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Abstract: Landslide susceptibility evaluation (LSE) refers to the probability of landslide occurrence in
a region under a specific geological environment and trigger conditions, which is crucial to preventing
and controlling landslide risk. The mainstream of the Yangtze River in Yichang City belongs to the
largest basin in the Three Gorges Reservoir area and is prone to landslides. Affected by global climate
change, seismic activity, and accelerated urbanization, geological disasters such as landslide collapses
and debris flows in the study area have increased significantly. Therefore, it is urgent to carry out
the LSE in the Yichang section of the Yangtze River Basin. The main results are as follows: (1) Based
on historical landslide catalog, geological data, geographic data, hydrological data, remote sensing
data, and other multi-source spatial-temporal big data, we construct the LSE index system; (2) In this
paper, unsupervised Deep Embedding Clustering (DEC) algorithm and deep integration network
(Capsule Neural Network based on SENet: SE-CapNet) are used for the first time to participate
in non-landslide sample selection, and LSE in the study area and the accuracy of the algorithm is
96.29; (3) Based on the constructed sensitivity model and rainfall forecast data, the main driving
mechanisms of landslides in the Yangtze River Basin were revealed. In this paper, the study area’s
mid-long term LSE prediction and trend analysis are carried out. (4) The complete results show that
the method has good performance and high precision, providing a reference for subsequent LSE,
landslide susceptibility prediction (LSP), and change rule research, and providing a scientific basis
for landslide disaster prevention.

Keywords: Yichang section of the Yangtze River Basin; non-landslide sample selection; SE-CapNet;
landslide susceptibility evaluation; landslide susceptibility prediction

1. Introduction

In recent years, affected by global climate change, seismic activities, and accelerated
urbanization, geological disasters such as landslides, collapses, and debris flows have in-
creased significantly [1]. As a common geological disaster, landslides cause severe economic
losses and unfortunate casualties and seriously block transport lines and waterways [2,3].
Especially in recent years, accelerated global change and rapid urbanization and industrial-
ization have increased the likelihood of landslides, leading to more casualties and property
losses [4–6]. The mountainous and hilly landforms in the Yichang section of the Yangtze
River Basin are widely distributed. The geological environment is very fragile, and there
are many geological disasters such as landslides, collapses, and debris flow [7–9]. Especially
along the Three Gorges Reservoir area, the development of geological disasters is more
intense, which poses a threat to urban construction and residents’ production and life [10].
In recent years, accelerated global change, urbanization and industrialization have in-
creased the likelihood of landslides, resulting in more casualties and property damage [11].
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Landslide susceptibility evaluation (LSE) is the basis for landslide disaster risk assessment
and prediction prevention, which can help relevant departments take preventive measures
to reduce casualties and economic losses caused by landslides. Therefore, it is necessary to
carry out LSE in the Yichang section of the Yangtze River Basin.

With the development of 3S technology, extensive data mining, and artificial intelli-
gence, these technologies have been widely used in all walks of life [12–17]. LSE combined
with data mining technology can significantly improve the efficiency of data acquisition,
analysis, and processing and quickly and accurately establish a practical set of influencing
factors to promote the efficient application of model methods [18,19]. Research on LSE is
gradually divided into three categories: traditional regression analysis, machine learning
and its integration method, and deep learning [20–22]. The traditional regression analysis
methods mainly include frequency ratio, exponential entropy model, landslide density,
logical regression, evidence weight, and Fisher discriminant analysis [23,24]. These meth-
ods generally use the landslide list as the prediction variable and establish a statistical
regression model to predict the probability of landslide occurrence. However, there is a
certain degree of subjectivity in factor selection and weight (or other parameters) allocation,
so this method relies on expert experience to a certain extent [25]. Traditional machine
learning methods and ensemble techniques mainly include Artificial Neural Networks,
Random Forest (RF), Support Vector Machine, Classification, and Regression Tree Bag
Algorithm [26–28]. These methods have essential similarities in selecting key influencing
factors, reducing the influence of highly correlated factors on model generalization ability.
In addition, these methods can support the comprehensive analysis of various influencing
factors and better depict the nonlinear correlation between influencing factors and landslide
susceptibility [29,30]. Therefore, they can achieve relatively high LSE accuracy. The most
widely used deep learning methods include Convolutional Neural Networks (CNN) and
Support Vector Machine, RF and Logistic Regression, CNN and Support Vector Machine,
RF or Logistic Regression, Recurrent Neural Networks, CNN and Spatial Explicit Deep
Learning Neural Networks [31–33]. Compared with traditional machine learning methods,
deep learning has a more complex structure, which is more competitive in describing com-
plex nonlinear problems [34]. In addition, due to solid learning strategies, deep learning
can obtain better generalization ability than traditional machine learning.

However, in the LSE study, there is a problem that the accuracy of model training
is susceptible to sample quality [35,36]. The samples include landslide samples with
very high susceptibility or probability of 100% and non-landslide samples with shallow
susceptibility or probability of 0 [37]. Landslides samples can be determined by field
investigation and remote sensing interpretation of the landslide that has occurred, which is
authentic. However, most non-landslide samples are randomly or subjectively selected,
and the selected non-landslide grid cells cannot be well guaranteed to be “non-landslide”
with high probability. Therefore, the correct selection of non-landslide samples is essential
in ensuring sample quality and model accuracy [38]. Non-landslide samples are generally
selected by manual screening and statistical methods, including random, buffer, slope,
clustering. [39,40]. The random method is to generate non-landslide samples randomly
outside the landslide range [41]; like the random method, the buffering method buffers the
landslide and generates non-landslide samples in the buffer [42]; the slope method sets
the slope threshold to generate non-landslide samples in areas less than the threshold [43].
However, the non-landslides selected by these methods are only subjective speculation or
random selection of non-landslides, which cannot guarantee the low susceptibility of the
selected non-landslides. Compared with the first three methods, the clustering method
pre-classifies the study area according to certain rules and selects non-landslide samples
in areas with extremely low susceptibility with high rationality [44]. The non-landslide
samples selected by the clustering method are not very close to the landslide samples in
space, which improves the quality of the non-landslide samples, avoids the over-fitting of
the susceptibility model, and improves the evaluation accuracy.
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To sum up, in order to overcome the lack of accuracy in the selection of non-landslide
samples of landslides and to take into account a large number of influencing factors,
comprehensive sources, and high dimensions, we have carried out three aspects of re-
search on LSE: (1) Non-landslide samples selection based on DEC unsupervised learning;
(2) Establishment of a landslide susceptibility evaluation model based on SE-CapNet deep
learning technology; (3) Based on the analysis of the established LSE model and driving
mechanism, mid- and long-term prediction of landslide susceptibility to rainfall under
global change. Figure 1 shows the technical route of this paper.
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2. Study Area and Data
2.1. Study Area

Mountainous and hilly areas in the Yangtze River Basin, interlaced plains and lakes,
rich and varied topography, and abundant water resources are the basis for our survival
and economic development [45]. Yichang is located in the junction of the middle and lower
reaches of the Yangtze River at the lower end of the Three Gorges Reservoir area (Figure 2).
The famous Three Gorges Dam is built in Yichang City [46,47]. Therefore, the research on
resource protection and geological disaster prevention in the Yichang area of the Yangtze
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River Basin has significant practical value. The high mountains, hills, and plains in the
Yichang area of the Yangtze River Basin have complex geological conditions and frequent
geological disasters. It is one of the areas with severe geological disasters such as landslides,
debris flow, collapse, and ground collapse in Hubei Province [48,49]. According to statistics,
about 599 geological disasters occur in the study area [50,51]. Frequent geological disasters
seriously threaten people’s lives and property safety and significantly affect social stability
and local economic development [52]. Therefore, it is of great significance to strengthen the
monitoring and early warning research of the geological disaster susceptibility evaluation
in the Yichang section of the Yangtze River Basin if we are to protect people’s life and
material property from loss and the safety of the Three Gorges Reservoir area.
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Figure 2. Geographical location of the study area. (a) Hubei Province in China; (b) Study area in the
Hubei Province; (c) Yangtze River in the Yichang City.

2.2. Data
2.2.1. Landslide Inventory

As the first step of LSE, landslide investigation is necessary for modeling [53]. We
used the global landslide catalog (GLC) opened by NASA as the data source, which can be
downloaded and used free on Cooperative Open Online Landslide Repository (COOLR).
The landslide catalog included 7556 records of training, testing, and prediction data. The
data existed in the form of landslide points from 1996 to 2019. Among them, the landslide
data in the Yichang section of the Yangtze River Basin contain 1270 records, and each record
contains fields such as disaster type, county, township, village group, inducement, and area.
Figure 2c shows the distribution of landslide data in the Yichang section of the Yangtze
River Basin.
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2.2.2. Data Sources

LSE predicts the probability of geological disasters in an area according to the historical
disaster data given in the list. The data used usually include a variety of environmental
factors and historical records of geological disasters [53,54]. Therefore, studying various
influencing factors of landslide genesis is also necessary for LSM research. Based on
previous LSM studies in the Yangtze River Basin, we use elevation data, primary geological
and topographic data, and primary geographic data to produce LSE factors [55–57]. The
ground resolution of the Landsat-8 remote sensing image is up to 15 m, and its wavelength
range can be from 0.43 µm to 2.29 µm, including nine bands [58]. This paper mainly
extracts soil vegetation index, land use, road, and water distance index factors based on
Landsat-8 remote sensing image. Primary geological data from the National Geological
Database is used to draw stratigraphic lithology and the geological structure fault index
factor. Topographic data come from the free DEM products with a ground resolution of
12.5 m provided by Japan’s Advanced Land Observing Satellite (ALOS), which extracts
slope, aspect, and topographic factors. Table 1 shows the data in this paper.

Table 1. Details of the dataset used for LSE.

Data Name Data Source Resolution Purpose

GF-1
GF-2

Natural Resources Satellite Remote
Sensing Cloud Service Platform

2 m
1 m Landslide Inventory

Google Earth Local Space Viewer 2 m

Landsat-8 USGS 30 m Extraction of Vegetation Index, Road,
Water System, Land Use.

Fundamental terrain data NASA 30 m Extraction of topography, slope,
and aspect.

Fundamental geological data National Geological Archives of China —
Draw stratigraphic lithology,

geological disasters, and geological
structure.

Fundamental geographic data China Meteorological Data Network and
Hubei Provincial Geological Survey — Precipitation and mine data sources.

Administrative division data Global Administrative Division Database — Extraction of administrative
boundaries.

2.2.3. Indicator System

The geological conditions of the Yichang section in the Yangtze River Basin are com-
plex, and the occurrence of landslides is affected by many factors. By analyzing the
development law, temporal and spatial distribution characteristics of landslide disasters in
the Yichang section of the Yangtze River Basin, it is known that the landslide disasters in
the study area are mainly caused by the interaction of triggering factors such as topography
and geomorphology conditions, vegetation coverage and human activities. According
to previous research and survey results, 12 factors were selected from five categories: to-
pography, introductory geology, hydrological and soil conditions, surface coating, and
disaster-causing factors (Figure 3). Figure 4 shows a thematic map of the 12 factors in the
study area.
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Figure 3. Analysis of influence factor and landslide frequency ratio. (a) Slope. (b) Aspect.
(c) Landform. (d) Lithology. (e) Distance from fault. (f) Distance from water. (g) Domsoil. (h) NDVI.
(i) Rainfall. (j) Landuse. (k) Distance from road. (l) Distance from mine. Where, the Landslides ratio
is the gray histogram, indicating the proportion of landslides in each factor interval to all landslides;
the Area ratio is the blue histogram, indicating the proportion of the area of each factor interval to the
total area; the Frequency ratio is the yellow line graph, indicating the ratio of landslide proportion to
area proportion in each factor interval.
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Figure 4. Thematic map of factors. (a) Slope; (b) Aspect; (c) Landform; (d) Lithology; (e) Distance
from fault; (f) Distance from water; (g) Domsoil; (h) NDVI; (i) Rainfall; (j) Landuse; (k) Distance from
road; (l) Distance from mine.

(1) Topography

The slope is considered the critical topographic factor that directly affects the slope
stability [59]. The slope will affect the seepage process and stress field distribution. The
statistical relationship between slope and landslide in the study area is shown in Figure 3a.
About 80% of landslides are distributed in the range of 15–35◦, and the frequency ratio is
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more significant than 100%, indicating that the landslide mainly occurs on the slope with
medium slope.

Aspect is another crucial factor affecting the development of landslides, which will
affect rainfall leakage and runoff and the absorption of solar radiation, thereby indirectly
affecting the occurrence of landslides [60]. The slope direction of the study area is shown
in Figure 3b. The frequency ratios of the sunny slope, semi-sunny slope, and flat slope
are all greater than 1, indicating that the slope direction interval has a specific effect on
landslide occurrence.

The landslide development is closely related to landform, and their relationship is
shown in Figure 3c. The hilly area of the study area is the smallest, but the landslide disaster
point is about 35%, and the frequency ratio is about 2. It shows that hills have the most
significant impact on landslide development in the topography of the study area.

(2) Geological factors

Formation lithology plays an essential role in developing landslides, which mainly af-
fects the bedrock’s physical and mechanical properties and is an essential internal factor for
landslide disasters [61]. The strata in the study area are exposed from Paleozoic to Quater-
nary, and the lithology can be summarized as hard rock, harder rock, hard-soft-integrated,
weak rock, and extremely weak rock (Figure 3d). Spatial statistical analysis of disaster
points and lithological layers shows that landslides are developed in all strata, but weak
rock, and extremely weak rock and other low-strength strata are the most developed. The
development density of hard-soft-integrated is second, and the distribution of landslides in
hard rock is tiny.

The distance from the fault is also a common geological factor for LSE. The fractured
zone formed by the fault control has a soft surface or weak zone locally, and the rock and
soil strength are low and easy to be weathered and denuded. In particular, there are cut
slopes caused by artificial activities at the fractures, which are prone to landslide disasters
under the action of rainfall, weathering, and erosion. Therefore, the area close to the fault
fracture zone can easily become the most developed area of regional geological disasters
and hidden dangers within a specific range. Figure 3e shows that the area proportion and
landslide proportion of the study area from the fault distance between 0.5–1.0 km are the
highest, and the frequency ratio is greater than 1. We see that the closer the distance from
the fault, the higher the probability of landslide occurrence.

(3) Hydrological and soil conditions

The Yangtze River Basin is rich in water systems, and the river is densely distributed.
When the river erodes at the bottom of the slope, the bottom of the slope will be filled
with pore water, resulting in a decrease in slope stability. Therefore, the distance from
the water system is also an essential factor for LSE in this study area. The results in
Figure 3f further show that when the distance to the water system is less than 0.5 km, the
maximum frequency ratio is 2.47, followed by 0.5–1.0 km, and the frequency ratio continues
to decrease with the increase of the distance to the water body.

Due to the different domsoil, the characteristics of soil water content and viscosity
are also different, and so the friction degree between the affected body and the surface
of different soil types is significantly different. Figure 3g shows the soils in the study
area, which are mainly summarized into eleven categories, including Haplic Luvisols
(LVh), Haplic Alisols (ALh), Dystric Cambisols (CMd), Cumulic Anthrosols (ATc), Calcaric
Regosols (RGc), Eutric Planosols (Ple), Inland Water (WR), Ferric Alisols (Alf), Calcaric
Fluvisols (FLc), Eutric Fluvisols (Fle), and Humic Acrisols (Acu). Figure 3g shows that
the area ratio and landslide ratio of the LVh are the largest, which were 36.7% and 32.3%,
respectively, but the frequency ratio is only 0.8. The highest frequency ratio of RGc is 1.5,
and the next highest frequency ratio of ALh is 1.3. Although the area of the two soil types
and the proportion of landslides are not high, the occurrence of landslides is more frequent,
indicating that it has an important impact on the development of landslides.
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(4) Surface coverage

The vegetation index has a specific influence on slope stability, and its roots can im-
prove the shear strength of the soil. Leaf transpiration can promote groundwater discharge
and soil slope protection. Therefore, generally, the denser the vegetation, the better the
slope stability. It can be seen from Figure 3h that the area of NDVI in the study area
was the highest between 0.8 and 1, accounting for about 50%. The landslide frequency
ratio of NDVI < 0.6 is the highest, showing that landslide probability is higher in the low
vegetation area.

(5) Disaster-causing factors

â Rainfall

Rainfall is one of the most critical factors causing slope landslides. Since the study
area is in the subtropical climate zone with a mild and humid climate, abundant
rainfall, continuous rainfall, and other related functions are the main causing factors
for landslide development in this area. Based on the statistical analysis in Figure 3i,
the average annual rainfall is the highest in the range of 1000–1300 mm, and the
accumulation of rainfall will aggravate the occurrence of landslides.

â Human engineering activities

With the development of the social economy, the scale and intensity of human activi-
ties have become larger and larger, and their speed has exceeded the development
of natural geology, becoming a vast force affecting the development of landslides.
Human activities such as urban construction, highway reconstruction, and mineral
exploitation in the Yichang section of the Yangtze River Basin are directly or indirectly
related to landslide development. Therefore, we used land use, distance from roads
and distance from mines in LSE.

Land use types in the Yichang section of the Yangtze River Basin can be divided into
five categories: cultivated land, water system, forest land, unused land, and buildings
(Figure 3j). The statistical results show that the number of cultivated land landslides is the
least, and the frequency ratio is only 0.18. The highest proportion of landslides in unused
land is about 50%, and the frequency ratios to buildings are 1.37 and 1.41, respectively.
The frequency of landslides in a specific area is the highest, indicating that landslides in
woodland and buildings are the most developed.

The road is a kind of widely distributed artificial building. Road construction will
interfere with earthwork to a certain extent and indirectly lead to slope instability. The
frequency of landslides between different distances from the road in the study area is shown
in Figure 3k. According to the statistical results, the landslide accounts for a relatively high
proportion at 5 km and 30–50 km from the road. However, when it is farther away from
the road, the frequency ratio does not appear to be significantly reduced, indicating that
the road distance in the study area is not apparent for landslide development, which can
be used as an indirect adjustment factor.

The Yichang section of the Yangtze River Basin is rich in mineral resources gener-
ated by intense geological activities in the geological history period, accounting for 62%
and 51.2% of the discovered mineral types in the whole province and the whole country,
respectively. The risk of geological disasters caused by mining is severe. The landslide
frequency of the distance from the mine in the study area is shown in Figure 3l. We see
that the landslide occurs most frequently in the study area with a distance less than
7 km from the mine, and the frequency ratio is as high as about 2.0, followed by the
relatively developed within the range of 7–13 km. The smaller the distance from the
mine, the lower the landslide frequency is, indicating that mining has played a crucial
role in landslide development.
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3. Methodology
3.1. Non-Landslide Samples Selection Network Based on DEC

To overcome the limitations of large randomness and strong human dependence in the
selection of non-landslide samples in traditional methods, we use a typical unsupervised
DEC to select non-landslide samples. DEC is composed of stacked autoencoders and
soft allocation models [62,63]. DEC can learn latent feature representation and clustering
allocation as a joint model of dimensionality reduction and clustering. Compared with
K-means, Space Optimal Aggregation Model (SOAM), Density-Based Spatial Clustering of
Applications with Noise (DBSACAN), and other clustering methods, the stacked automatic
encoder architecture helps to reduce redundant information and high-dimensional noise,
which is convenient to solve the high-dimensional problem of multi-source heterogeneous
data [64]. As shown in Figure 5, the unsupervised DEC is composed of a fully connected
stacked automatic encoder (SAE) and soft allocation model of T distribution measurement,
which is trained by matching soft allocation with target distribution.
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The specific process of non-landslide sample selection is as follows. First, the DEC
neural network is used to cluster the landslide susceptibility in the study area systematically.
Then the non-landslides are selected from the extremely low prone areas of the preliminary
clustering results to ensure that the selected grid units have a very low probability of
landslide occurrence. Finally, LSE model based on SE-CapNet network is constructed based
on the sample data set composed of non-landslides classified and selected.

3.2. Capsule Neural Network Based on SENet

CNN can maintain the spatial invariance of input data or tolerate small spatial changes
through operations in the convolution and pooling layers [65]. Nevertheless, it loses
detailed information to a certain extent, especially for remote sensing images with rich
detail texture information. Aiming at the problem of feature information loss and poor
generalization ability caused by CNN classification of remote sensing images, we use
an improved Capsule Neural Network model (CapNet) based on Squeeze-and-Excitation
Model (SENet) model. CapNet used capsule to replace neurons in CNN, so that the network
can retain detailed attitude information and hierarchical spatial relationship between objects
and make up for the defects of CNN [66]. At the same time, the SENet model can obtain
the importance of each feature channel through learning in the training process of CapNet,
and it will automatically improve the valuable features according to the importance and
suppress the features that are not very useful for the current task, to obtain more accurate
susceptibility results [67]. As shown in Figure 6, the SE-CapNet network structure consists
of the SENet feature extraction part, the Capsule neuron part, the dynamic routing part,
and the classification capsule network part.
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(1) SENet Feature Extraction Network
SENet won the first place in the ImageNet2017 classification task. It adds processing

between adjacent two layers, making the information interaction between channels possible
and further improving the accuracy of the network [68]. As shown in Figure 7, SENet
mainly consists of two parts. In the Squeeze part, the global vision is obtained by increasing
the sensory area while reducing the dimensionality of the image data. The Excitation
section adds a fully connected layer to predict the importance of each channel, get the
importance of different channels, then act on the compressed feature map, and finally input
the feature map into the CapNet network.
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(2) Capsule neurons
The purpose is to fuse the features extracted from the previous convolution layer and

input them into the dynamic routing layer. The essence of the capsule neuron is similar to
the convolution layer, and each capsule layer corresponds to different input layers. In the
inner layer, the m-dimensional space of the input is mapped to the n-dimensional space of
the output by weight matrix processing.

(3) Dynamic routing
The dynamic routing algorithm mechanism measures the similarity between input

and output by calculating the dot product of the input and output of the capsule and
then updates the routing coefficient bij of the neural network according to the dot product
value [69]. Firstly, all bij is initialized to 0, and iterative calculation is started. Each iteration
first calculates the cij value by softmax function and then combines Uij, wij, and cij to do
linear summation to obtain Sj. Then Sj is input into the activation function Squash to
obtain Vj. Finally, Ûj|i and Vj is used to update the bij value. After all, calculations start the
next iteration and use three iterations for best practices in practice. The update expression
for bij is shown in Equation (1):



Remote Sens. 2022, 14, 2717 13 of 28

bij ← bij + Ûj|iVj (1)

The coupling coefficient cij is updated through the dynamic routing algorithm, but
the other convolution parameters of the entire network and wij in the capsule need to be
updated according to the loss function.

(4) Classification capsule
The multidimensional vector output by the classification capsule can be reduced in the

fully connectional layer and converted from vector to scalar. In the capsule network, the
fully connectional layer will integrate all the features obtained previously and enhance the
robustness of the network. Multiple fully connectional layers can also increase the nonlinear
expression ability of the network, which is more conducive to network learning. However,
the number of fully connectional layers and the number of neurons in each layer will
increase the number of parameters in the network and lead to over-fitting. Therefore, we
set the fully connectional layer to three layers, and the number of neurons in the last layer
should be consistent with the number of different categories in the classification results
of the selected dataset. The vector value from the classification capsule layer is converted
into scalar data in the fully connectional layer after the operation. After integration, it is
mapped to n classification nodes to realize the spatial transformation of features and output
the classification results.

3.3. Precision Evaluation Indicators

Usually, the magnitude of landslide and non-landslide samples is not the same. For
such unbalanced learning problems, it is challenging to obtain ideal results by using
classification accuracy alone to evaluate the model’s performance, leading to high accuracy
and low recall rate [70,71]. Therefore, in this study, we used the four statistical indicators
of accuracy, precision, susceptibility, and specificity, as well as the Receiver Operating
Characteristic (ROC) curve and the curve below, and Area Under Curve (AUC) based on
susceptibility and specificity to evaluate the performance of LSE model [72–74]. Among
them, sensitivity is the proportion of landslide samples in the correct classification to all
landslide samples; specificity is the proportion of non-landslide samples in the correct
classification to all non-landslide samples. Equations (2)–(5) shows how the indicator
is calculated.

Accurary =
TP + TN

TP + FP + TN + FN
(2)

Precision =
TP

TP + FP
(3)

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

FP + TN
(5)

TP (True Positive) and TN (True Negative) are the numbers of grids correctly classified,
while FP (False Positive) and FN (False Negative) are the numbers of grids wrongly
classified [75]. ROC curve is often used to evaluate the performance of diagnostic signals
and prediction models, with sensitivity as the Y-axis and Specificity as the X-axis. AUC
represents the ability of the model to predict landslide and non-landslide grids. When its
value is 1, it represents the perfect model, while 0 represents the invalid model.

4. Results
4.1. Training Based on Integrated Deep Learning Algorithm
4.1.1. Non-Landslide Samples Set Selection

In this paper, the frequency ratios of 12 environmental factors in the index system are
standardized as input variables of DEC, and the preliminary classification results are shown
in Figure 8. The natural breakpoint method was used to classify the susceptibility results of
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DEC landslide, and five categories were obtained: extremely high, high, medium, low, and
extremely low. The frequency ratio statistical results are shown in Table 2. It can be seen
from Table 2 that the proportions of each grade of LSE are extremely low, low, medium,
high and extremely high respectively. The extremely low susceptibility area accounts for
18.07% of the total area of the study area but only 8.46% of the total number of landslide
grid units. At the same time, the extremely high and high landslide susceptibility areas in
the study area contain about 62.11% of the landslide grid units, and the frequency ratio of
the extremely high and high landslide susceptibility areas accounts for 59.52% of the total
frequency ratio. The validity of the DEC-based LSE results has been shown.
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Table 2. DEC-Result.

LSE Area Ratio/% Landslide Ratio/% Frequency Ratio/%

Extremely high 29.24 32.35 110.64
High 15.39 29.76 193.37

Moderate 25.11 19.41 77.30
Low 12.40 10.25 82.66

Extremely low 18.07 8.46 46.82

Then the non-landslide grid cells were selected from the extremely low area of DEC
preliminary LSE results. To verify the rationality of the non-landslide sample selection,
some sample images were randomly selected and projected onto Google Earth (Figure 9).
Figure 9(a1) and Figure 9(a2) show that landslide samples are generally close to roads and
water systems, while Figure 9(a3) shows that landslides develop more widely in areas
with frequent human activities. It can be seen from the image of the example in Figure 9b
that the non-landslide samples are evenly distributed in urban areas, mountainous areas,
water systems, and so on. With gentle terrain, dense vegetation, and less human activities.
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Combined with prior knowledge, topographic data and hydrological data, it can be seen
that the locations of non-landslide samples and landslide samples are quite different,
indicating that the selection method of non-landslide samples based on DEC clustering
is reasonable.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 28 
 

 

frequent human activities. It can be seen from the image of the example in Figure 9b that 

the non-landslide samples are evenly distributed in urban areas, mountainous areas, wa-

ter systems, and so on. With gentle terrain, dense vegetation, and less human activities. 

Combined with prior knowledge, topographic data and hydrological data, it can be seen 

that the locations of non-landslide samples and landslide samples are quite different, in-

dicating that the selection method of non-landslide samples based on DEC clustering is 

reasonable. 

 

Figure 9. Examples of non-landslide sample. (a) Examples of landslide sample; (b) Examples of 

Non-landslide sample; (a1–a3) Landslide samples from different regions; (b1,b2) Landslide samples 

from different towns; (b3,b4) Landslide samples from different mountains; (b5,b6) Landslide samples 

from different mountains. 

4.1.2. Environment and Training Parameters 

In this study, 5621 landslide points in the whole province were randomly selected as 

positive samples, and the training samples of SE-CapNet model were constructed by us-

ing the selected 10,242 non-landslide points. At the same time, the study area was selected 

as the verification sample of the model. 

The experiment is carried out in a 16GB Windows 64bit operating system. The intel 

CORE i59th Gen CPU is configured, and the GeForce GTX 1650TI card is mounted. We 

Figure 9. Examples of non-landslide sample. (a) Examples of landslide sample; (b) Examples of
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from different towns; (b3,b4) Landslide samples from different mountains; (b5,b6) Landslide samples
from different mountains.

4.1.2. Environment and Training Parameters

In this study, 5621 landslide points in the whole province were randomly selected as
positive samples, and the training samples of SE-CapNet model were constructed by using
the selected 10,242 non-landslide points. At the same time, the study area was selected as
the verification sample of the model.
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The experiment is carried out in a 16 GB Windows 64bit operating system. The intel
CORE i59th Gen CPU is configured, and the GeForce GTX 1650TI card is mounted. We
select TensorFlow as a learning framework, mainly relying on libraries such as TensorFlow,
Keras, OpenCV, and PIL. The specific experimental environment configuration is shown in
Table 3.

Table 3. Experimental environment configuration.

Hardware Device CPU: Intel CORE i5 9th Gen
GPU: NVIDIA GeForce GTX 1650TI

System platform Windows10 64-bit
Development environment Python 3.6.5, TensorFlow-GPU 1.9.0, Keras 2.1.6

Compile environment Anaconda3, Jupyter

4.2. LSE Results from Integrated Deep Learning Algorithm
4.2.1. Accuracy Assessment and Algorithm Comparison

To verify the effectiveness of the proposed method, experiments were carried out on
the constructed landslide data set in RF, CNN, CapNet, and the SE-CapNet deep learning
algorithm integrated with this paper. Table 4 lists the precision index values used to assist
in evaluating the model’s performance. From the table, it can be seen that in terms of
sensitivity, the integrated algorithm in this paper obtains the maximum value (95.12%),
followed by the convolution neural network CapNet algorithm (91.37%), CNN (89.02%),
and RF (82.60%), which shows that the proportion of positive samples of landslide can be
detected by this method is high. In terms of specificity, RF achieved the value (89.27%),
followed by CNN (91.42%), CapNet (94.05%), and SE-CapNet (96.83%). In terms of accuracy
and precision, the integrated model in this paper still achieves the maximum value: 96.06%
and 96.82%. The proposed algorithm is superior to all models based on several important
metrics, except that RF exceeds the specific value. It indicates that the method in this paper
can meet the LSE.

Table 4. Comparison of precision index results.

Methods Accuracy (%) Precision (%) Sensitive (%) Specificity (%)

SE-CapNet 96.06 96.82 95.12 96.83
CapNet 93.30 94.29 91.37 94.05

CNN 91.57 92.36 89.02 91.42
RF 87.23 88.41 82.60 89.27

The ROC curve analysis of the model is shown in Figure 10. We use AUC value as
the primary criterion for evaluating various models. The comparison of AUC values
showed that all application models performed well in LSE (accuracy > 0.8). Compared
with the other three methods, the AUC value in this paper is the highest, reaching 0.973,
indicating that the method in this paper has the best performance in LSE. For CapNet
and CNN, their performance is as good as ever, 0.965 and 0.931, respectively. RF also
showed good generalization ability, and its AUC value was as high as 0.897. The method
has a strong classification ability, but it is not stable because the variables are randomly
selected and reclassified before each model training. The comparison results of the
above indicators show that the deep learning integration scheme makes the model
produce a diversified learning process, effectively reduces the generalization error
caused by various preferences, and improves the prediction ability of the vulnerability
evaluation model.
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4.2.2. Verification and Algorithm Comparison

According to the trained model, the data of the whole study area is used as the
model’s input, and the final susceptibility results obtained by the integrated algorithm
are shown in Figure 11d. Each grid point in the study area has the corresponding
probability value of landslide susceptibility. The probability of landslide susceptibility
is divided into five categories by using the natural breakpoint method: extremely low,
low, medium, high, and extremely high. According to the evaluation result map, the area
with high landslide susceptibility is consistent with the existing landslide area, mainly
distributed in the Yangtze River Mainstream Region, and the landslide susceptibility
on both sides of the watershed is generally high. The susceptibility evaluation results
of RF, CNN, and CapNet are shown in Figure 11a–c. The graph shows that the regions
with high susceptibility to the three methods are consistent with the distribution of
known landslide points, which is consistent with the results of this method. However,
the regions with high susceptibility in the final results of the above three methods are
smaller than those of the artificial neural network.

At the same time, to further compare the performance of the four methods, the
historical landslide disaster points in the study area are used to verify the results. The
statistical table is shown in Figure 12. It can be seen from the table that 1270 landslide points
in the known landslide points are located in the areas above the medium susceptibility
predicted by the model, including 412 high susceptibility areas and 512 extremely high
susceptibility areas, accounting for 73.05% of the total number of known landslides, and the
susceptibility evaluation effect is good. Compared with this method, there are 471 landslide
points in the high-prone areas of RF, accounting for 37.07% of the total landslides. There
are 751 landslide points in the high-prone areas of CNN, accounting for 59.12% of the total
number of landslides. There are 855 landslide points in CapNet, accounting for 67.35%
of the total number of landslides. The above four methods have certain applicability in
LSE, among which the method in this paper has the highest accuracy, indicating that the
LSE model based on integrated deep learning has the best effect. This is because after
the integration of SENet network, this method will obtain the importance of each feature
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channel through learning in the training process, and automatically improve the valuable
features according to the importance while suppressing the features that are not very useful
for the current task. As a result, the extremely high-prone area is large. At the same time,
the DEC is used to make the recognition rate of unbalanced landslide samples higher, so
the final result accuracy is higher than other algorithms.
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5. Discussions
5.1. LSE Results and Influencing Factors
5.1.1. Topography

(1) Slope: In the extremely low, low, medium, high, and extremely high-prone areas in
the study area, the slope of different regions is affected by the slope of different regions,
and the slope of different intervals is distributed in each grade. In this paper, the most
significant proportion of slope intervals in each grade is taken as the main influencing
factor (other factors are used in the same statistical method). The statistical analysis results
are shown in Table 5. It can be seen from the table that the slope ranges of the high and
extremely high-prone areas in this study area are 15–25◦ and 25–35◦, and the slope ranges
of the low and extremely low prone areas are >35◦ and <5◦, which is consistent with the
statistical characteristics that the landslide mainly occurs on the slope with the medium
slope in the evaluation index.

Table 5. LSE results and influencing factors.

LSE Extremely High High Moderate Low Extremely Low

Area ratio 14.67% 29.47% 30.24% 17.29% 8.33%
Slope 15–25◦ 25–35◦ 5–15◦ >35◦ <5◦

Aspect West, Southwest,
North

Northwest,
Northeast Southeast, East Plane South

Landform Hill Low mountains Moderate mountains Plane High mountains
Lithology Hard-soft-integrated Weak rock Extremely weak rock Harder rock Hard rock
Fault line 0.5–1.0 km <0.5 km 1.0–1.5 km 1.5–2.0 km >5.0 km
Distance from water <0.5 km 0.5–1.5 km 1.5–2.5 km 2.5–10.0 km >10.0 km
Domsoil CMd, RGc Alh, LVh Atc, Alf, WR Ple FLc, Fle, Acu
NDVI 0.4–0.6 0.2–0.4 0.6–0.8 0.8–1.0 0–0.2
Rainfall 1200–1400 mm 1100–1200 mm 1000–1100 mm <1000 mm 1400–1500 mm
Landuse Building Unutilized land Woodland Water Cultivated land
Distance from road 2.0–5.0 km 5.0–10.0 km 0.5–2.0 km <0.5 km >10.0 km
Distance from mine <7.0 km 7–13, 26–32 km 13–26 km 32–40 km >40 km

(2) Slope aspect: Slope aspect factors mainly control the degree of rock weathering,
which is one of the parameters that cause the development characteristics of geomorpholog-
ical differences. According to the statistical results, the areas with high and extremely high
susceptibility are mainly affected by the West, Southwest, North, Northwest, and Northeast,
indicating that the slope direction interval has a specific effect on landslide occurrence.
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(3) Geomorphology: The study area in this paper generally forms three basic geomor-
phologic types, namely, mountains, hills, and plains. The mountains and hills are mainly
distributed in the northwest of the study area, and the central and southeast of the study
area are mainly plains. The development of landslides is closely related to topography. The
hilly landform area in the study area is the smallest, but the proportion is the highest in the
highly prone area to landslides, followed by low and moderate mountains.

5.1.2. Geological Factors

(1) Engineering rock group: The stratigraphic lithology in the geological environment
is divided into five types according to the lithologic combination: hard-soft-integrated,
weak rock, extremely weak rock, harder rock, hard rock. The extremely weak rock group in
the study area is mainly distributed in the southeast, mainly composed of Quaternary clay
and sandy clay, and the hard rock group composed of volcanic rocks and metamorphism
is mainly distributed in the central and northern parts of the study area. After statistical
analysis, the high-prone areas and high-prone engineering rock groups in the study area
are mainly hard-soft-integrated and Weak rock, which are distributed in relatively weak or
weak rock groups such as Quaternary clay, Cretaceous Glutenite and Devonian shale and
limestone. In low and very low susceptibility areas, engineering rock groups are mainly
harder rock and hard rock, and hard or hard engineering rock groups such as volcanic rock,
metamorphic rock, dolomite, or limestone. The engineering rock group plays an essential
role in developing landslides, mainly by affecting the physical and mechanical properties
of bedrock and the accumulation body.

(2) Faults: The study area is located in the composite part of the southern section
of the third uplift belt of the first-order structure of the Neocathaysian system and the
Huaiyangshan type structure system in geological structure, and the fault structure is
mainly developed in the northern and northwestern parts of the study area. The closer the
distance from the fault, the larger the statistical area of the extremely high and high-prone
areas is, indicating that the closer the fault, the more unstable is the rock, and the looser the
soil, the higher is the possibility of a landslide.

5.1.3. Hydrology and Rainfall

(1) Hydrology: The Yangtze River is the main river in Yichang City. The river network
is dense, and the water is abundant. The distance from the water body can be used to
express the information about river development and river basin erosion, which is an
essential factor in regional ecological stability. The extremely high and high-prone areas in
this study area showed a high correlation with the distance from the river, and the area less
than 0.5 km was the most prone, followed by the 0.5–1.5 interval. The greater the distance
from the river, the lower the susceptibility.

(2) Rainfall: The rainfall index factor in the ecological environment is the crucial factor
affecting the shear strength of engineering slope in evaluating geological environment
carrying capacity. The rainfall in the study area varies from 1000 mm to 1500 mm, and the
rainfall in the Northwest and Northeast is less than 1000 mm. The middle and south area
is more prominent, about 1300 mm, and shows a trend of more in the middle and less on
both sides. After statistical analysis, the areas with extremely high and high susceptibility
in this study area are mainly distributed in areas more fabulous than 1200 mm.

5.1.4. Landcover

(1) NDVI: The results of LSE in the study area are approximately positively correlated
with the distribution of NDVI. The NDVI index of high and high-prone areas is generally
0.2–0.6, and the NDVI index of low and very low prone areas is generally between B0.8–1.0
and 0–0.2.
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(2) Soil types: The soil types in the study area are complex. In general, Dystric
Cambisols (CMd) and Calcaric Regosols (RGc) are the leading soil carriers in the high-
risk areas of the study area, while Eutric Planosols (Ple), Calcaric Fluvisols (FLc), Eutric
Fluvisols (Fle) and Humic Acrisols (Acu) do not use landslide development. The
susceptibility is low.

(3) Land use: Land use classification is a unit to distinguish the spatial and geographi-
cal composition of land use, showing the way and results of land use and transformation
and reflecting the form and use of land. The construction land in the study area is mainly
distributed in the Yangtze River and its tributaries, and woodland accounts for more than
69% of the total area. When the land use types in the study area are Building and Unutilized
land, the susceptibility is high.

5.1.5. Human Engineering Activity

(1) Road: The relevant factors of human engineering activities are negative factors
for LSE. In road construction, the damage to the slope and after the completion of road
construction, a series of transportation processes make the surrounding geological environ-
ment destroyed. The central and eastern parts of the road distribution are dense, the road
density in the region is large, and the susceptibility is the highest when the distance from
the road is between 2.0 and 5.0.

(2) Mines: The study area is rich in mineral resources, and mining activities are
becoming increasingly intense, which has caused a certain degree of damage to topography.
Waste rock and slag piles, tailings ponds, dumps, and transit sites will also produce
environmental problems such as land occupation, and waste gas and wastewater will also
be generated in production activities. The significant influence of the susceptibility is the
highest nearest distance from the mine, and the susceptibility gradually decreases with the
increase of distance.

According to the above statistical analysis, when the slope is 15–25◦, the slope direction
is West, Southwest, and North. The topography is Hill, the lithology is hard-soft-integrated,
the distance from the fault is 0.5–1.0, the distance from the water system is less than 0.5, the
soil types are CMd and RGc, the NDVI is 0.4–0.6, the rainfall is 1200–1400, the distance from
the road is 2.0–5.0, and the distance from the mine is less than 7.0, the landslide disaster is
most likely to occur in this study area.

5.2. LSE Driving Mechanism
5.2.1. Rainfall

Rainfall is one of the most critical factors causing slope landslides [76,77]. Since
the study area is located in the subtropical climate zone with a mild and humid climate,
abundant rainfall, and heavy rain or continuous rainfall, rainfall and other related functions
are one of the main external forces for slope deformation and failure in this area. The rainfall
driving factors in the study area can be mainly divided into early adequate rainfall and
current instantaneous rainfall.

(1) Pre-effective rainfall: pre-effective rainfall is adequate before landslide formation
and ultimately retained in the soil [78]. In the early stage, adequate rainfall enters the soil
and remains stagnant. This rainfall process produces changes in pore water pressure and
affects the stability of the slope. For soil landslides, rainfall is easy to penetrate the slope
because of its loose composition. Accordingly, soil water content increases bulk density
while reducing the shear strength of the sliding surface, and it is easy to induce a landslide.

(2) Instantaneous rainfall: The effect of rainfall on landslide is mainly manifested in
that a large amount of rainwater infiltrates, resulting in the saturation of the soil and rock
layer on the slope, and even the accumulation of water on the aquifuge below the slope,
thereby increasing the weight of the landslide and reducing the shear strength of the soil
and rock layer or the deformation characteristics of accumulation landslide induced by the
rise of library water level [79].
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5.2.2. Human Engineering Activity

The basic idea of land use prediction is to analyze and detect the driving factors of land
use change between different land use types according to the characteristics of historical
land use distribution and to predict the land use distribution in a certain period by using
the law of land use change in the past and the demand of land use in the future. The current
land use situation reflects the trend of landslides under the interference of the geological
environment on human economic and social activities. The magmatic activity in the study
area formed a variety of acidic to ultrabasic magmatic rocks in the pre-Sinian period and
produced a series of metamorphic rock series. In addition, the tectonic activity is vigorous,
and Yichang City is rich in mineral resources. Mineral development, road construction, and
other engineering activities cause land occupation and topographic and geomorphological
damage, which dramatically impacts the geological environment, making the LSE gradually
increasing trend [80].

5.3. Landslide Susceptibility Prediction

It can be seen from the above that, besides the relatively static disaster-causing factors,
the landslide susceptibility is also significant for its development. A landslide disaster
is a dynamic evolution system. In the context of climate changes, human engineering
activities, and other induced factors, the susceptibility of landslides itself will also change
accordingly. Therefore, it is a new challenge to analyze the impact of changes in induced
factors on landslide susceptibility and predict the trend of long-term landslide susceptibility
in response to global changes. Therefore, based on the above LSE, this chapter predicts the
rainfall information of the study area in 2035 and 2055 through rainfall change analysis and
takes the future rainfall as a new influencing factor of landslide susceptibility analysis to
predict and analyze the trend of long-term landslide susceptibility.

The original rainfall data in this paper comes from the Chinese meteorological data
website. There is a high correlation between the rainfall prediction value and the historical
rainfall by the atmospheric circulation model–AGCM model [81,82]. Therefore, based on
the annual rainfall from 2000–to 2019 (as shown in Figure 13), we used the AGCM model
to predict the annual rainfall in 2035 and 2055. The results are shown in Figure 14. The
spatial distribution shows a gradual decrease in rainfall from west to east. In 2055, the
overall annual rainfall increased, and the spatial distribution trend was the opposite in
2035. The rainfall showed a trend of high in the east and low in the west. Overall, in the
early 21st century, the annual rainfall in the region has decreased and will increase in the
middle and late stages. The trend is consistent with the impact assessment report of climate
change results in the Yichang area of the Three Gorges Reservoir area.

Taking the rainfall prediction data as a new influencing factor and based on the
vulnerability model established in this paper, the LSE prediction results in 2035 and 2055
can be obtained (Figure 15). The high susceptibility areas in 2035 are still concentrated
in the coastal areas of the Yangtze River Basin and the main tributaries, while the low
susceptibility areas are mainly distributed in high mountains and woodland areas far from
rivers and low human activities. Figure 15 shows that the landslide susceptibility in 2050
has a significant change compared to 2030. The landslide susceptibility in Zigui area in
the western part of the study area and Zhijiang area in the eastern part of the study area is
indigenous. The landslide susceptibility in the southern part of Zigui will decrease, while
the landslide susceptibility in the southeast of Zhijiang will increase. In general, the future
landslide susceptibility in the study area has an overall increasing trend with the change of
rainfall, while it will decrease in some areas. In the early stage, the landslide susceptibility
is mainly concentrated in the western Zigui area, while in the late stage, it is transferred to
the eastern Zhijiang area.
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The results show that the landslide disaster system is a dynamic evolution system.
Under the background of climate, human engineering activities, and other environmen-
tal factors, landslide susceptibility will also change accordingly. Therefore, analyzing
the impact of environmental factors on landslide susceptibility and predicting the trend
of long-term landslide susceptibility can play a guiding role in dealing with the new
challenges faced by landslide disaster prevention and mitigation under the conditions
of global change.

6. Conclusions

We construct an index system to simulate the landslide susceptibility in the Yichang
section based on multi-source spatio-temporal big data such as historical landslide catalog,
geological data, geographical data, hydrological data, and remote sensing data of the
Yangtze River Basin. For the first time, DEC and SE-CapNet deep integration networks
are involved in selecting landslide samples and the training of susceptibility evaluation,
revealing the primary driving mechanism of landslides in the Yangtze River Basin. At the
same time, based on the constructed susceptibility model and rainfall prediction data, we
carried out the mid-long term LSP and trend analysis in the study area. The conclusions
and results of this paper are as follows:

(1) Based on the SE-CapNet vulnerability evaluation model after DEC non-landslide
samples selection, we ensure the quality of non-landslide samples selection, retains the
hierarchical relationship between factors, and automatically learns the importance of factors
to enhance valuable features. Therefore, the experimental results are better than other
models. The four precision index values of sensitivity, specificity, accuracy, and AUC all
reach the highest values in the method comparison, which are 95.12%, 96.83%, 96.06%, and
97.3%, respectively, showing the best performance in LSE.

(2) Based on the SE-CapNet susceptibility results, the study area’s hazard-causing
factors and hazard-causing factors were extracted and statistically analyzed. The effects of
each factor on the landslide susceptibility in the study area were evaluated, providing a
reference for the subsequent LSE and variation study and providing a scientific basis for
the prevention and control of landslide disasters.

(3) Based on the predicted future rainfall data as a new factor for LSE, we carried out
the prediction and variation trend analysis of medium and long-term landslide suscepti-
bility in the Yichang section of the Yangtze River Basin. The results show that with the
change in rainfall in global change, the landslide susceptibility will also change accordingly.
In other words, the landslide susceptibility in the study area will increase while it will
decrease in some areas. In the early stage, the susceptibility is mainly concentrated in the
eastern part, and in the late stage, it will be transferred to Zigui area.

Overall, this method has good performance and high precision, providing a reference
for subsequent landslide susceptibility mapping, prediction and change rule research, and
providing a scientific basis for landslide disaster prevention. However, many environmental
and social factors affect the changes of future climate and human engineering activities.
There is a certain degree of uncertainty in the future scenario predicted based on its
historical change rule. Therefore, the uncertainty of predicting landslide disaster risk
remains inevitable under the background of future changes.
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