponding reference

coordinate of star i is (Xre f
i , Yre f

i ), by using the distortion function as Dj,

{
Xmea

i = Dj,X(Xre f
i , Yre f

i )

Ymea
i = Dj,Y(Xre f

i , Yre f
i )

(10)

where Dj,X and Dj,Y are the j-th distortion model of X direction and Y direction, respectively.
Here, we can use different functions to describe the distortion of the star images. Most

commonly, 2D polynomials up to third or fifth order, depending on the authors, are used
as image distortion models. For example, Wei [34] used a third-order polynomial fitting
to correct distortion. The improved genetic algorithm was adopted to obtain the optimal
solutions. Liu [35] used machine learning to solve the coefficients of ordinary polynomials.
However, polynomials are unstable and inaccurate for solving a large system of equations.

To avoid this, orthogonal polynomials should be used. The authors of [44] compared
the efficiency of different models: 2D Cartesian polynomials, bivariate B-spline, and 2D
Legendre polynomial. They concluded that the 2D Legendre polynomial basis provides
faster convergence and lower residuals. Simultaneously, the authors of [45] defined an
orthogonal polynomial, which is well adapted to describe the distortion on square im-
ages. Finally, the ascending polynomial degree organization of the basis is convenient for
characterizing the distortion using a limited number of modes.

Each Legendre polynomial Pn(x) is an n-th degree polynomial and may be expressed
in one dimension by Equation (11),

Pn(x) =
1
2n

n

∑
k=0

(
n
k

)2

(x− 1)n−k(x + 1)k, x ∈ [−1, 1] (11)

As each mode contains the same amount of distortion in both directions (x and y), the
polynomials need to be normalized. The final basis of 2D Legendre polynomials can be
expressed by Equation (12),

bNmodes =



L0(x)× L0(y)
L1(x)× L0(y)
L0(x)× L1(y)
L1(x)× L1(y)
L2(x)× L0(y)
L0(x)× L2(y)

. . .


=



1
2√
3

2 x√
3

2 y√
3

2 xy√
5

4 (x2 − 1)√
5

4 (y2 − 1)
. . .


, (x, y) ∈ [−1, 1]2 (12)

where Nmodes is the number of modes considered, it determines the dimension of the vector
bNmodes and can be calculated by Equation (13),

Nmodes =
(n + 1)(n + 2)

2
(13)

where n is the order of the Legendre polynomial, and Ln is the n-th degree normalized
Legendre polynomial,

Ln =
Pn

‖Pn‖
(14)

‖Pn‖2 =
2

2n + 1
. (15)
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The distortion modes are referred to using their index mode (m) defined as
Equation (16),

m(k, l) =
l(l + 1)

2
+ k, 0 ≤ k ≤ l ∈ N, 0 ≤ m ≤ Nmodes (16)

Hereafter, the mode of every Legendre polynomial can be expressed by Equation (17),

bm(x, y) = Ll−k(x)× Lk(y) (17)

finally, the coordinates of the i-th star in the j-th frame, on which a distortion function Dj,X
and Dj,Y can be written as Equation (18),

Xmea
i = Dj,X(Xre f

i , Yre f
i ) = Xre f

i +
n
∑

l=0

l
∑

k=0
ωi,m,X Ll−k(Xre f

i )Lk(Y
re f
i )

Ymea
i = Dj,X(Xre f

i , Yre f
i ) = Yre f

i +
n
∑

l=0

l
∑

k=0
ωi,m,Y Ll−k(Xre f

i )Lk(Y
re f
i )

(18)

where ωi,m,X and ωi,m,Y are referred to as the distortion coefficients of the X and Y directions,
respectively.

The statistical properties of the noise that we should consider to build the distortion
model must be consistent with the noise present in the measurement of star positions. We
assume here a noise that follows a Gaussian white noise. The final distortion model is

Xmea
i = Dj,X(Xre f

i , Yre f
i ) = Xre f

i +
n
∑

l=0

l
∑

k=0
ωi,m,Xbm(Xre f

i , Yre f
i ) + ni,X

Ymea
i = Dj,X(Xre f

i , Yre f
i ) = Yre f

i +
n
∑

l=0

l
∑

k=0
ωi,m,Ybm(Xre f

i , Yre f
i ) + ni,Y

(19)

where (ni,X , ni,Y) is the observation error caused by imaging noise and other factors, which
is regarded as the independent Gaussian noise.

3. Legendre Neural Network

The fully-connected neural network implicitly learns the relationship between the cam-
era and the global coordinate system [33], which is proven effective; however, the structure
is complicated. Traditional neural networks have drawbacks, such as difficulty determining
initial weights and the number of layers and neurons. In general, the convergence time is
also long when trained by the backpropagation algorithm.

In the previous section, we defined the direct model. To solve the distortion problem,
we now aim to inverse this model by minimizing a criterion. In this paper, a single-layer
neural network based on the Legendre polynomial is developed to avoid the problems
of traditional neural networks and is named 2DLNN. The single-layer neural network
is simple enough to reduce the calculation time to implement the distortion correction
algorithm in orbit.

No complicated activation function is included, making it possible to have a rapid
response to obtain the results from the input data. The hyper-parameters of the network
do not require much tuning. In addition, the authors of [46,47] had proven that a function
could be approximated by an orthogonal function set (such as the Legendre function), and
the coefficients are unique and bounded. Orthogonal polynomials functions have recursive
properties to determine their expansion terms. The flow chart of the geometric distortion
correction method based on 2DLNN is shown in Figure 3.
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Figure 3. On-orbit geometric distortion correction procedures.

3.1. Network Architectures

In this paper, the optimal coefficients of the Legendre polynomial are solved to fit
the distortion of star images. The distortion modeling of the star images can be described
as Equation (19), (ωi,m,X/Y)0≤m≤Nmodes are the parameters that need to be estimated. The
input of the 2DLNN is the coordinates (Xmea, Ymea) of measuring stars, the output is the
offset (∆̂x, ∆̂y) of coordinates between the measured stars centroid and the centroid of
reference stars. Consequently, the 2D Legendre neural network is constructed to learn the
mapping of measuring stars’ coordinates and coordinates offset. The estimation offset is
the 2D vector field that specifies where pixels in the star image with distortion should move
to find the corrected coordinates.

According to Equation (19), a single-layer Legendre neural network as shown in
Figure 4 can be built.

x

y

Σ
� !"#$%$�&!'#

�&!"#$%$� !'#
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Σ y
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ω3y

ω2y

ω1y
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Figure 4. The structure of the Legendre neural network.
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The 2DLNN is trained to minimize the error between the estimated displacement of
coordinates and the position offset. The offset is the distance between measuring stars and
reference stars. Equation (19) can be abbreviated as Equation (20),

FX = Xmea − Xre f =
n

∑
l=0

l

∑
k=0

ωmbm(x, y) + nx = WT
Xbm(x, y) + nx (20)

The 2DLNN can be expressed by Equation (21), taking the distortion in the x direction
as an example, and the distortion in the y direction can be obtained in the same way.

F̂X/Y =
n

∑
l=0

l

∑
k=0

ω̂mbm(x, y) = ŴT
X/Ybm(x, y) (21)

where F̂X/Y is the estimation error of starspot position, ŴX/Y is the estimated coefficients
of 2D Legendre polynomials.

According to Figure 4, the input of the network is the measuring starspot coordinates
(x, y), and the output is the coordinate offset (∆̂x, ∆̂y). The processing elements are du-
plicated from the expansion terms of the normalized Legendre polynomials. The n-th
processing element is identical to the n-th expansion term of the 2D normalized Legendre
polynomials.

The weights concatenating the mid-layer and the out-layer are needed to update. The
single-layer neural network has two sets of adjustable weights which are (ωm,X , ωm,Y), and
these weights will be trained to approach the desired weights or coefficients ωm in the
Equation (19) by the training algorithm. Since each output has unique and independent
weights, the two sets of weights can be trained separately.

3.2. Ground-Based Batch Learning

After having built the 2D normalized Legendre neural network, it is necessary to
find a method to adjust the weights ŴX/Y to approach the desired weights W defined in
Equation (20). The training method of 2DLNN in the ground-based calibration is introduced
first. The star images can be captured from random areas of the sky, and the distribution
of stars is easier to cover the whole field of view of the star tracker, which is conducive
to learning the global distortion model of the star image. Therefore, it is a point-to-point
training method in the ground-based experiment, which learns the mapping from the
whole star image datasets.

The estimation error E can be expressed by Equation (22),

E = FX − F̂X = (WX − ŴX)
Tbm(x, y) + nx (22)

The loss Jp is defined as Equation (23),

Jp =
1
2

E2 (23)

The gradient descent algorithm is adopted for the weights update. According to the
chain rule, the extreme value of Jp can be obtained by calculating the first-order partial
differential of Jp, as shown in Equation (24),

∇J =
∂J(Ŵ)

∂Ŵ
=

∂( 1
2 E2)

∂E
∂E
∂Ŵ

= Ebm(x, y) (24)

The Adam algorithm [48] is adopted to update the weights of 2DLNN. Adam has the
attractive benefits of being straightforward to implement with low memory requirements,
and the hyper-parameters have intuitive interpretation and typically require little tuning.
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It is suitable for on-orbit applications. Its convergence has been proven theoretically.
Therefore, the weights updating of 2DLNN can be expressed by Equation (25),

Ŵt = τ × Ŵt−1 − η × m̂t

(
√

v̂t + ε)
(25)

where τ = 0.999 is the forgetting factor, m̂t and v̂t are the parameters of Adam. η = 0.0001
is a positive gain, referred to as the learning rate or step size. Equation (25) is the training
algorithm used to train the weights. The author of Adam proved that Ŵ would decrease
gradually and reach a stable status. The Adam is described more fully in the Appendix A
Equation (A1); however, a brief summary is given here.

3.3. On-Orbit Online Learning

Due to the limitation of satellite storage, the star tracker cannot store a large number
of star images and starspot coordinates. It is unrealistic to use the point-to-point training
method for the on-orbit star tracker. We first calculate the starspot coverage rate at a specific
time for the star tracker orbiting the earth. Then, the online training method is proposed.

3.3.1. Coverage of Star Spot

It is impossible to verify the algorithm directly on orbit, we simulate the state of the
star tracker orbiting the earth. To ensure that the proposed method can learn the distortion
model of the whole focal plane, stars in a period need to cover most of the star image. The
coverage rate of starspot is expressed by a ratio of the area Areat

sp covered by stars in FOV
to the area of the entire focal plane in time t, as shown in Equation (26),

Cstar =
Areat

sp

Area f p
(26)

where Areat
sp is the area of the contour profile (not convex hull) of all stars within the time

interval t, Area f p is the area of the focal plane, and the unit of them is (px2).
The star images are photoed along the orbit. The Monte Carlo algorithm is used

to calculate the average star coverage rate in the time t, which is shown in Table 1. The
sampling time is 1 s, and the orbit is the Starlink (altitude: 550 km, inclination: 53◦), and
the right ascension and declination of the orbit are generated from the System Tool Kit
(STK) software.

Table 1. Average coverage rate of star spot for different times.

Time (s) 1 50 500 2000

Coverage rate 42.267% 71.232% 98.262% 99.309%

The superposition of starspots in FOV at a different time is shown in Figure 5. They
are collected along the Starlink orbit, and the sampling start is determined by the Monte
Carlo method. Scatters with the same colors represent stars from the same star image. The
coverage area is the envelope of these superimposed stars, as shown in Figure 5a the pale
blue background. The coverage rate of stars increases with the increase of star images.
Although the coverage rate of 500 frames is high, there are obvious holes in the envelope,
and the superposition of 2000 frames covers the entire FOV.
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(b)  50 (c)  500 (d)  2000(a)  1

Figure 5. Stars distribution for different sampling time: (a) the stars distribution in 1 s, where the
green background is the profile of the superposed star spots. (b–d) the stars in 50 s, 500 s and 2000 s,
respectively.

The stars can be regarded as passing through the FOV of the star tracker at a certain
angular velocity. In the engineering application, the probability of starspot being correctly
identified increases when the stars are in a position with less distortion, and the correctly
identified stars can be tracked in real-time. When the tracked star moves to a position with
large distortion, it can continue to be used for distortion correction. In Figure 5, it can be
seen that the stars enter the FOV from multiple directions so that 2DLNN can learn and
correct the global distortion.

3.3.2. On-Orbit Learning Algorithm

The geometric distortion correction of the on-orbit star tracker is implemented frame-
to-frame along the orbit. The loss should be determined by the root mean square error
(RMSE) of all correctly identified stars in each frame of the star image. The loss is expressed
by Equation (27),

J f =

√√√√ 1
N

N

∑
i=0

(Ei)2 =

√√√√ 1
N

N

∑
i=0

(Fi − F̂i)2 =

√√√√ 1
N

N

∑
i=0
{(W − Ŵ)Tbm(xi, yi)}2 (27)

where N is the number of correctly identified stars in a single star image, i represents the
centroid coordinates of i-th measuring star, and N is different in each star image.

The gradient of online training can be also obtained according to the chain rule, which
is expressed by Equation (28),

∇J f =
∂J f (Ŵ)

∂Ŵ
=

∂(

√
1
N

N
∑

i=0
(Ei)2)

∂Ei
∂Ei

∂Ŵ
= Eibm(xi, yi)(N

N

∑
i=0

(Ei)2)
1
2 (28)

The optimal coefficient W∗ of the 2D Legendre polynomial is obtained by calculating
the minimum gradient of the loss.

W∗ = arg min
W

(Jp/ f (W)) (29)

Similarly, the Adam algorithm (Equations (25) and (A1)) is also adopted to update
the weight of the network to obtain the optimal solution W∗.

3.4. Optimum Order of the Legendre Polynomial

The orders of the Legendre polynomial will have an impact on the results of 2DLNN.
The order determines the number of neurons in the neural network, which directly impacts
the ability of distortion correction. If the order is too small, the star tracker distortion
model cannot completely be expressed by the Legendre polynomials. If there are too many
neurons, the network structure is large, and the dataset would not be enough to fit the
network. Therefore, it is necessary to find a suitable order for the better ability of 2DLNN.
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We analyze the influence of polynomial order on training results. Taking radial distor-
tion as an example, 2DLNN with orders increasing from 1 to 10 are trained, respectively.
The corresponding network is applied to the testing dataset. The training results of different
orders are shown in Figure 6.

(a) x Loss (b) testing error

Figure 6. The training loss and the average testing error for different orders of the 2D Legendre
neural network: (a) the training loss at x-axis direction and (b) the average testing error at x-axis and
y-axis direction. The optimum order should be the black curve in diagram (a) and the red circle in
diagram (b).

Figure 6a is the result of the training dataset, and Figure 6b is the performance of
the corresponding network on the testing dataset. When the order is small, the rate of
convergence of 2DLNN is slow. The low-order 2DLNN is not convergent on the testing
data, indicating that the low-order 2DLNN is underfitting. When the order is 5 or larger,
the error remains the minimum on training data (black curve in Figure 6a) and testing
data (red circle in Figure 6b). In practical application, the common orders in the optical
distortion model are 4 to 6. Considering the time and memory complexity, the optimum
order of the 2DLNN should be 5.

3.5. Pseudocode

We summarize our methods for geometric distortion correction of star images in
Appendix B Algorithm A1.

4. Experiment and Analysis

Several sets of experiments were designed to verify the validity of the proposed
method. They are ground-based and on-orbit experiments. The star images can be captured
from random or continuous sky regions in the real night sky observation experiment. The
stars in the star images from random sky areas are uniformly distributed, and the numbers
are enough for batch learning. The star images obtained from the continuous sky areas
were generated along the orbit, which is suitable for frame-to-frame online learning. In the
earth-orientation mode of the LEO satellite, the star images generated along the orbit were
used to analyze the implementation of the on-orbit training method.

The measurement model was adopted from Figure 1 in Section 2.1. The parameters
of the star tracker utilized in the experiments are shown in Table 2. The optical system
distortion (radial distortion, tangential distortion and thin prism distortion) and image
transformation (shear transformation and perspective transformation) were tested, respec-
tively. The parameters of various distortions are shown in Tables 3 and 4, the distortion
model is adopted in Section 2.2.
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All experiments and algorithms were simulated in PyCharm CE (V2021.3) with Python
3.8 & Pytorch on a PC with a 2.30 GHz Intel Xeon Gold 6139 CPU of 32 GB RAM, NVIDIA
Quadro P4000 GPU of 8 GB RAM and Windows 10 operational system.

Table 2. Star tracker parameters.

Parameters Value Unit

Detector area 2048 × 2048 pixels
Pixel size 7.45 µm

Field-of-View (FOV) 20 degree
Focal length 43.20 mm

Max magnitude 6.0 Mv

Table 3. Parameters of optical system distortion.

Distortion Value

pincushion q1 = 4.638× 10−6, q2 = 4.988× 10−9

barrel q1 = −4.638× 10−6, q2 = −4.988× 10−9

tangential p1 = 1.210× 10−6, p2 = −2.460× 10−6

thin prism s1 = 1.290× 10−6, s2 = 1.670× 10−6

Table 4. Parameters of star image transformation.

Distortion Value

shear s1 = 0.36051, s2 = 0.00789

perspective
h11 = 0.999, h12 = 0.000625, h13 = 0.0005
h21 = 0, h22 = 0.999248, h23 = 0.0010
h31 = 0, h32 = 0.001250, h33 = 1

4.1. Training Dataset of Star Images

Since real star images are rarely downloaded from on-orbit star trackers, it is unrealistic
to use real star images as datasets. In this paper, the star image datasets were collected
and generated based on the real on-orbit star tracker parameters. At the same time, the
star images datasets were mixed with star images obtained in other ways. The parameters
setting of the star tracker in the datasets were the same. The star image datasets are mainly
composed as follows.

• Inspired by the literature [18], star images can be captured randomly from Starry
Night, a professional and powerful astronomical software, and the digital platform is
utilized to obtain the distorted data.

• According to the parameters of the real on-orbit star tracker, the method [49] for
generating simulation star images was adopted. Random background noise and
random position noise were added to these star images.

• Star images were taken from the real night sky observation experiments, using the
star trackers’ parameters in Table 2.

Star images were distorted according to the real distortion model of the star tracker in
orbit, which is mainly caused by the change in optical system parameters. The star spot
extraction algorithm [39,50–52] and the star identification algorithm [53–55] were adopted
to obtain navigation stars. Then, the transfer matrix from celestial sphere frame to star
tracker frame can be calculated using QUEST [37,38] or TRIAS [56] method. The reference
starspot coordinates can be obtained through the coordinate transforming equations. The
offset distance between the measured starspots and the reference starspots was used as
the training label of 2DLNN. Meanwhile, the stars’ centroid coordinates were used as the
training data.
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The datasets were divided into three parts: ground-based star images from random
sky areas (named after GRD) and continuous sky areas (named after GCD). The on-orbit
star images along the Starlink orbit (named after OD).

4.2. Simulation of Ground-Based Correction

There is no need to select specific starspots; all available stars in the star images can
participate in network model fitting. In the ground-based experiment, we combine the
available star coordinates into a complete dataset (namely GRD and GCD). The centroid
coordinates of the stars obtained from the distorted star images were used as the input
of 2DLNN. Meanwhile, the coordinate offsets were used as the training label. The error
will be trained to the minimum. The dataset is randomly divided into training and testing
datasets according to the ratio of 8:2.

The hyper-parameters of the 2DLNN were: batch_size = 128, learning_rate = 1× 10−4.
The order of the Legendre polynomial is n = 5; hence, the number of neurons of the
Legendre neural network is Nmodes = 21. Six distortion models were simulated, and the
network structure was the same. The only difference is the input and output data and the
weight of the trained model (i.e., the coefficient of Legendre polynomial).

The distortion correction is first implemented for the dataset GRD. The stars in the
FOV of the star tracker are evenly distributed, which is conducive to learning the global
distortion of the star image. The training process is shown in Figure 7.

(a)  B (b)  P (c)  TA

(d)  TP (e)  SH (f)  PE

Figure 7. The Loss Jp for different geometric distortions of star images captured from a different area
of the sky randomly: (a) B (barrel), (b) P (pincushion), (c) TA (tangential), (d) Tp (thin prism), (e) SH

(shear) and (f) PE (perspective). The abscissa axis is the batch size, which is 128. The initial weights of
different distortions were the same.

Similarly, batch learning was implemented to train the distortion model with the
dataset GCD. The training process is shown in Figure 8.
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(a)  B (b)  P (c)  TA

(d)  TP (e)  SH (f)  PE

Figure 8. The Loss Jp for different types of geometric distortions of star images generated along the
earth orbit: (a) B (barrel), (b) P (pincushion), (c) TA (tangential), (d) Tp (thin prism), (e) SH (shear) and
(f) PE (perspective). The abscissa axis is the batch size, which is 128. The initial weights of different
distortions were the same.

The initial weights of 2DLNN were the same for the different distortions. It can be
seen from Figure 7 that the initial estimation errors are different due to different distortion
models. The initial weights can be randomly generated or obtained through a swarm
intelligence optimization approach, such as the sparrow search algorithm (SAA [57]). After
training, the estimation error of the model will converge to less than 3× 10−5 (normalized
pixel).

Figure 8 considers the possibility of on-orbit implementation. We will discuss on-orbit
distortion correction in Section 4.3. The ground-based experiment demonstrates that the
method can fit different distortions, and the star position error can reduce to a small value
after correction. The weight, trained by the ground-based experiment, can be used as the
initial values of on-orbit correction. However, with different environments between ground
and on-orbit, it is not easy to obtain on-orbit parameters beforehand in the laboratory.
Therefore, on-orbit distortion correction is online continuation learning.

4.3. Simulation of On-Orbit Correction

Based on the conclusion in Section 3.3.1, the dataset OD is adopted to train the
on-orbit distortion model. Unlike the ground-based experiment, the on-orbit geometric
distortion correction is frame-to-frame training. The on-orbit training method of 2DLNN is
Equation (27), and the training process is shown in Figure 9.
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(a)  B (b)  P (c)  TA

(d)  TP (e)  SH (f)  PE

Figure 9. The Loss J f for different geometric distortions of star images simulated along the starlink
orbit: (a) B (barrel), (b) P (pincushion), (c) TA (tangential), (d) Tp (thin prism), (e) SH (shear) and
(f) PE (perspective). The initial weights of different distortions were the same.

From Figure 9, considering the resource needed for correction, about 2000 to 2200 im-
ages are needed in the rough correction. Less than 2500 star images are needed totally to
achieve satisfactory correction results. Also, taking radial distortion as an example, the
average running time required to train a single star image only using CPU is 0.6 ms, which
is suitable for on-orbit execution.

The results of the geometric distortion correction for a single star spot are shown
in Figure 10, the star spot is intercepted from the radial distortion star image. For the origi-
nal distortion, the distance between the observed star and the reference star is
2.619 × 10−3 × 1024 ≈ 2.683 pixels. After correction, the star position error is
4.751× 10−5 × 1024 ≈ 0.048 pixels, and the relative error of star position can be reduced by
(2.683 − 0.048)/2.683 × 100% ≈ 98.18%. It shows that the proposed geometric distortion
correction algorithm is effective and accurate.

predicted star coordinate

undistorted star coordinate

distorted star coordinate

Figure 10. Star coordinates of undistorted star spot (?), distorted star spot (◦) and predicted star spot
(4). The coordinates are all normalized to [−1, 1].
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The predicted distortion flow of the image plane is shown in Figure 11. The first
line is the distortion flow of the focal plane before correction, and the second line is the
distortion flow learned by the proposed method. The average coordinate error of starspot
is shown in Table 5. At the edge of the star image plane, the distortion caused by the optical
system is about 2 pixels, while the maximum distortion of image transformation is about
3 pixels. After correction using the proposed algorithm, the star position error can be less
than 0.04 pixels. It indicates that the proposed method successfully predicts and corrects
the star position error. In addition, for other unknown distortion models, such as distortion
composed of a set of basal errors or other irregular distortions, the 2D Legendre neural
network can also learn the distortion mapping.

(c) TA (d) TP(a) B (b) P (e)  SH (f)  PE

Figure 11. The distortion error before correction and the predicted distortion flow for different
distortions: (a) B (barrel), (b) P (pincushion), (c) TA (tangential), (d) Tp (thin prism), (e) SH (shear)
and (f) PE (perspective).

Table 5. Average position error of different models.

B P TA TP SH PE

x 0.02131 0.03172 0.04677 0.05288 0.03489 0.03171
y 0.03502 0.03051 0.04931 0.02662 0.03882 0.04632

4.4. Comparison with Previous Techniques

Piecewise linear mapping algorithm based on Delaunay triangulation [58], ordinary
polynomial mapping method based on improved genetic algorithm [34] were applied to
the geometric distortion correction of star images. The previous techniques were imple-
mented on the radial distortion of the star tracker optical system. We only compared the
distortion caused by the change of the star tracker optical system parameters, that is, radial
distortion (B and P), tangential distortion (TA), and thin prism distortion (TP).

The imaging data and the star spot coordinates in the comparison experiments were
the same. The average position error and execution time of three methods after correction
for different distortion models are shown in Table 6, which are calculated in the direction
of x and y, respectively. It can be seen that the proposed method has significant advantages
in correcting the position of starspots and star images. The average execution time is quick,
which is suitable for onboard implementation.
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Table 6. Average position error of different methods and average time consumed.

Algorithm Direction
Average Position Error (Pixels)

Average Time (s) 1
B P TA TP

PWL x 0.85242 0.92072 0.13455 0.13696 0.0203
y 0.83611 0.85956 0.25855 0.17416 0.0167

OP-IGA x 0.67175 0.70221 0.10717 0.10839 0.0606
y 0.65959 0.67365 0.20652 0.13932 0.0482

Ours x 0.02131 0.03172 0.04677 0.05288 0.0061
y 0.03502 0.03051 0.04931 0.02662 0.0059

1 The average time consumed of four distortion on CPU for a single star image.

5. Conclusions

The star tracker is a prerequisite device to realize high-precision attitude determination
for a spacecraft. However, star tracker accuracy is often influenced by optical lens ma-
chining, optical path assembly, and temperature alternation errors. Optical lens parameter
changes and image distortion will have an impact on the accuracy of the star tracker. To
improve the accuracy of the star tracker and the availability of star images, a novel general
framework based on 2DLNN for the geometric distortion correction of on-orbit star images
was proposed. An offline training method grounded on batch star images and an online
training algorithm based on sequential star images were designed, respectively.

2DLNN is a single-layer neural network with fast convergence, self-learning, lifelong
learning, and good adaptability, and it is suitable for on-orbit implementation. The sim-
ulations demonstrate that the average position error of distortion can be reduced to less
than 0.04 px after correction. In the earth-orientation mode of the LEO satellite, the on-orbit
sequential training algorithm can converge in 2500 star images under the condition of
1 frame/s. The proposed method has the potential to become a general framework for
the geometric distortion correction for star images. The method proposed in this paper
can be extended to the image correction of satellite-carried optical sensors and real night
observation experiments.
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SH Shear transformation
PE Perspective transformation

Appendix A

Adam combines the advantages of AdaGrad [59] and RMSProp [60]. It comprehen-
sively considers the first-order and second-order moment of the gradients and calculates
the step of gradient updating.

The variables in the Equation (25) are as follows,

mt = β1mt−1 + (1− β1)∇J

m̂t =
mt

(1− βt
1)

vt = β2vt−1 + (1− β2)(∇J)2

v̂t =
vt

(1− βt
2)

(A1)

where m is the exponential moving average of gradients, β1 = 0.9 is the exponential decay
rate for the first moment estimates. v is the exponential moving average of square gradients,
β2 = 0.999, the exponential decay rate for the second-moment estimates. m̂ and v̂ indicate
that the gradient is corrected to reduce the impact of deviation on the initial stage of training.
ε = 10−8, is a very small number to prevent any division by zero in the implementation.

Appendix B

Geometric Distortion Correction Using 2D Legendre Neural Network.

Algorithm A1 2DLNN
Input: Star spot coordinates: (x, y)
Output: The estimation (∆̂x, ∆̂y) of coordinate offset
Data:
(Xre f , Yre f )← Training data set of starspot coordinates
(∆X, ∆Y)← Labels for records in Training data

1 Initialize parameter:
2 n = 5← order of the Legendre polynomials;
3 Nmodes ← the number of neure, obtained using Equation (13);
4 k← the number of iterations;
5 η = 1× 10−4 ← learning rate;
6 bs = 128← batch size only for groun-based training;
7 β1, β2, ε← the parameters of Adam algorithm;
8 WX , WY ← The initialized weights;
9 Train:

10 repeat
11 for i = 1 to k do
12 bm(x, y)← The processing elements of the nerual network using

Equation (17);
13 F̂← Feedforward using Equation (21);
14 E← Error using Equation (22);
15 Jp/J f ← Loss using Equation (23) or (27);
16 ∆Jp/∆J f ← Gradient using Equation (24) or (28);
17 if ∆J 6= 0 then
18 Ŵt ← Update the weights using Equation (25);
19 end
20 end
21 until W∗ = arg minW(Jp/ f (W));
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