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Abstract: Rapid global warming is catalyzing widespread permafrost degradation in the Arctic, leading to
destructive land-surface subsidence that destabilizes and deforms the ground. Consequently, human-built
infrastructure constructed upon permafrost is currently at major risk of structural failure. Risk assessment
frameworks that attempt to study this issue assume that precise information on the location and extent
of infrastructure is known. However, complete, high-quality, uniform geospatial datasets of built
infrastructure that are readily available for such scientific studies are lacking. While imagery-enabled
mapping can fill this knowledge gap, the small size of individual structures and vast geographical
extent of the Arctic necessitate large volumes of very high spatial resolution remote sensing imagery.
Transforming this ‘big’ imagery data into ‘science-ready’ information demands highly automated
image analysis pipelines driven by advanced computer vision algorithms. Despite this, previous
fine resolution studies have been limited to manual digitization of features on locally confined scales.
Therefore, this exploratory study serves as the first investigation into fully automated analysis of
sub-meter spatial resolution satellite imagery for automated detection of Arctic built infrastructure.
We tasked the U-Net, a deep learning-based semantic segmentation model, with classifying different
infrastructure types (residential, commercial, public, and industrial buildings, as well as roads) from
commercial satellite imagery of Utqiagvik and Prudhoe Bay, Alaska. We also conducted a systematic
experiment to understand how image augmentation can impact model performance when labeled
training data is limited. When optimal augmentation methods were applied, the U-Net achieved an
average F1 score of 0.83. Overall, our experimental findings show that the U-Net-based workflow is a
promising method for automated Arctic built infrastructure detection that, combined with existing
optimized workflows, such as MAPLE, could be expanded to map a multitude of infrastructure types
spanning the pan-Arctic.

Keywords: deep learning; artificial intelligence; semantic segmentation; U-Net; VHSR imagery;
building extraction; infrastructure; Arctic; permafrost

1. Introduction

Permafrost, defined as Earth materials that remain at or below 0 ◦C for at least two
consecutive years, underlies approximately 24% of the exposed land surface of the Northern
Hemisphere [1]. However, climate change has led to widespread warming of the permafrost
landscapes across the Arctic [2], where land surface temperatures are reported to have
increased by more than 0.5 ◦C per decade since 1981, exceeding average global warming by
a factor of between 2 and 3 [3]. This rapid warming causes degradation of permafrost that,
if ice-rich, results in destructive processes such as differential land-surface subsidence [4].
Consequently, built infrastructure (e.g., roads and railroads, fuel and water pipelines,
residential and public buildings, industrial facilities, airports, etc.) across the Arctic are
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at risk of structural failure [5–7]. Climate change projections under the RCP8.5 scenario
show that infrastructure built upon permafrost will be subject to decreases in foundation
bearing capacity and land-surface subsidence by 2050, resulting in a large financial cost of
infrastructure repair and adaptation [8,9].

Furthermore, the potential for widespread infrastructure failure is linked to a range of
consequences, including risks to society and public health, economic development, and
industrial activity. Approximately 3.3 million people populating the Arctic permafrost
landscapes [10], representing smaller indigenous settlements to larger industrial cities, live
in areas where permafrost will degrade and disappear by 2050. Therefore, the livelihood
and sustainable development of communities are threatened by the vulnerability of in-
frastructure to permafrost degradation [7,11,12]. Additionally, the increasing economic
relevance of the Arctic due to natural resource extraction [13] has driven the expansion of
industrial infrastructure, such as oil and gas facilities, pipelines, and supply roads, across
highly sensitive permafrost, increasing the risk of negative impacts extending beyond
the Arctic region [14]. However, infrastructure expansion itself has been recognized to
contribute to localized permafrost degradation along with global warming [15–18].

The vulnerability of Arctic infrastructure to the destructive effects of permafrost degra-
dation has been acknowledged by the scientific community, which is calling for pan-Arctic
infrastructure risk assessments [19]. Frameworks to perform such pan-Arctic assessments
have recently been designed and implemented, utilizing geospatial data to account for
the location, extent, and type of infrastructure features. Ramage et al. [10] utilized point
features to represent the locations of settlements with available population data to as-
sess the number of settlements and people located in high-hazard zones. Suter et al. [9]
estimated the cost of infrastructure damage due to permafrost degradation, merging gov-
ernmental and open-source datasets to represent linear infrastructure, including roads,
railroads, and pipelines as line features and buildings, airports, and ports as point features.
Hjort et al. [5] identified hazard zones and quantified the risk of damage to infrastructure,
utilizing OpenStreetMap data to represent major roads as line features and buildings as
point features.

The major challenge for these studies was access to a consistent, accurate, and detailed
high spatial resolution geospatial dataset of Arctic built infrastructure. For example,
while OpenStreetMap is globally available, large areas of the Arctic are missing from
it, namely areas with recent industrial development, and data quality is inconsistent [5].
Other global landcover datasets exist, such as the Global Man-made Impervious Surface
dataset [20] and the Human Built-up and Settlement Extent dataset [21]. However, these
are based on 30 m Landsat imagery and therefore can only document the general extent and
location of impervious surfaces and built-up areas with no subcategorization of features,
limiting their value to risk assessment frameworks. As a result, publicly available sources
(national and local data, open-source projects) must be merged to achieve pan-Arctic
coverage as demonstrated in the aforementioned studies, leading to inconsistencies among
heterogeneous datasets.

Satellite-based mapping can be used to improve the geospatial data record of pan-
Arctic built infrastructure. While we cannot guarantee it is completely exhaustive, we
conducted a literature survey on Arctic built infrastructure mapping efforts and found
that the task is ill-addressed, with few studies existing and only one study addressing
pan-Arctic mapping from recent satellite imagery. The survey results are summarized
in Table 1. Based on this survey, it was found that most studies mapped built infras-
tructure across small geographic extents through manual digitization, with a focus on
studying anthropogenic change in the Bovanenkovo gas field in the Yamal Peninsula,
Russia. Bartsch et al. [22] presents the sole product derived from automated mapping on
the pan-Arctic scale, providing the first pan-Arctic satellite-based record of expanding in-
frastructure and anthropogenic impacts along all permafrost-affected coasts. However, this
study is limited to the use of Sentinel-1 and Sentinel-2 satellite imagery, which only pro-
vides medium spatial resolution at 10 m, and to a region within 100 km of the Arctic coast.
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It has been noted that very high spatial resolution (VHSR) imagery (<5 m resolution) is
crucial in providing the required level of detail for accurate detection and classification
of individual structures in the Arctic [22–24]. Therefore, the use of medium-resolution
imagery means that many features can be missed, and those that are detected cannot be
subcategorized. Despite this, all of the published products had limited access to VHSR
imagery due to high imagery costs and low availability. However, the entire Arctic has been
imaged by Maxar commercial satellite sensors at a sub-meter resolution, providing free
‘big’ imagery data to U.S. National Science Foundation Polar Program-funded researchers
via the Polar Geospatial Center at the University of Minnesota.

Table 1. Literature survey on satellite-based Arctic built infrastructure mapping efforts.

Reference Study Area Data

Spatial
Resolution (in
Order of Listed

Data, “Field
Survey” Omitted)

Method Feature(s)
of Interest

Kumpula et al.,
2006 [25]

Bovanenkovo gas
field, Yamal
Peninsula

(West Siberia)

Field survey,
QuickBird-2

(panchromatic,
multispectral), ASTER

VNIR, Landsat
(TM, MSS)

0.61 m, 2.5 m,
15 m, 30 m, 80 m

Manual
digitization

Quarries, power
lines, roads, winter

roads, drill
towers, barracks

Kumpula et al.,
2010 [26]

Bovanenkovo gas
field, Yamal
Peninsula

(West Siberia)

Field survey,
QuickBird-2 (pan,

multi), ASTER VNIR,
SPOT (pan, multi),

Landsat (ETM7,
TM, MSS)

0.63 m, 2.4 m,
15 m, 10 m, 20 m,
30 m, 30 m, 80 m

Manual
digitization

Roads, impervious
cover, barracks,

winter roads, settle-
ments, quarries

Kumpula et al.,
2011 [27]

Bovanenkovo gas
field and Toravei
oil field, Yamal

Peninsula
(West Siberia)

Field survey,
QuickBird-2 (pan,

multi), ASTER VNIR,
SPOT (multi), Landsat

(ETM7, TM, MSS)

0.63 m, 2.4 m,
15 m, 10 m,
20 m, 30 m,

30 m

Manual
digitization

Buildings, roads,
sand

quarries, pipelines

Kumpula et al.,
2012 [23]

Bovanenkovo gas
field, Yamal
Peninsula

(West Siberia)

Field survey,
QuickBird-2 (pan,

multi), GeoEye,
ASTER VNIR, SPOT

(multi), Landsat
(ETM7, TM, MSS)

0.63 m, 2.4 m,
1.65 m, 15 m, 20 m,
30 m, 30 m, 70 m

Manual
digitization

Pipelines,
powerlines,

drilling towers,
roads, impervious
cover, barracks, set-
tlements, quarries

Raynolds et al.,
2014 [16]

Prudhoe Bay
Oilfield, Alaska

Aerial photography
(B&W, color,

color infrared)

1 ft resolution for
two images.

Map scale was
then used to

describe the rest of
the imagery. Scales

are as follows:
1:3000, 1:6000,

1:12,000, 1:18,000,
1:24,000, 1:60,000,
1:68,000, 1:120,000

Manual
digitization

Roads, gravel pads,
excavations,

pipelines,
powerlines, fences,
canals, gravel and
construction debris

Gadal and
Ouerghemmi,

2019 [28]
Yakutsk, Russia SPOT-6 (pan, multi),

Sentinel-2 (multi) 1.5 m, 6 m, 10 m
Semi-automated

(object-based
image analysis)

Houses, other
structures



Remote Sens. 2022, 14, 2719 4 of 22

Table 1. Cont.

Reference Study Area Data

Spatial
Resolution (in
Order of Listed

Data, “Field
Survey” Omitted)

Method Feature(s)
of Interest

Ourng et al.,
2019 [29] Surgut, Russia

Sentinel-1 (SAR),
Sentinel-2 (multi),

Landsat (TM, MSS)

10 m, 10 m, 30 m,
60 m

Automated
(machine learning) Built-up area

Bartsch et al.,
2020 [22]

Pan-Arctic, within
100 km of the
Arctic coast

Sentinel-1 (SAR) and
Sentinel-2 (multi) 10 m, 10 m

Automated
(machine learning
and deep learning)

Buildings, roads,
other

human-impacted
areas

Ardelean et al.,
2020 [24]

Bovanenkovo gas
field, Yamal
Peninsula

(West Siberia)

QuickBird-2 (pan,
multi), GeoEye-1

(pan, multi)

0.6 m, 2.4 m,
0.4 m, 1.8 m

Manual
digitization Buildings, roads

The conspicuous shortfalls of traditional remote sensing image analysis when con-
fronted with large volumes of VHSR imagery [30] have catalyzed a migration towards
computer vision-based algorithms, namely the convolutional neural network (CNN).
High spatial resolution images present scene objects much larger than the associated pixel
size, introducing complex properties such as geometry, context, pattern, and texture that
compose objects at multiple levels. Furthermore, higher spatial resolution significantly
increases intra-class spectral variability, given the increased number of pixels constructing
image features [31]. As such, traditional image analysis methods, namely per-pixel-based
approaches, are ill-equipped to handle VHSR imagery, whereas CNNs are better equipped.
For example, urban area extraction from coarse spatial resolution imagery may be satisfied
by an algorithm that solely exploits high reflectance in the near-infrared region (which is
characteristic of urban areas). However, as individual urban structures become visible at
finer resolutions, detecting these objects will require an algorithm that can exploit features
beyond the spectral reflectance values, such as edges, corners, and curves of buildings and
roads, geometric patterns visible on building rooftops, textural differences between human-
built structures and natural landscape backgrounds, etc. Through several processing layers,
CNNs can learn to optimize the convolutional filters required to extract these features at
multiple levels of abstraction, which are then assembled into feature representations used
to detect and classify scene objects.

Several studies have successfully implemented CNN algorithms, namely the Mask
R-CNN and the U-Net, for automated detection of various kinds of built infrastructure from
VHSR imagery at multiple scales. The Mask R-CNN performs object instance segmentation,
in which each individual object associated with a given class is detected, delineated with a
bounding box, and classified [32]. The U-Net performs semantic segmentation, in which
each pixel in an image is classified based on the detected object it is associated with.
However, while object instance segmentation would treat, for example, multiple buildings
of the same type as distinct structures, semantic segmentation would treat them as a single
entity and therefore does not count the number of individual structures. Therefore, training
the Mask R-CNN is more computationally intensive than training the U-Net, but both have
recently achieved favorable results in infrastructure detection from high spatial resolution
remote sensing imagery. For example, Tiede et al. tasked a Mask R-CNN with detecting
dwellings in Khartoum, Sudan, from 0.5 m Pléiades satellite imagery, achieving an F1 score
of 0.78 [33]. Wang et al. used an improved Mask R-CNN to detect rural buildings with
different roof types in Hunan Province, China, from high-resolution UAV imagery, reaching
an F1 score of 0.788 [34]. Li et al. demonstrated U-Net-based semantic segmentation
for building footprint extraction from WorldView-3 satellite imagery of Las Vegas, Paris,
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Shanghai, and Khartoum, achieving an F1 score of 0.704 [35]. Yang et al. tasked a modified
U-Net with extracting roads from aerial imagery in the Massachusetts Roads dataset and
DeepGlobe Road Extraction dataset, achieving F1 scores of 0.784 and 0.794, respectively [36].
However, deep learning-based infrastructure detection from VHSR imagery has so far not
been tested in the Arctic.

In this paper, we present the first study on CNN-based automated detection of built
infrastructure at two Arctic locations using VHSR imagery. Our overall objective was to
understand the ability of the U-Net CNN to perform semantic segmentation of sub-meter-
resolution satellite imagery for detection of built infrastructure in the Arctic. Target classes
included residential and commercial buildings, public buildings, industrial buildings, and
roads. Additionally, we conducted a systematic experiment to understand how image
augmentation improves the performance of the U-Net CNN when training data is limited.

2. Materials and Methods
2.1. Study Area and Data

We selected two study sites on the North Slope of Alaska: (1) Utqiagvik and (2)
Prudhoe Bay (Figure 1). Utqiagvik is the largest city of the North Slope Borough and
the 12th-most populated city in Alaska; therefore, infrastructure is strongly developed
there, with residential and commercial buildings, public buildings, pipelines, and roads
(Figure 2a,b). Prudhoe Bay is one of the most prominent industrial areas in the Arctic [16].
The Prudhoe Bay oil field comprises an extensive network of infrastructure supporting the
oil and gas extraction process, including multiple gathering centers, flow stations, pipelines,
and roads connecting all facilities (Figure 2c,d). Therefore, Utqiagvik provided training
samples for residential/commercial, public, and road infrastructure classes. Prudhoe Bay
provided training samples for an industrial infrastructure class and added to the road class.

To train and test the U-Net CNN, we utilized six VHSR commercial satellite images
in total from the WorldView-02 (WV-02) and QuickBird-02 (QB-02) sensors, two for the
Utqiagvik site and four for the Prudhoe Bay site. We strictly utilized the blue, green, red,
and near-infrared bands of the imagery. Specific details of the imagery used at each site,
including acquisition date, sensor, and spatial resolution, are given in Table 2. All of the
images were provided by the Polar Geospatial Center at the University of Minnesota.

2.2. Generalized Workflow

Our workflow rests upon four stages: (1) input preparation, (2) model training and
validation, (3) model evaluation, and (4) output postprocessing (Figure 3). Input prepa-
ration is based on two key operations. First, annotated infrastructure samples from each
image were rasterized, and then satellite images and corresponding annotated raster layers
for each site were split into smaller tiles sized at 256 pixels by 256 pixels. Second, these tile
pairs (both images and masks) were randomly partitioned into sub-datasets for training,
validation, and testing, utilizing an 80:10:10 split. Our training dataset consisted of 119 tile
pairs, and both our validation and testing datasets consisted of 17 tile pairs (153 tile pairs in
total). Once the input was prepared, we trained and validated the model, applying image
augmentation techniques to the training dataset in order to synthetically inflate its size.
Next, we evaluated the model’s performance on the testing dataset, which the model had
not previously seen, and obtained accuracy metrics and model predictions. Finally, we
performed postprocessing on the output by stitching the predicted tiles together into a
final map.
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Figure 1. (a) Inset map showing both study sites within the extent of the Arctic, with red boxes 
indicating each site. (b,c) depict the Utqiagvik and Prudhoe Bay study sites, respectively, and the 
satellite images (natural color composite) used to train and test the U-Net CNN. Annotated areas 
are outlined by red boxes. Imagery © DigitalGlobe, Inc. 

Figure 1. (a) Inset map showing both study sites within the extent of the Arctic, with red boxes
indicating each site. (b,c) depict the Utqiagvik and Prudhoe Bay study sites, respectively, and the
satellite images (natural color composite) used to train and test the U-Net CNN. Annotated areas are
outlined by red boxes. Imagery © DigitalGlobe, Inc.

2.3. Annotated Data Collection

In most remote sensing applications of a CNN, annotated data would need to be pro-
duced by drawing features of interest through an on-screen digitizing process. However, given
that infrastructure of major settlements is consistently monitored by some governments,
high-quality geospatial datasets are consistently maintained and can be utilized for CNN
development if one can gain access to them. In the case of this study, we were able to obtain
such a dataset. In addition, volunteered mapping efforts such as OpenStreetMap provide
global coverage of buildings and roads in several areas of the Arctic. However, quality
assessment must be performed to ensure locational accuracy before using OpenStreetMap
in CNN training, given inconsistencies due to the nature of this kind of data.
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Station 1 on Prudhoe Bay oil field (photo credits: Judy Patrick). 
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Figure 2. (a) Unpaved road in Utqiagvik surrounded by residential buildings (photo credits: Andrei
Taranchenko). (b) Residential neighborhood in Utqiagvik (photo credits: Native Village of Utqiagvik).
(c) Gathering Center 1 on Prudhoe Bay oil field (photo credits: Lucas Payne). (d) Flow Station 1 on
Prudhoe Bay oil field (photo credits: Judy Patrick).

Table 2. General characteristics of VHSR commercial satellite image scenes used to train and test the
U-Net CNN.

Study Area Sensor Acquisition Date Spatial Resolution (m)

Utqiagvik WV-02 8 September 2014 0.72 × 0.87
QB-02 1 August 2002 0.67 × 0.71

Prudhoe Bay WV-02 7 September 2014 0.50 × 0.50
WV-02 7 September 2014 0.50 × 0.50
QB-02 21 August 2009 0.62 × 0.58
QB-02 21 August 2009 0.62 × 0.60

Annotated data for the Utqiagvik study site comprised a geospatial vector dataset
of building footprints (polygon features) and road centerlines (line features), which were
digitized from 2019 aerial photography of the city by the North Slope Borough (NSB) GIS
division. (This imagery belongs to the NSB and was not a part of our dataset, but the data
layers extracted from the imagery were provided to us upon request). In the training data,
we applied a buffer to road centerlines to convert them to polygons. The optimal buffer size
was decided based on accurate overlapping between the polygon features representing the
roads and the actual roads in the imagery. In the NSB dataset, features corresponding to a
building footprint were classified as either a residential, commercial, public, or unoccupied
building. We omitted unoccupied buildings and merged the residential and commercial
classes together, as there were not enough commercial building features in the dataset
to train the U-Net to detect this type of infrastructure. Manual editing of this data was
conducted to ensure that polygon features corresponding to specific buildings and roads
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aligned with those structures in the satellite imagery, accounting for discrepancies between
the aerial photography used for digitization and the satellite imagery used for the analysis.
Furthermore, given the difference in acquisition dates of the aerial photography (2019) and
the satellite imagery (2002, 2009, 2014), either certain digitized structures were not present
in the satellite imagery, or structures present in the satellite imagery were not digitized.
As a result, some features had to be removed from the dataset, and missing structures had
to be digitized. Annotated data for the Prudhoe Bay study site comprised OpenStreetMap
data that provided footprints of industrial structures and roads. Manual editing of this
data was conducted to ensure that polygon features aligned with the industrial structures
and roads in the satellite imagery.
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The number of buildings and roads from each location that make up the dataset are
described in Table 3. These samples are then rasterized, since CNNs require their input
to be in the form of an image. After splitting the data into sub-datasets, we can measure
the size of each target class as the number of pixels in the labeled masks belonging to each
class, as seen in Table 4.

Table 3. Number of features (individual structures) belonging to each infrastructure type in
the dataset.

Residential/Commercial Public Industrial Road

Utqiagvik 1243 88 n/a 223
Prudhoe Bay n/a n/a 102 30

Table 4. Class sizes in each sub-dataset measured as number of pixels in the labeled masks.

Background Residential/Commercial Public Industrial Road

Training 6,528,038 352,686 155,131 525,418 237,511
Validation 883,507 71,180 33,795 54,917 70,713

Testing 809,311 52,387 30,600 177,327 44,487

2.4. Deep Learning Algorithm

We chose to task a U-Net CNN with semantic segmentation of VHSR satellite imagery
due to its success in various image analysis tasks and computational efficiency. The U-Net
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was first developed for biomedical image segmentation [37] and has since spread to a wide
range of applications, such as remote sensing. The U-Net is a fully convolutional neural
network defined by its U-shaped architecture, hence the name “U-Net,” that consists of an
encoding and decoding path. The encoding path is also known as the analysis path or con-
tracting path, and the decoding path is also known as the synthesis path or expansive path.
The former shapes the typical CNN, consisting of repeated application of convolutions,
each followed by a rectified linear unit (ReLU) and a max pooling operation. The function
of the encoding path is to reduce the dimensionality of the input layers and increase the
number of feature channels. In this route, a 3 × 3 convolution is followed by ReLU and
2 × 2 max pooling that downsamples and doubles the feature channels. On the other
hand, the decoding path functions opposite to the encoding path. It reduces the number
of channels and increases the spatial dimensions of the layers. The number of channels is
halved in an upsampling process using 2 × 2 convolution at the start of the decoding route.
Afterward, 3 × 3 convolution layers followed by ReLU are used. Skip connections are
used to concatenate the corresponding feature layer from the encoding path to recover the
information lost during downsampling in the encoding route. Finally, the dimension of the
layers is restored using 1 × 1 convolution to generate a pixelwise classified predicted map.

However, in order to account for limited training data, we implemented transfer
learning in order to leverage knowledge representations of low-level features (e.g., edges,
lines, corners) learned by networks that have been pre-trained on large datasets for other
computer vision tasks. We replaced the encoding path of the U-Net with a ResNet-50
backbone that was pre-trained on the ImageNet dataset. ResNet, or the residual neural
network [38], is a CNN that utilizes identity skip connections to address the degradation
problem that arises when accuracy gets saturated and degrades rapidly as network depth
increases. It is constructed by stacking multiple bottleneck residual blocks, which consist
of series of 1 × 1, 3 × 3, and 1 × 1 convolutions, as seen in Figure 4b. The backbone is
frozen so as to avoid losing any of the information that its layers contain during training.
Meanwhile, the U-Net decoder remains unfrozen and trainable in order to adjust to the
parameters of the pre-trained layers. Figure 4a depicts the architecture of our U-Net model
with a ResNet-50 backbone.
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2.5. Model Training

The model was constructed and trained using PyTorch 1.10 and the Segmentation
Models for PyTorch library (https://github.com/qubvel/segmentation_models.pytorch

https://github.com/qubvel/segmentation_models.pytorch
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(accessed on 1 April 2021)), with a hardware configuration of an Intel Core i7-10750H 6-Core
Processor and NVIDIA GeForce RTX 2060 with 6 GB of dedicated VRAM. Hyperparameters
for model training are listed in Table 5.

Table 5. Hyperparameters for model training.

Hyperparameter Value/Type

Input size 256 × 256 pixels
Batch size 8

Epochs 60
Loss function Dice Loss

Optimizer Adam
Learning rate 0.001

To account for limited training data, we employed image augmentation to synthetically
inflate the training data space through data warping, which generates additional samples
through transformations applied in the dataspace [39]. We created copies of existing image
tiles by applying four non-destructive geometric transformations that do not add to or
detract from an image’s information: random 90◦ rotation, horizontal flip (reflection across
horizontal axis), vertical flip (reflection across vertical axis), and transposition (reflection
across either diagonal axis). Figure 5 provides a diagram visualizing these transformations.
We conducted a systematic experiment to understand how these different transformations
improve the performance of the U-Net and determine the optimal set of augmentations.
The experiment consisted of six trials, in which we trained the model under different
conditions: one trial for each of the selected transformations applied to the training dataset
individually (four trials), one trial for all of the transformations applied together, and one
trial for no image augmentation.
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refer to horizontal and vertical flipping, respectively. “M2 reflection” and “M4 reflection” refer to
transposition.

2.6. Accuracy Assessment

The accuracy of infrastructure detection performed by the model was assessed through
standard semantic segmentation metrics: Recall, Precision, and F1 score. Recall represents
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the fraction of correctly labeled pixels of each class and is calculated as the ratio of positives
identified by the model to the actual number of true positives:

Recall =
True Positives

True Positives + False Negatives
(1)

Precision represents the fraction of detected pixels in each class that belong to the
assigned class and is calculated as the ratio of true positives compared to all positives
identified by the model:

Precision =
True Positives

True Positives + False Positives
(2)

F1 score combines both recall and precision together to assess overall model performance:

F1 = 2 × Recall × Precision
Recall + Precision

(3)

Recall, Precision, and F1 score were calculated for each target class. F1 score was averaged
across all classes for an overall assessment of model performance. Furthermore, accuracy
assessment was conducted for each trial of the augmentation experiment to determine the
optimal augmentation method(s). Finally, we utilized the confusion matrix to visualize
true and false positives and negatives for each class that the model was trained to detect.

3. Results
3.1. Quantitative Metrics

The results of model accuracy assessment and the augmentation experiment are
displayed in Table 6. Transposition and all augmentations applied together both yielded
the highest model accuracy, with average F1 scores of 0.83 and 0.82, respectively. These two
methods were considered to be the optimal augmentations, compared to the other four
methods that yielded significantly lower scores. The next highest average F1 score came
from the model trained on the dataset with random 90◦ rotation applied. This disparity
between the top two scores and the bottom four scores can be attributed to the fact that
either roads or public buildings were completely missed by the model in the bottom four
trials. The residential/commercial and industrial classes were the most stable in terms of
model detection. This may be attributed to the fact that they were better represented in
the training data compared to the public and road classes (Table 4). Furthermore, roads
at both study sites are largely unpaved and narrow, making it difficult for the model to
detect roads as features separate from the background. However, as shown, optimal image
augmentation methods can aid performance when training data is lacking.

Confusion matrices showing the number of correctly and incorrectly classified pixels
for each infrastructure class and augmentation trial are available in Figure 6 and corroborate
Table 6. These are a useful tool for visualizing the true and false positives and negatives
used to calculate the reported accuracy metrics, as well as understanding how the model
confuses classes during detection. It can be seen that there are varying sources of false
positives and negatives. In the two highest-scoring model trials (transposition and all
augmentations), confusion between infrastructure classes is largely reduced, and the only
significant source of confusion is misclassification of infrastructure as background and
vice versa. However, when less effective augmentation methods, or no augmentation, are
applied, infrastructure classes are confused for each other at significantly higher rates.
For example, public buildings are largely confused for residential/commercial and indus-
trial buildings when either horizontal/vertical flipping or no augmentations are applied.
Furthermore, the most notable difference in model confusion between the optimal and
less optimal augmentations is that no infrastructure classes were missed when the optimal
augmentations were applied, as seen in Table 6.
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Table 6. Per-class accuracy metrics and average F1 score resulting from augmentation experiment.
Table is organized by augmentation method in descending order of average F1 score.

Augmentation
Method Precision Recall F1-Score Average F1-Score

Transposition

Background 0.92 0.95 0.94

0.83
Road 0.73 0.65 0.69

Residential/Commercial 0.83 0.64 0.72
Public 0.91 0.94 0.93

Industrial 0.87 0.84 0.85

All

Background 0.93 0.94 0.94

0.82
Road 0.73 0.65 0.69

Residential/Commercial 0.81 0.65 0.72
Public 0.84 0.97 0.90

Industrial 0.86 0.87 0.87

Random
90◦ rotation

Background 0.89 0.96 0.93

0.69
Road 0.00 0.00 0.00

Residential/Commercial 0.85 0.69 0.76
Public 0.88 0.94 0.91

Industrial 0.88 0.86 0.87

None

Background 0.92 0.96 0.94

0.64
Road 0.77 0.67 0.71

Residential/Commercial 0.71 0.72 0.71
Public 0.00 0.00 0.00

Industrial 0.81 0.84 0.82

Horizontal flip

Background 0.91 0.95 0.93

0.63
Road 0.74 0.70 0.72

Residential/Commercial 0.60 0.77 0.67
Public 0.00 0.00 0.00

Industrial 0.85 0.76 0.80

Vertical flip

Background 0.93 0.93 0.93

0.62
Road 0.72 0.69 0.70

Residential/Commercial 0.51 0.72 0.60
Public 0.00 0.00 0.00

Industrial 0.82 0.88 0.85

3.2. Visual Results

In addition to quantitative evaluation, visual results are shown in Figures 7–11, which
were produced using the model with the highest average F1 score. Selected model predic-
tions on input tiles from the test dataset are shown in Figure 7, with each infrastructure class
and both Utqiagvik and Prudhoe Bay study sites being shown. A final map of predicted
infrastructure in Utqiagvik is shown in Figure 8.

Figures 9–11 show convolutional feature maps (CFMs) extracted during training from
the final activation function of each major stage of the model, as shown in Figure 4. A CFM
is the output of a convolution operation between a given filter (or kernel) and input image
(or output of a previous layer), and it is computed as the dot product of these two during a
sliding-window operation. Individual CFMs visualize the features that a CNN is learning
at a particular stage in the network. Viewing all the CFMs together from an entire training
process reveals the complete feature representation with multi-level abstraction that a
network has constructed for target features. In the U-Net encoder, convolutional filters
detect increasingly more abstract features, or low-level features, that are propagated to
the decoder, which constructs these into higher level features and eventually an output
segmentation map. Four CFMs are selected from each stage of the encoder and decoder,
serving as examples of the feature representations that the model constructs for each
infrastructure class. Ultimately, CFMs prove to be a useful diagnostic, as they allow
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researchers to internally assess the learning process at each stage and visually identify
where detection fails or succeeds.
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Figure 9. Four selected CFMs (Columns 2–5) from the final layer of each ResNet-50 backbone stage
and decoder block. First column contains the input image tile, and final column contains the true out-
put. Each feature map visualizes features learned by the model in detection of residential/commercial
buildings and roads. Imagery © DigitalGlobe, Inc.
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Figure 10. Four selected CFMs (Columns 2–5) from the final layer of each ResNet-50 backbone stage
and decoder block. First column contains the input image tile, and final column contains the true
output. Each feature map visualizes features learned by the model in detection of public buildings
and roads. Imagery © DigitalGlobe, Inc.
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Figure 11. Four selected CFMs (Columns 2–5) from the final layer of each ResNet-50 backbone stage
and decoder block. First column contains the input image tile, and final column contains the true
output. Each feature map visualizes features learned by the model in detection of industrial buildings.
Imagery © DigitalGlobe, Inc.

4. Discussion

In this paper, we presented the first exploratory study of automated Arctic built infras-
tructure detection from VHSR satellite imagery using a CNN. Only one previous study [22]
has successfully demonstrated automated detection of infrastructure with machine learning
and deep learning on the pan-Arctic scale, while others relied on manual digitization or
semi-automated analysis at local scales. This study served as an initial assessment of CNN-
based automated detection from VHSR satellite imagery by testing the methodology on
two Alaskan North Slope locations and five common infrastructure types. Overall, model
accuracy assessment shows that the U-Net CNN with a transfer learning approach can
successfully automate detection of various infrastructure types with high segmentation
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accuracy. Buildings for residential and commercial use, public use, and industrial use, as
well as roads, can all be detected and delineated as individual features (Figures 7 and 8).

We conducted an image augmentation experiment to specifically address the challenge
of limited training data that hampers most CNN-based detection tasks. Results show that
optimal augmentation methods can reduce inter-class confusion among infrastructure
types and improve the overall F1 score from a minimum of 0.62 to a maximum of 0.83
(Table 5). However, augmentation yielded virtually no improvement in the recall of the
residential/commercial and road classes, which was 0.65 for both of these classes when
all augmentation methods were applied. This indicates that the model still misses a large
portion of residential/commercial buildings and roads, either by completely failing to
detect a structure or not detecting the full extent of a structure. Ultimately, this implies that
there is a limit on the amount of synthetic inflation that image augmentation can induce
in small training datasets. Therefore, we expect to see improved performance in these
classes as we collect or produce more training samples. We recognize this to be the most
important scope of improvement for this work, as CNNs are “data-hungry” models and
can be drastically improved by training with more samples.

Furthermore, expanding the training dataset includes expanding the geographic extent
of automated infrastructure detection by sampling different communities and industrial
locations across the Alaskan North Slope and the broader pan-Arctic region. This will allow
us to assess the transferability of CNN-based automated infrastructure detection, which is
a significant step in developing our methodology because infrastructure and its landscape
context can vary widely across the Arctic. For example, infrastructure across different
settlements can vary in terms of size, shape, building material, density of surrounding
infrastructure, and more. In addition, landscape backgrounds differ across Arctic regions,
resulting in variability of contextual information that a CNN would need to recognize in
order to properly detect infrastructure. If the training data is unable to capture this inherent
variability, the operational utility of the CNN will be severely limited. Therefore, systematic
experimentation is required in order to understand the transferability mechanism.

Expanding the training dataset can also include enhancing the thematic depth of the
model to discern other infrastructure classes. As mentioned, in this study we focused on
roads and different building types, but there are several characteristic infrastructure types
that define the Arctic built environment which we have not addressed. These, include
impervious cover, gravel pads, and fuel and water pipelines, all of which are essential
structures for studying and understanding the interlinkages between permafrost distur-
bance and infrastructure in expanding industrial areas. Of particular relevance in Arctic
permafrost regions is piping infrastructure, which is largely constructed above ground
because it is easier to maintain when permafrost thaws and also reduces the risk of dis-
turbing permafrost. This makes remote sensing especially relevant in monitoring Arctic
infrastructure. However, experimentation in this aspect is necessary, given that as the
number of classes increases, the learning process for a CNN becomes more complex and
may lead to higher inter-class confusion, especially between linear features like roads and
pipelines that may appear similar in satellite imagery.

Finally, as these points of improvement are addressed and the automated built infras-
tructure detection workflow is refined, we will have the opportunity to incorporate it with
existing optimized automated detection workflows, such as the Mapping Application for
Arctic Permafrost Land Environment (MAPLE) [40,41]. MAPLE has successfully produced
the first pan-Arctic ice-wedge polygon map, with over 1 billion individual ice-wedge
polygons detected and classified, including mapped surface water as well. MAPLE is also
being expanded to automatic detection of ice-wedge troughs. As ice-wedge polygon type
(low-centered or high-centered) and growth of troughs can indicate permafrost degradation,
combining built infrastructure maps with ice-wedge polygon, ice-wedge trough, and water
maps can be used to identify areas where infrastructure is susceptible to the damaging
effects of permafrost thawing.
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5. Conclusions

Imagery-based infrastructure mapping of Arctic permafrost landscapes has been con-
strained to human-augmented workflows, namely manual digitization and semi-automated
workflows, on locally confined scales. Only one study has successfully automated mapping
on the pan-Artic scale but is limited to the use of 10 m Sentinel-1 and Sentinel-2 imagery
within a 100 km distance of the Arctic coast. The rapid influx of sub-meter spatial resolution
commercial satellite imagery into the Arctic science community provides the opportunity to
map infrastructure across the entire Arctic at a fine scale (<1 m). However, image analysis
workflows required for this task have not been developed or tested. In this study, we
applied the U-Net with a Res-Net 50 backbone, combined with image augmentation, to
automatically detect different infrastructure types in two Alaskan North Slope locations
(industrial Prudhoe Bay and the City of Utqiagvik). Our results show that with limited
training data, the U-Net can achieve an average F1 score of 0.83 in multi-class semantic seg-
mentation of VHSR satellite imagery for automated infrastructure detection when optimal
augmentation methods are applied.

While the U-Net shows promising ability in automatically detecting Arctic built
infrastructure, further studies are necessary to advance the geographic and thematic domain
of the workflow and fully understand its abilities in these avenues. Therefore, our future
work can focus on two main directions revolving around expansion of the training dataset:
(1) systematic experimentation on the transferability of the U-Net across Arctic locations;
(2) enhancing the thematic depth of the U-Net by adding more infrastructure classes to the
training dataset.
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