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Abstract: Due to the vast geometric and radiometric differences between SAR and optical images,
SAR-optical image matching remains an intractable challenge. Despite the fact that the deep learning-
based matching model has achieved great success, SAR feature embedding ability is not fully explored
yet because of the lack of well-designed pre-training techniques. In this paper, we propose to employ
the self-supervised learning method in the SAR-optical matching framework, in order to serve as a
pre-training strategy for improving the representation learning ability of SAR images as well as optical
images. We first use a state-of-the-art self-supervised learning method, Momentum Contrast (MoCo),
to pre-train an optical feature encoder and an SAR feature encoder separately. Then, the pre-trained
encoders are transferred to an advanced common representation learning model, Bridge Neural
Network (BNN), to project the SAR and optical images into a more distinguishable common feature
representation subspace, which leads to a high multi-modal image matching result. Experimental
results on three SAR-optical matching benchmark datasets show that our proposed MoCo pre-training
method achieves a high matching accuracy up to 0.873 even for the complex QXS-SAROPT SAR-
optical matching dataset. BNN pre-trained with MoCo outperforms BNN with the most commonly
used ImageNet pre-training , and achieves at most 4.4% gains in matching accuracy.

Keywords: SAR-optical fusion; image matching; self-supervised learning; representation learning

1. Introduction

Synthetic Aperture Radar (SAR) and optical imagery are two of the most commonly
used modalities in remote sensing since they provide highly complementary content to each
other. While optical imagery with good interpretability is easily affected by atmospheric
conditions, SAR data can collect information all the time but suffered from serious intrinsic
speckle noise. Therefore, fusion information of SAR and optical images can give rise to a
better interpretation of the imaged area. For accurate SAR-optical data fusion, identifying
corresponding image patches plays a crucial role as a pre-procedure. It remains a widely
unsolved challenge to match SAR-optical remote sensing data due to the vast geometric
and radiometric differences as shown in Figure 1.

Over the past few decades, the traditional SAR-optical image matching methods can
be generally divided into area-based and feature-based approaches. Area-based methods
utilize the intensity of pixel values in some regions of the image and the corresponding
regional similarity evaluation is calculated, such as cross correlation (CC) [1], structural
similarity (SSIM), mutual information (MI) [2,3], and so on. However, owing to the low
flexibility and lack of local structure information, the area-based methods fail to avoid
information loss in the measure of multimodal image similarity. Therefore, more attempts
at SAR and optical image matching have been placed on the feature-based methods. Since
feature-based methods rely on the invariant feature points and handcrafted descriptors can
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handle the geometric changes well, the feature-based methods generally outperform the
area-based methods, for example, scale-invariant feature transform (SIFT) [4], SAR-SIFT [5],
HOPC [6,7], etc. However, the handcrafted descriptors based on low-level semantic features
are not capable of dealing with highly divergent changes between SAR and optical images.
More recently, deep learning-based SAR-optical image matching approaches have achieved
great success. Two-tower architecture is the most commonly exploited in multimodal image
matching, such as a Siamese or pseudo-Siamese network [8–11], which consists of two
convolutional neural networks (CNN) to extract the deep characteristic features—not only
with the Siamese network but a novel method called Bridge Neural Network (BNN) [12] to
project the multimodal data into a common representation subspace where features can be
measured with Euclidean distance.

Figure 1. Comparison between SAR (bottom) and optical (top) imagery of the same scene.

Meanwhile, the ImageNet [13,14] supervised pre-training technique that contains
prior knowledge is the most widely adopted in the SAR-related field for the scarcity of
labeled SAR images in the past. However, there remain some limitations to using ImageNet
pre-trained models for SAR-optical fusion tasks. Images in ImageNet are all optical images,
which do not contain SAR information and characteristics; as a result, taking ImageNet
supervised pre-training directly can hardly improve the learning ability of SAR images and
benefit the SAR-optical fusion task.

As ImageNet pre-training can hardly improve the learning ability for SAR images, the
representation learning ability to match models plays a vital role in SAR-optical matching
tasks. Recent advances in self-supervised learning for computer vision present competitive
results with supervised learning. Without manual annotations, useful representations
can be obtained only with the help of some pretext tasks, which is probably achieved by
maximizing the mutual information of learned representations. Representations pre-trained
by contrastive learning that transferred to downstream tasks: classification, segmentation,
and detection tasks lead to a competitive performance with supervised learning [15–21]. A
contrastive learning method called Momentum Contrast (MoCo) [19] uses a momentum-
update encoder to generate a dynamic dictionary query to save more negative samples
with less memory. The MoCo pre-training method has achieved promising results in a
variety of downstream tasks.

As discussed above, self-supervised learning can pre-train representations that can be
transferred to downstream tasks by fine-tuning. In an attempt to improve multimodal SAR-
optical image matching performance, we exploit the self-supervised learning technique to
improve the feature learning ability of SAR and optical imagery, respectively. Then, the
model is transferred to the SAR-optical matching task. The overall process is illustrated in
Figure 2. More specifically, we take MoCo [19] as a pre-training strategy and BNN [12] for
matching. By this method, self-supervised pre-training enhances the embedding of SAR
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and optical images and benefits SAR-optical matching tasks. Experimental results on three
datasets show that self-supervised pre-training leads to a better matching performance.
Our main contributions are summarized as follows:

• We propose a framework applying self-supervised learning to SAR-optical image
matching, improving the feature learning ability of SAR and optical images.

• We take MoCo and BNN as one of the most representative works in self-supervised
learning and multi-modal image matching to make the framework truly implemented.

• For the proposed framework, we conduct lots of experiments to confirm the feasibility
and the effectiveness of the self-supervised learning transferred to optical-SAR image
matching task, which would encourage further research in this field.

momentum
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optical
encoder

momentum
encoder

SAR
encoder

optical
encoder

SAR 
encoder

positive

negative

comparison comparison

Figure 2. The overall process of models via MoCo pre-training transferred to BNN is described. The
first box shows the process of applying MoCo to improve the representation learning ability of SAR
and optical images separately. Then, the model is transferred to BNN to deal with the SAR-optical
matching task in the second box.

The rest of the paper is organized as follows: Section 2 introduces MoCo, BNN, and
the way we combine them in detail. The settings and results of the experiments are shown
in Section 3. The discussion and conclusions are drawn in Section 4.

2. Method

The method in this paper consists of two steps: MoCo [19] pre-training and transferring
to BNN [12] for matching tasks. In this section, we will introduce the MoCo, BNN, and the
way we combine them in detail.

2.1. Momentum Contrast

In [19], they regard contrastive learning as training an encoder for a dictionary look-up
task. Momentum Contrast (MoCo) is for building a dynamic large and consistent dictionary
on-the-fly. The core of MoCo is maintaining the dictionary as a queue of data samples;
therefore, the dictionary size can be decoupled from the mini-batch size for the utilization
of the queue to be larger and contain more negative samples.

Given a dataset X = {xi}N
i=1. , where xi can be considered as a query sample. Then,

we can randomly select the other k samples from the dataset X to form a dictionary
{d1, d2, . . . , dk}. There is a single sample di in the dictionary that matches xi. Therefore, the
sample xi with the dictionary can be combined into one positive pair {xi, di} and k negative
pairs

{
xi, dj

}
(j 6= i) . To extract the representations, two feature encoders f (·; θx), f (·; θd)
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are employed with parameters θx, θd respectively to project the images into the query
representations zi = f (xi; θx) and the keys of the dictionary yi = f (di; θd). Regarding
InfoNCE [16] as the contrastive loss:

Lcontrast = −E
X

log
s(x, d+)

∑x∈X ∑k+1
j=1 s

(
x, dj

)
, (1)

where s(·, ·) is the metric function and d+ is the unique positive sample. Here, dot product
is applied to measure the similarity between latent representations with a temperature
hyper-parameter τ:

s(x, d) = exp
(

f (x; θx) · f (d; θd)

‖ f (x; θx)‖ · ‖ f (d; θd)‖
· 1

τ

)
, (2)

which achieves high values for positives and low scores for negatives.
Momentum update. The parameters θx of query encoder are updated by back-

propagation while the parameters θd of key encoder are updated by:

θd ← mθd + (1−m)θx, (3)

where m ∈ [0, 1) is the momentum coefficient. The momentum update makes θd evolve
more smoothly than θx. Consequently, the keys in dictionary are encoded by slightly
different encoders.

Compared with memory bank. The memory bank proposed in [15] is composed of
the representations of samples. For every mini-batch, the keys are randomly sampled
from the memory bank with no back-propagation. It can support a large mini-batch size,
but the representations in the memory bank can not be consistent since it is only updated
when it has been chosen. In contrast, the momentum update is more memory-efficient and
guarantees the consistency of dictionary keys. Comparison is shown in Figure 3.

x

encoder

z y

similarity

gradient

contrastive loss

memory bank

sampling

(a) memory bank

x

encoder
momentum

encoder

z y

similarity

gradient

contrastive loss

d

(b) MoCo

Figure 3. Comparison between memory bank [15] and MoCo [19]. (a) Forming a memory bank and
sample from it as the key representations; (b) MoCo encodes the dictionary on-the-fly by momentum
updating an encoder slowly.

Pretext Task. Pretext tasks act as an important strategy to learn representations of data.
The pretext tasks in this paper follows [15,19]: random grayscale, random color jittering,
and random horizontal flip. In addition, as depicted in [19,22], Batch Normalization
(BN) [23] prevents the model from learning good representations. Thus, shuffling BN [19]
is employed to solve this problem.
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2.2. Bridge Neural Network

Despite the different modalities of SAR and optical images, BNN [12] works like
a bridge and is capable of projecting the multimodal images into a common represen-
tation subspace. As depicted in Figure 4, given a SAR-optical image dataset {Xs, Xo}.
Xs = {xi

s}N
i=1, Xo = {xi

o}N
i=1 are sets of SAR and optical image patches. We construct the

positive sample set Sp = {xi
s, xi

o}, where corresponding image pairs are from the same

region. Image pairs from Sn = {xi
s, xj

o}(i 6= j) are from different areas, which we call
negative samples. The dual networks respectively extract features from SAR and optical
images: f (·) is for features of SAR images while g(·) for optical images. The separate
networks reduce the images into the n-dimension latent vectors: zs = f (xs), zo = g(xo).
Then, Euclidean distance is designed to bring the latent representations of positive samples
together while pushing negative samples apart in the common representation subspace.
The Euclidean distance between zs and zo is defined as:

h(xs, xo) =
1√
n
‖( f (xs)− g(xo))‖2, (4)

which indicates whether the input data pairs {xs, xo} have a potential relationship. The
distance of positive samples is regressed to 0 while the distance between negative samples
converges to 1. Therefore, the regression loss on positive samples and negative samples are
as follows:

lp
(
Sp
)
=

1∣∣Sp
∣∣ ∑
(xs ,xo)∈Sp

(h(xs, xo)− 0)2, (5)

ln(Sn) =
1
|Sn| ∑

(xs ,xo)∈Sn

(h(xs, xo)− 1)2. (6)

SAR CNNSAR CNNSAR CNN

Positive sample: matched pairsPositive sample: matched pairs

Negative sample: unmatched pairsNegative sample: unmatched pairsOptical CNNOptical CNNOptical CNN

Figure 4. Schematic illustration of the BNN architecture for the SAR-optical image matching task.
Optical network and SAR network are used in BNN to project the images from different modalities
into a common subspace. The Euclidean distance of the representations of SAR and optical images is
pulled close for positive samples and pulled apart for negative samples.

Hence, we add the loss on positive samples and negative samples up as the BNN loss:

lBNN
(
Sp, Sn

)
=

lp
(
Sp
)
+ α · ln(Sn)

1 + α
, (7)

where α balances the weights of positive loss and negative loss. Thus, optimizing the loss
of BNN can lead to the best networks ( f ∗, g∗):

( f ∗, g∗) = argmin f ,g lBNN
(
Sp, Sn

)
(8)

2.3. Transfer MoCo Pre-Trained Model to BNN

As depicted in Figure 2, at the pre-training stage, we first pre-train MoCo to obtain
an optical encoder and an SAR encoder to separately learn feature representations and
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measure the similarity in the latent space. At the matching stage, the pre-trained encoders
transferred to BNN serve as the initialization of the optical network and SAR network
for fine-tuning in the SAR-optical matching task. The encoders project the SAR and
optical images into a common feature representation subspace, where it is easy to measure
similarity, to determine whether they match or not.

3. Experiments
3.1. Dataset

We conduct experiments on three SAR-optical image datasets: SARptical [24], QXS-
SAROPT [25], SEN1-2 [26]. SARptical is a dataset of over 10,000 pairs of corresponding
SAR and optical image pairs, which are from TerraSAR-X and aerial UltraCAM optical
images. The images are of 112× 112 pixels with 100 m × 100 m ground coverage. We
use 7577 image pairs for training and 1263 patch pairs for testing. QXS-SAROPT contains
20,000 pairs of SAR-optical image patches from GaoFen-3 satellite and Google Earth,
covering a variety of land types. The images have a size of 256× 256 pixels at a pixel
spacing of 1 m × 1 m. The dataset is randomly divided into training and testing at a ratio
of 7:3. We select the spring subset from four sub-groups in SEN1-2 dataset, which consists
of registered patch-pairs from Sentinel-2 and Sentinel-1—a total of 75,724 patch pairs of
size 256× 256 pixels with spatial distance of 10 m × 10 m, of which 52,799 are for training
and 22,925 for testing.

3.2. Implementation

Considering the complexity and difficulty of the matching task, we only take Vgg11 [27]
as the feature extraction network for SARptical while Vgg11 [27], ResNet50 [28], and Dark-
net53 [29] as the backbone for QXS-SAROPT and SEN1-2. More specifically, we encode the
SAR and optical images into a 50-dimensional feature representation subspace. It is noted
that every mini-batch input contains the same number of positive and negative samples to
prevent the model from mode collapse for the unbalanced data distribution. All images are
normalized w.r.t. mean and variance in preparation.

MoCo. We take N − 1 negative samples (N is the number of training datasets) and
set temperature parameter τ = 0.07 and momentum coefficient for updating encoder is
set as m = 0.999. We use SGD as an optimizer and a mini-batch size of 20. The weight
decay is 0.001 and the SGD momentum is 0.9. For SARptical, the learning rate is set as
0.05 for 300 epochs. While training on QXS-SAROPT, the learning rate is 0.001 for the first
250 epochs and 0.0005 for the last 250 epochs. As for SEN1-2, the models are trained with a
learning rate of 0.05 for 70 epochs.

BNN. The ratio of positive and negative samples is 1:1 and adjusting factor α = 1. For
SARptical, the learning rate is set as 0.1 to fine-tune the model for 100 epochs. Meanwhile,
BNN with MoCo pre-training on QXS-SAROPT and SEN1-2 are fine-tuned with a learning
rate of 0.05 for 10 epochs.

3.3. Results Analysis

We fine-tune BNN to SAR-optical image matching task with MoCo pre-training (MoCo-
BNN) on three datasets: SARptical, QXS-SAROPT, and SEN1-2. To demonstrate the
superiority of our method, we compare our method with two other initialization methods:
no pre-training (NP) and ImageNet pre-training (IP).. Accuracy, precision, and recall score
are employed as evaluation metrics. The matching results on three datasets can be seen in
Tables 1–3. It is noted that the pair matching results of IP-BNN benchmark can be directly
obtained from article [25,30].
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Table 1. Results for BNN patch-matching on SARptical with different pre-training methods.

Methods Accuracy Precision Recall

NP-BNN 0.887 0.825 0.993
IP-BNN 0.913 0.855 0.999

MoCo-BNN(ours) 0.913 0.859 0.991

Table 2. Results for BNN patch-matching on QXS-SAROPT with different pre-training methods.

Backbone Methods Accuracy Precision Recall

Vgg11
NP-BNN 0.844 0.781 0.982
IP-BNN 0.817 0.744 0.999

MoCo-BNN(ours) 0.858 0.795 0.990

ResNet50
NP-BNN 0.831 0.750 0.990

IP-BNN [25,30] 0.829 0.748 0.993
MoCo-BNN(ours) 0.873 0.808 0.995

Darknet53
NP-BNN 0.826 0.761 0.980

IP-BNN [25,30] 0.828 0.746 0.995
MoCo-BNN(ours) 0.871 0.809 0.997

Table 3. Results for BNN patch-matching on SEN1-2 with different pre-training methods.

Backbone Methods Accuracy Precision Recall

Vgg11
NP-BNN 0.832 0.800 0.916
IP-BNN 0.828 0.760 0.993

MoCo-BNN(ours) 0.841 0.787 0.960

ResNet50
NP-BNN 0.775 0.721 0.931
IP-BNN 0.783 0.722 0.954

MoCo-BNN(ours) 0.800 0.753 0.968

Darknet53
NP-BNN 0.834 0.775 0.970
IP-BNN 0.853 0.788 0.993

MoCo-BNN(ours) 0.862 0.796 0.998

Accuracy performance. Tables 2 and 3 suggest that our MoCo pre-trained models
lead to a better matching performance on QXS-SAROPT and SEN1-2.(The bolded number
represents the highest score on the backbone.) Especially on QXS-SAROPT, the accuracy
of BNN taking MoCo as a pre-training strategy achieves 87.3% and 87.1% and makes
a 4.4% improvement, which surpasses the other two methods by large margins. MoCo
pre-training also makes an obvious improvement on SEN1-2, indicating that MoCo has a
powerful representation learning ability for both SAR and optical images. Furthermore,
the results of NP and IP with ResNet50 and Darknet53 as backbone are almost the same,
which illustrates that the ImageNet supervised pre-trained models have no capacity for
SAR information and characteristics and it hardly makes sense in the SAR-optical image
matching problem. It is worth noting that IP-BNN is even worse than NP-BNN with Vgg11
as a backbone on QXS-SAROPT and SEN1-2, which is in line with the claims made in [14],
i.e., shallow models can be trained from scratch as long as a proper initialization is used,
whereas only when the network is large enough can the ImageNet pre-training model
which contains prior knowledge provide a good initialization to fine-tune. Besides, in
Table 1, MoCo does not make any progress on SARptical. The reason may stem from the
single building scenario in this dataset; the IP method learns better optical features and
makes a great performance. When confronted with more complex SAR-optical datasets,
optical feature embedding ability is weakened and SAR feature learning ability plays a
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major role. We visualize the accuracy results in Figure 5 to better show the comparison of
the different pre-training strategies.
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Figure 5. Visualization of the accuracy results of BNN with NP, IP, and MoCo pre-training on
three datasets.

We show matching results of some images pairs in Figure 6. In particular, image pairs
in red box are classified correctly by our MoCo-BNN and classified incorrectly by IP-BNN.
As shown in the figure, MoCo-BNN not only can distinguish the similar negative image
pairs, but also can correctly discriminate among the non-obvious positive sample pairs.

(a) True Positive (b) True Negative (c) False Positive (d) False Negative

SARptical

QXS-SAROPT

SEN1-2

Figure 6. Exhibition of images pairs in different matching results. The red boxes frame the image
pairs that MoCo-BNN classifies correctly and IP-BNN classifies incorrectly.

Embedding learning performance. To intuitively compare the feature representa-
tions learn by BNN with NP, IP, and MoCo pre-training, we visualize the embedding
learning results of the test set of QXS-SAROPT. We use t-distributed Stochastic Neighbor
Embedding(t-SNE) to visualize the features extracted by BNN with NP, IP, and MoCo
pre-training. We first concatenate the SAR and optical 50-dimensional features to the
100-dimensional features. T-SNE projects the features to two dimensions so that the high-
dimensional features are convenient to visualize. As shown in Figure 7, the features of
positive samples and negative samples learned by BNN with NP and IP are mixed together
while the positive features (class 1) and negative features (class 0) learned by BNN with
MoCo pre-training are more gathered in each class and more separate between different
classes. Therefore, the MoCo pre-trained BNN can generate a more distinguishable em-
bedding space, leading to a better multi-modal image matching result. The reason may
stem from MoCo pre-training leading to a better representation learning ability for SAR
and optical images.
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(a) NP (b) IP (c) MoCo

Figure 7. Visualization of positive and negative features extracted by BNN with NP, IP, and MoCo
pre-training using t-SNE. The red dots represent the positive features, and the blue dots represent the
negative features.

4. Discussion and Conclusions

Aiming at improving SAR-optical image matching performance, considering di-
rectly fine-tuning on an ImageNet supervised pre-training model as commonly used
can hardly benefit for improving the learning ability for SAR images; this paper exploits
a self-supervised pre-training to improve the feature learning ability of SAR and opti-
cal images respectively. Then, the pre-trained model is transferred to the SAR-optical
matching tasks. The experiments demonstrate that self-supervised pre-training leads to a
significant improvement.

Furthermore, we exploit a self-supervised pre-training paradigm to improve the
feature learning ability of multi-modal images. However, this paper only did experiments
on SAR-optical images and only for matching tasks. It is believed that our method not
only can be adaptive to different kinds of remote sensing images, such as multi-spectral
images, hyperspectral images and so on, but also can be transferred to different tasks, such
as objective detection.

However, the experiments were only conducted on one self-supervised method MoCo,
and one matching network BNN is a major deficiency. Furthermore, it has been verified
in [15–21] that a large mini-batch size is necessary for self-supervised learning to learn
a good representation. Nonetheless, it still works well when we train the MoCo with
mini-batch size 20, which is much smaller than the commonly used mini-batch size in
self-supervised learning. In the future, more experiments on a Siamese network and
other self-supervised learning methods will be carried out to confirm the effectiveness of
self-supervised pre-training in SAR-optical image matching.
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