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Abstract: The precise classification of crop types using hyperspectral remote sensing imaging is an
essential application in the field of agriculture, and is of significance for crop yield estimation and
growth monitoring. Among the deep learning methods, Convolutional Neural Networks (CNNs) are
the premier model for hyperspectral image (HSI) classification for their outstanding locally contex-
tual modeling capability, which facilitates spatial and spectral feature extraction. Nevertheless, the
existing CNNs have a fixed shape and are limited to observing restricted receptive fields, constituting
a simulation difficulty for modeling long-range dependencies. To tackle this challenge, this paper pro-
posed two novel classification frameworks which are both built from multilayer perceptrons (MLPs).
Firstly, we put forward a dilation-based MLP (DMLP) model, in which the dilated convolutional layer
replaced the ordinary convolution of MLP, enlarging the receptive field without losing resolution and
keeping the relative spatial position of pixels unchanged. Secondly, the paper proposes multi-branch
residual blocks and DMLP concerning performance feature fusion after principal component analysis
(PCA), called DMLPFFN, which makes full use of the multi-level feature information of the HSI.
The proposed approaches are carried out on two widely used hyperspectral datasets: Salinas and
KSC; and two practical crop hyperspectral datasets: WHU-Hi-LongKou and WHU-Hi-HanChuan.
Experimental results show that the proposed methods outshine several state-of-the-art methods,
outperforming CNN by 6.81%, 12.45%, 4.38% and 8.84%, and outperforming ResNet by 4.48%,
7.74%, 3.53% and 6.39% on the Salinas, KSC, WHU-Hi-LongKou and WHU-Hi-HanChuan datasets,
respectively. As a result of this study, it was confirmed that the proposed methods offer remarkable
performances for hyperspectral precise crop classification.

Keywords: hyperspectral remote sensing image; fine crop classification; Convolutional Neural
Network; multilayer perceptron; feature fusion

1. Introduction

Hyperspectral imaging instruments can capture rich spectral signatures and intricate
spatial information of observed scenes [1]. Plentiful spectral signatures and spatial infor-
mation of hyperspectral images (HSIs) offer great potentials for fine crop classification [2,3]
and detection [4,5]. Therefore, hyperspectral remote sensing can obtain the spectral charac-
teristics and their differences more comprehensively and meticulously than panchromatic
remote sensing [6]. Therefore, this paper uses hyperspectral techniques to finely classify
crops and to promote the development of specific applications of hyperspectral techniques
in agricultural remote sensing, such as monitoring the development of agriculture and
optimizing the management of the agricultural industry.

Many methods have been applied to hyperspectral image classification in recent years.
Early-stage classification methods are support vector machine (SVM) [7], random forest
(RF) [8], multiple logistic regression [9] and decision tree [10], which can provide promising
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classification results. What is more, these classification methods can only extract the shallow
feature information of hyperspectral images, which have limited ability to handle the highly
nonlinear HSI data and limit the further improvement of their classification accuracy.

Recently, deep learning-based models have also been extended to HSI classification.
In [11], Chen et al. used a deep stacked auto-encoder (SAE) to extract features from the
spectral domain for HSI classification tasks. In [12], Tao et al. introduced a modified auto-
encoder model, called multiscale sparse SAE, to construct two variants of feature-learning
procedures for sparse spectral feature learning and multiscale spatial feature learning from
unlabeled data in HSIs. Sun et al. proposed a hybrid classification method combined
deep belief network (DBN) with principal component analysis (PCA) to improve the HSI
classification performance [13]. Chen et al. introduced the Convolutional Neural Network
(CNN) into HSI classification in [14]. In this paper, a regularized deep feature extraction (FE)
method is presented for HSI classification using CNN. Zhang [15] proposed a novel spatial
residual block combined parallel network, which extracted rich spatial context information
to improve hyperspectral classification accuracy. Kanthi et al. [16] proposed a new 3D deep
feature extraction CNN model for HSI classification in which the HSI data are divided into
3D patches and fed into the proposed model for deep feature extractions. Zhang et al. [17]
proposed a multi-scale dense network for HSIs, which can extract more refined features
and make full use of multi-scale features. Zhu [18] proposed a self-supervised contrastive
efficient asymmetric dilated network for HSI classification, which designed a lightweight
feature extraction network EADNet in the contrastive learning framework.

While CNN-based models have yielded positive scores in HSI classification, the
complexities intrinsic to remote-sensing hyperspectral images retain limitations concerning
the performance of numerous CNN models. First, the parametrization of CNNs multiplies
as convolution layers multiply exponentially and becomes larger as the computational
capabilities rise. Additionally, the computational has turns into a bottleneck for practical
implementations due to the long runtime of multiplication and summation. Lastly, the
translation invariance and local connectivity of CNNs can interfere with the effectiveness
of HSI classification.

MLP, as a neural network with fewer constraints, can eliminate the adverse effects of
local connectivity and focus on spatial structure and information. It has been proved to be a
promising machine-learning technology. Ilya [19] proposed an architecture based on MLP,
including channel-mixing MLPs and token-mixing MLPs. However, the MLP-Mixer can
achieve performance comparable to CNN. Yu [20] proposed a novel pure MLP architecture,
which only contains channel-mixing MLPs. It devised a spatial-shift operation for achieving
the communication between patches and attained higher recognition accuracy than the
MLP-Mixer. Lian [21] proposed an Axial Shifted MLP architecture that pays more attention
to local feature interaction. Yu [22] improved the Spatial-Shift MLP Architecture (S2-MLP)
for vision backbone to adopt smaller-scale patches and use a pyramid structure to boost
image recognition accuracy. Chen [23] presented a simple MLP-like architecture, Cycle-
MLP, a versatile backbone for visual recognition and dense prediction, which maintained
computational complexity and expanded the receptive field to some extent.

MLP solves translation invariance and local connectivity problems, and residual blocks
preserve original information to prevent model degradation and facilitate rapid model
effects [24]. Multi-branch feature fusion can make full use of different levels of features.
Therefore, we proposed two MLP-based classification frameworks: a Dilation-based MLP
(DMLP) model, and DMLP combined with feature fusion network (DMLPFFN) to improve
the different level feature representation capability of the model. As a summary, the
following are the main contributions of this study.

1. MLP, as a less constrained network, can eliminate the negative effects of translation
invariance and local connectivity. Therefore, this paper modified MLP combined
with dilated convolution to fully obtain spectral–spatial features of each sample and
improve HSI remote sensing scene classification performance, called DMLP. The
dilated convolutional layer replaced the ordinary convolution of MLP, which can



Remote Sens. 2022, 14, 2713 3 of 25

enlarge the receptive field without losing resolution and keep the relative spatial
position of pixels unchanged.

2. This paper composes multi-branch residual blocks and DMLP to form a multi-level
feature fusion network, called DMLPFFN. Firstly, the residual structure can retain the
original characteristics of the HSI data, and avoid the problems of gradient explosion
and gradient disappearance in the training process. In addition, DMLP can improve
the feature extraction capability of the residual blocks and strengthen the model with
essential features while retaining the original features of the hyperspectral data. In
DMLPFFN, three branches of features are fused to obtain a feature map with more
comprehensive information, which integrates the spectral information, spatial context
information, spatial feature information and spatial location information of HSI to
improve classification accuracy.

3. Comprehensive experiments are designed and executed to prove the effectiveness of
DMLPFFN by different hyperspectral datasets. DMLPFFN achieved better classifica-
tion performance and generalization ability for fine crop classification.

The rest of this article is organized as follows. Section 2 describes our proposed clas-
sification approach in detail. Section 3 reports the experimental results and evaluates the
performance of the proposed method. The application of the model to fine crop classifica-
tion is given in Section 4. Section 5 analyzes how to choose experimental parameters in
DMLPFFN and Section 6 gives the conclusion.

2. The Proposed MLP-Based Methods for HSI Classification

Figure 1 shows the overall framework of our proposed DMLPFFN for HSI classifica-
tion, which takes the WHU-Hi-LongKou dataset as an example. First, principal component
analysis (PCA) is applied to the original HSI to reduce its spectral dimension to weaken
the Hughes phenomenon and decrease the burden of model training. At first, the DMLP
is structured by altering the normal convolution with the dilated convolution in the local
perceptron module of the MLP, thus facilitating the aggregation of contextual information
without conceiving a loss of feature map resolution so as to upgrade the classification
performance of hyperspectral features.

In addition, DMLPFFN combines residual blocks of different sizes and DMLP to obtain
three feature extraction branches, which can fuse three different levels of features and
achieve feature maps with more comprehensive information. In the DMLPFFN, multiscale
features of the HSI are extracted by a hierarchical different-scale feature extraction branches
at different stages of the network. The low-level feature extraction branch of DMLPFFN
extracts texture feature information such as color and the edge of ground objects, the
middle-level branch extracts regional information and high level is used to extract semantic
information with DMLP. The feature fusion is then performed by element summation of
the results of the three branches, which can achieve feature maps with more comprehensive
information. Then, the global average pooling transforms the feature maps into feature
vectors and subsequently obtains the classification results by the softmax function.
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Figure 1. Framework of the proposed DMLPFFN for HSI classification. 
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Figure 1. Framework of the proposed DMLPFFN for HSI classification.

2.1. The Proposed Dilation-Based MLP (DMLP) for HSI Classification

Figure 2 shows the overall architecture of the proposed DMLP for HSI classification.
The network consists of the global perceptron module, the partition perceptron module
and the local perceptron module. Since the MLP has a more powerful representation than
convolution, we propose DMLP to accurately represent the feature location information,
and retain spatial resolution without loss of detail information.
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Figure 2. The structure of DMLP for HSI classification.

2.1.1. The Global Perceptron Module Block

It is assumed that the HSI dataset is size H ×W × nBand, where H and W represent
spatial height and width, and nBand is the number of bands. First, each pixel of the
hyperspectral image is processed with a fixed window size y× x, and a single sample with
a shape of y× x× nBand is generated. The global perceptron uses shared parameters for
different partitions, diminishing the parameters taken for computation and increasing the
connection and correlation between the partitions. The global perceptron module block
consists of two branches. The first branch splits up the input hyperspectral feature image.
The hyperspectral feature map changes from (H1, W1, C1) to (h1, w1, O). H1, W1, C1 indicate
the height, width and number of input channels of the input hyperspectral feature map. h1,
w1, O, respectively, represent the height, width and number of output channels of the split
hyperspectral feature image.

In the second branch, the original feature map (H1, W1, C1) is average pooled, and the
size of the hyperspectral feature map becomes (h, w, O) as follows:

h1 =
H1

h
, w1 =

W1

w
(1)

where h and w indicate the height and width of the hyperspectral feature image after
average pooling; the second branch uses h and w to obtain a pixel for each hyperspectral
feature image, and then feeds them though batch normalization (BN) and a two-layer MLP.
The hyperspectral feature map (h, w, O) is sent to a BN layer and two fully connected layers.
The Rectified Linear Unit (ReLU) function is introduced between the two fully connected
layers to effectively avoid gradient explosion and gradient disappearance. For the fully
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connected layer, X(in) and X(out) represent input and output; the kernel W ∈ RQ×P is the
matrix multiplication (MMUL) defined as follows:

X(out) = MMUL
(

X(in), W
)
= X(in) ·WT (2)

The hyperspectral vector was transformed into (1, 1, C1) by the BN layer and two fully
connected layers. Then, the hyperspectral feature images were obtained after all branches
were added. Next, we directly fed the input hyperspectral feature into partition perceptron
and local perceptron without splitting.

2.1.2. The Partition Perceptron Module Block

The partition perceptron module block contains a BN layer and a group convolution.
The input of the partition perceptron is (h, w, O). After the BN layer and group convolution
processing, (h, w, O) becomes the original hyperspectral feature input (H1, W1, C1). Y(out) ∈
RC1×H1×W1 indicates the output hyperspectral feature and can be obtained as follows:

Y(out) = g
(

Y(in), F, g, p
)

, F ∈ RC1/g×K×K (3)

where p is the number of pixels filled. F ∈ RC1/g×K×K is the convolution kernel and g
indicates the number of convolution groups.

2.1.3. The Local Perceptron Module Block

To enhance the extraction of high-level semantic information from hyperspectral
feature maps without multiplying the calculation parameters, the local perceptron module
introduces a dilated convolutional layer [25] and BN layer. First, the local perceptron
module simultaneously sends the segmented hyperspectral feature image (h, w, O) to the
dilated convolution layer. Then, the feature graph is fed into the BN layer. Finally, the
output of all convolution branches and the partition perceptron is summarized as the
final result.

Specifically, the dilated convolutional layer uses the odd–even mixed dilation rates to
stack in each chain, resulting in the expanded receptive field. In addition, under the premise
of the same receptive field, the dilated convolution with increased dilation rate consumes
fewer training parameters than the extended receptive field with a large convolution kernel.
The calculation of the size of the dilated convolution kernel and the receptive field is shown
in Formulas (4) and (5), respectively:

fn = fk + ( fk − 1) ∗ (Dr − 1) (4)

lm = lm−1 +

[
( fn − 1) ∗

m−1

∏
i=1

Si

]
(5)

fk represents the size of the original convolution kernel; fn represents the size of the dilated
convolution kernel; Dr represents expansion rate; lm−1 represents the receptive field size
of the (m− 1) layer; lm is the size of the m layer receptive field after the convolution; Si
represents the step size of layer i.

The equivalently fully connected layers (FC) kernel of a Dilated Conv kernel is the
result of convolution on an identity matrix with proper reshaping. Formula (6) shows
exactly how to build W(F,p) from F and p.

W(F,p) = DilatedCONV(Y, F, p), (Chw, Ohw)T (6)

The convolution after multiple superimpositions of the expansion may lead to a grid
effect, as shown in Figure 3. This will cause some dilution between pixels, which causes
some pixels to be omitted, resulting in the loss of local information and undermining the
continuity of information.
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Considering the grid effect, the design of the expansion rate in the DMLP model
proposed in this paper follows Equation (7).

Mi = max[Mi+1 − 2ri, Mi+1 − 2(Mi+1 − ri), ri] (7)

where ri is the expansion rate of layer i and Mi is the maximum expansion rate of layer i.
Mixed dilated convolution requires that the expansion rate of superposition convolution
cannot have a common divisor greater than 1. As shown in Figure 4, in this paper, the
method of mixed parity expansion rate is used to expand the convolution kernel, and the
expansion rate is set to the cyclic structure [1,2,5], which can cover every pixel on the image
to avoid information loss.
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2.2. The Proposed DMLPFFN Model for HSI Classification

Features at various levels contain diverse information distribution. The lower-level
features contain rich spatial structure information, but their high resolution leads to weak
global background information. The higher-level features have rich semantic information
and can effectively classify hyperspectral images, but their poor resolution lacks spatial
details for the hyperspectral images [26]. For this reason, the fusion of these different
levels of feature information can significantly strengthen the classification accuracy of
hyperspectral images. The paper proposes DMLPFFN, which can extract sufficiently
different level features by fusing three feature extraction branches, as shown in Figure 1.

2.2.1. Fusion of Multi-Branch Features

As the layer of the network deepens, the feature information obtained during the
feature extraction of the convolutional network will be different for each branch. Figure 5
shows the structure of residual blocks with DMLP, called the adjacent edge low-level
feature extraction branch (the left branch in Figure 1), which is used to to obtain texture
characteristic information such as the color and border of the ground target.
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The residual block is introduced to connect each layer to other layers in a feed-forward
fashion. According to the structure of the residual unit, X represents input, H(x) represents
output and F(x) represents a residual unit. The residual unit carries out identity mapping
of input at each layer from top to bottom, and the features of input are learned to form
the residual function [27]. Then, the output of the residual unit becomes H(x) = F(x) + x.
Therefore, the residual function can deal with more advanced abstract features when the
number of network layers increases, and is easier to optimize. The calculation process of
the residual element is shown in Formula (8):

F(x) = W2σ(W1x) (8)

where σ stands for nonlinear function ReLU and W1 and W2 are the weights of layer 1 and
layer 2, respectively. Then, the residual unit goes through a shortcut and a second ReLU
layer to obtain the output H(x):

H(x) = F(x, {Wi}) + x (9)

When the dimension size of the input and the output needs to be changed, a linear
transformation can be performed in a shortcut operation, as shown in Formula (10):

H(x) = F(x, {Wi}) + Wsx (10)

By stacking multiple residual blocks, the extracted features become increasingly dis-
criminative. Then, we connect the output of the residual block to the input of the DMLP.
H(x)(in) and X(out) represent input and output and the kernel W ∈ RQ×P is the matrix
multiplication (MMUL) defined as follows:

X(out) = MMUL
(

H(x)(in), W
)

(11)

This structure extracts more abstract features and discards redundant information
through the DMLP module. The introduction of DMLP brings fewer parameters and higher
operational efficiency and speed compared to simply increasing the depth of the residual
network. In addition, it improves the global feature learning capability and the nonlinearity
for the model, resulting in a better abstract representation of the model.

The middle-level branch focuses on extracting regional information with a similar
structure of a low-level feature extraction branch. Middle-level features focus more on
regional features than lower-level features, which is of great significance to the extraction
of spatial structure features of HSIs. The high-level branch uses DMLP to extract global
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features, which keeps the relative spatial position of pixels unchanged and obtains the
context information of the HSIs.

In detail, assume that O1, O2 and O3 refer to the outputs of the low-, middle- and
high-level feature extraction branch, which has 16, 32 and 64 feature maps, respectively.
Then, the resultant maps of the three branches are convolved with 64 kernels of size 1 × 1
in this paper. By means of such convolution operations, the number of feature maps of
O1, O2 and O3 all become 64. Eventually, feature fusion can be conveniently performed by
element summation as follows:

T = ∑3
i=1 & ∑3

j=1 Pooling
(

fi
(
Oj
))

(12)

where T represents the fused features, f1, f2 and f3 are the dimension matching function
and Pooling is the global averaging function.

The proposed DMLPFFN model enhances the resemblance between the same hy-
perspectral feature objects and the variability between the exotic objects to accomplish
high-precision classification of crop species.

2.2.2. Feature Output Visualization and Analysis

In order to better analyze the characteristics of feature extraction of DMLPFFN, this
paper visualizes the feature maps of different branches, as shown in Figure 6.
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Figure 6. Feature output visualization. (a) HSI; (b) low level; (c) middle level; (d) high level.

Figure 6b–d shows the feature output plots for the adjacent edge low-level feature
extraction branch, localized region middle-level feature extraction branch and global extent
high-level feature extraction branch, respectively. As shown in the red frame in Figure 6b,
detailed features as edges and textures of trees and farmland are highlighted. Figure 6c
shows the crop regionality is enhanced and this branch extracts the regional information
of the image. In Figure 6d, the global and abstract nature of the extracted features of the
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image is made more apparent. In summary, Figure 6 shows the difference of the extracted
features in each branch and it is necessary to fuse multi-branch features to fully dig spatial
and spectral features of HSI.

3. Experimental Results
3.1. Public HSI Dataset Description

In order to verify the effectiveness of the proposed method, classification experiments
were performed on two standard hyperspectral datasets (Salinas and KSC) [28,29]. The
details of each dataset are as follows. The Salinas dataset was acquired by an Airborne
Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California
and consists of 512× 217 pixels and 224 spectral reflectance bands. The number of bands
was reduced to 204 by removing the bands covering the water-absorbing area (108–112,
154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked
up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral
bands is 176, and the size is 512× 614 pixels with 13 categories.

Tables 1 and 2 report the detailed number of pixels available in each class for the two
datasets, respectively, and show the false-color composite image and ground truth map.

Table 1. Salinas Dataset Labeled Sample Counts.

No Name Color Number False-Color Map Ground-Truth Map

1 Brocoli_green_weeds_1
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No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

11,213

9 soil_vinyard_develop
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

6197

10 Corn_snesced_green_weeds
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

3249

11 Lettuce_romaine_4wk
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

1058

12 Lettuce_romaine_5wk
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

1908

13 Lettuce_romaine_6wk
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

909

14 Lettuce_romaine_7wk
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

1061

15 Vinyard_untrained
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

7164

16 Vinyard_vertical_trellis
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

1737

Total Numbers 53,785
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Table 2. KSC Dataset Labeled Sample Counts.

No Name Color Number False-Color Map Ground-Truth Map

1 Scrub
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

1997
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 24 
 

 

The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

2 Willow
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

3726

3 Palm
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

1976

4 Pine
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

1394

5 Broadleaf
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 
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3.2. Experimental Parameter Setting

All experiments were performed on Intel(R) Xeon(R) 4208 CPU @ 2.10GHz processor
and Nvidia GeForce RTX 2080Ti graphics card. In order to reduce experimental errors, the
model randomly selected a limited number of samples from the training set for training.
The epoch was set to 200. All experimental results were averaged from 10 experiments.
Overall accuracy (OA), average accuracy (AA) and Kappa coefficient (K) were used as
evaluation indexes to measure the performance of each method. The initial learning rate of
this method was 0.1 and was then divided by 10 when the error plateaued. The networks
are trained for 2× 104 iterations and the training minibatch has a size of 100. We use a
weight decay of 0.0001 and a momentum of 0.9.

3.3. Comparison of the Proposed Methods with the State-of-the-Art Methods

The experiment mainly compares the proposed algorithm DMLP and DMLPFFN with
the Radial Basis Function (RBF) Support Vector Machine algorithm (RBF-SVM) [30] and
Extended Morphological Profile (EMP) Support Vector Machine Methods (EMP-SVM) [31],
Convolutional Neural Network (CNN) [32], Residual Network (ResNet) [33], MLP-Mixer,
RepMLP [34] and Deep Feature Fusion Network (DFFN) [35] classification performance for
the hyperspectral dataset. Ten percent of the total sample number was used as the training
sample number for hyperspectral classification as shown in Tables 3–5. Compared with
other methods, the DMLPFFN method proposed in this paper has the highest classification
accuracy for two datasets.

Table 3. Classification results on the Salinas dataset by different classification methods.

Method RBF-
SVM

EMP-
SVM CNN ResNet MLP-

Mixer RepMLP DFFN DMLP DMLPFFN

1 85.13 ±
0.76

93.59 ±
0.26

94.57 ±
2.05

95.35 ±
1.05

96.90 ±
1.87

96.95 ±
0.02

97.20 ±
2.57

98.15 ±
0.79

99.26 ±
3.24

2 91.27 ±
1.95

96.37 ±
0.15

94.59 ±
1.14

96.35 ±
1.29

96.95 ±
0.31

95.09 ±
0.78

97.41 ±
0.67

97.88 ±
2.13

98.13 ±
3.59

3 89.59 ±
2.68

81.65 ±
0.78

79.38 ±
2.21

94.51 ±
0.48

95.03 ±
1.28

96.21 ±
0.02

95.02 ±
1.12

96.39 ±
2.47

97.08 ±
1.52

4 94.05 ±
3.61

95.34 ±
2.03

96.07 ±
1.08

96.49 ±
1.85

97.24 ±
2.05

97.39 ±
1.38

98.26 ±
0.81

98.04 ±
2.76

98.86 ±
3.03
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Table 3. Cont.

Method RBF-
SVM

EMP-
SVM CNN ResNet MLP-

Mixer RepMLP DFFN DMLP DMLPFFN

5 86.52 ±
2.64

92.24 ±
0.35

96.48 ±
1.32

97.25 ±
2.34

97.61 ±
0.54

97.78 ±
0.24

98.53 ±
2.07

98.65 ±
3.51

98.87 ±
1.45

6 93.14 ±
2.71

95.57 ±
0.29

96.86 ±
1.55

96.29 ±
0.17

98.76 ±
0.62

97.98 ±
2.01

97.49 ±
3.54

98.32 ±
0.94

98.69 ±
2.71

7 93.68 ±
0.53

95.21 ±
1.65

94.09 ±
2.29

95.38 ±
1.16

96.96 ±
0.35

97.39 ±
1.43

96.08 ±
3.49

97.12 ±
2.54

97.78 ±
3.66

8 85.21 ±
2.49

86.52 ±
0.46

91.39 ±
1.23

93.25 ±
0.74

94.54 ±
1.82

95.61 ±
1.29

96.25 ±
3.76

97.32 ±
1.54

98.15 ±
2.85

9 91.25 ±
0.83

92.74 ±
1.26

94.25 ±
0.46

94.47 ±
0.56

95.65 ±
1.47

96.97 ±
0.02

97.18 ±
5.51

97.46 ±
2.34

98.06 ±
0.67

10 81.21 ±
2.64

90.57 ±
1.37

92.52 ±
1.15

93.70 ±
0.59

94.13 ±
1.56

95.72 ±
0.15

95.68 ±
1.34

96.07 ±
0.51

97.92 ±
3.28

11 86.41 ±
2.09

91.37 ±
1.23

92.36 ±
2.68

94.71 ±
2.52

95.28 ±
0.92

96.23 ±
1.09

96.98 ±
4.06

97.24 ±
3.49

98.64 ±
0.28

12 92.91 ±
1.48

93.97 ±
0.15

94.57 ±
0.19

95.19 ±
0.45

95.60 ±
1.01

96.34 ±
2.45

97.73 ±
1.52

98.52 ±
0.67

98.97 ±
2.02

13 97.45 ±
2.37

98.22 ±
2.65

94.07 ±
1.09

96.96 ±
0.54

97.06 ±
0.37

96.63 ±
0.28

96.87 ±
4.26

97.16 ±
3.69

98.21 ±
3.69

14 87.04 ±
1.68

94.35 ±
2.04

95.13 ±
0.76

96.58 ±
1.45

96.41 ±
0.24

97.33 ±
0.37

96.61 ±
1.37

96.82 ±
2.58

97.22 ±
4.56

15 68.87 ±
2.54

66.19 ±
4.23

91.57 ±
0.49

92.34 ±
0.67

93.79 ±
3.17

94.58 ±
0.89

94.91 ±
0.32

95.46 ±
1.49

96.08 ±
2.64

16 83.14 ±
0.65

80.78 ±
1.32

94.53 ±
2.73

95.53 ±
1.86

96.68 ±
2.33

96.92 ±
0.02

96.24 ±
3.65

97.68 ±
0.34

98.34 ±
6.19

OA(%) 86.04 ±
1.67

88.89 ±
0.34

92.24 ±
0.67

94.57 ±
0.28

95.78 ±
0.38

96.45 ±
0.13

96.98 ±
3.59

98.12 ±
2.03

99.05 ±
3.29

AA(%) 87.36 ±
0.54

90.35 ±
2.17

92.91 ±
0.56

93.73 ±
1.84

94.93 ±
1.92

95.50 ±
0.40

96.16 ±
1.49

97.24 ±
0.91

98.83 ±
2.48

100 K 88.54 ±
1.79

89.26 ±
4.05

92.35 ±
3.67

94.84 ±
1.13

95.79 ±
2.04

96.17 ±
0.23

96.95 ±
1.46

97.79 ±
2.55

99.26 ±
2.86

Table 4. Classification results on the Salinas dataset with the water absorption bands.

Method RBF-
SVM

EMP-
SVM CNN ResNet MLP-

Mixer RepMLP DFFN DMLP DMLPFFN

1 81.54 ±
0.63

89.58 ±
0.61

90.68 ±
2.05

95.74 ±
1.28

93.28 ±
0.42

96.35 ±
0.21

95.32 ±
2.64

96.25 ±
0.35

99.20 ±
2.84

2 87.49 ±
1.36

92.36 ±
0.23

90.35 ±
1.14

93.68 ±
1.35

92.11 ±
1.93

95.17 ±
0.16

95.43 ±
0.31

96.58 ±
2.86

98.63 ±
1.30

3 85.02 ±
2.07

74.13 ±
0.35

75.27 ±
2.21

93.87 ±
0.49

92.03 ±
0.57

93.89 ±
0.82

93.17 ±
1.45

94.79 ±
1.43

96.09 ±
0.15

4 90.16 ±
3.36

90.04 ±
2.02

91.64 ±
1.08

93.91 ±
1.23

94.32 ±
1.04

95.76 ±
0.68

96.34 ±
0.25

96.24 ±
0.68

99.31 ±
1.46

5 82.65 ±
1.94

88.75 ±
0.57

91.96 ±
1.32

89.66 ±
1.65

94.40 ±
0.63

95.62 ±
1.27

95.22 ±
2.93

97.35 ±
2.30

98.82 ±
1.61

6 89.31 ±
2.02

91.34 ±
0.64

91.85 ±
1.55

92.29 ±
0.67

95.32 ±
1.51

95.33 ±
0.51

95.17 ±
3.32

96.82 ±
0.35

98.38 ±
2.83

7 89.15 ±
0.41

90.47 ±
1.33

90.54 ±
2.29

91.38 ±
1.34

93.49 ±
0.37

95.29 ±
1.48

94.72 ±
3.41

95.62 ±
1.22

96.10 ±
0.59

8 81.22 ±
2.35

82.73 ±
0.41

87.32 ±
1.23

92.45 ±
0.47

91.97 ±
0.50

92.12 ±
0.75

94.81 ±
3.37

95.34 ±
1.34

98.51 ±
2.61

9 87.25 ±
0.82

87.39 ±
1.21

90.63 ±
0.46

90.84 ±
0.61

91.86 ±
0.65

93.94 ±
1.53

95.57 ±
5.07

95.48 ±
0.62

97.76 ±
1.62

10 77.95 ±
1.15

86.52 ±
1.30

88.47 ±
1.15

87.91 ±
0.83

92.46 ±
1.79

92.48 ±
0.62

92.69 ±
1.02

95.23 ±
0.10

97.37 ±
1.10
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Table 4. Cont.

Method RBF-
SVM

EMP-
SVM CNN ResNet MLP-

Mixer RepMLP DFFN DMLP DMLPFFN

11 81.19 ±
1.61

87.97 ±
1.27

88.65 ±
2.68

85.68 ±
1.26

91.75 ±
1.82

93.83 ±
0.14

94.05 ±
4.25

95.64 ±
2.31

98.82 ±
2.23

12 87.34 ±
1.53

89.68 ±
0.45

90.98 ±
0.19

89.19 ±
3.25

92.10 ±
0.04

93.35 ±
1.16

95.92 ±
1.67

97.31 ±
0.26

98.43 ±
1.68

13 92.57 ±
2.08

92.34 ±
2.24

90.01 ±
1.09

86.56 ±
1.39

94.57 ±
0.57

93.69 ±
0.28

94.38 ±
4.39

95.65 ±
3.25

97.35 ±
2.46

14 87.08 ±
1.69

90.07 ±
2.05

90.65 ±
0.76

89.33 ±
2.75

93.16 ±
1.32

95.73 ±
1.20

94.25 ±
1.83

95.64 ±
1.62

97.68 ±
3.65

15 64.38 ±
2.32

61.35 ±
2.78

87.35 ±
0.49

90.93 ±
0.86

90.35 ±
2.53

91.66 ±
0.82

92.73 ±
0.15

93.34 ±
1.51

98.12 ±
2.83

16 78.67 ±
0.94

76.64 ±
1.46

90.16 ±
2.73

89.68 ±
0.52

93.24 ±
1.82

93.41 ±
0.97

94.21 ±
3.46

96.23 ±
0.54

97.05 ±
1.25

OA(%) 81.21 ±
1.42

83.90 ±
0.62

88.49 ±
0.56

91.65 ±
0.32

92.47 ±
0.27

93.22 ±
0.53

94.30 ±
3.34

96.32 ±
1.64

98.10 ±
1.41

AA(%) 82.13 ±
0.57

86.23 ±
2.13

88.46 ±
0.94

92.18 ±
0.96

91.24 ±
1.83

92.91 ±
0.31

94.08 ±
1.31

95.15 ±
0.48

97.23 ±
2.06

100 K 84.02 ±
1.62

85.46 ±
2.84

88.65 ±
2.48

90.68 ±
0.84

92.82 ±
1.24

93.87 ±
0.48

94.82 ±
1.02

96.34 ±
2.23

98.63 ±
1.37

Table 5. Classification results on the KSC dataset by different classification methods.

Method RBF-
SVM

EMP-
SVM CNN ResNet MLP-

Mixer RepMLP DFFN DMLP DMLPFFN

1 89.59 ±
3.05

90.24 ±
1.68

91.75 ±
0.21

93.68 ±
3.74

93.24 ±
0.43

94.63 ±
0.65

94.98 ±
1.45

95.82 ±
3.06

97.25 ±
4.20

2 80.25 ±
1.52

82.66 ±
0.85

86.69 ±
1.28

91.24 ±
2.80

94.24 ±
0.54

94.68 ±
0.49

95.81 ±
1.65

96.53 ±
3.55

96.99 ±
0.42

3 84.73 ±
0.64

85.91 ±
1.21

83.52 ±
0.98

87.67 ±
2.91

88.62 ±
3.72

89.98 ±
0.76

87.71 ±
1.24

91.36 ±
0.41

92.75 ±
3.28

4 61.82 ±
3.44

63.75 ±
0.56

72.22 ±
0.52

81.08 ±
2.64

84.01 ±
1.91

86.02 ±
1.64

86.71 ±
0.68

89.52 ±
2.06

91.02 ±
1.56

5 61.56 ±
0.34

63.42 ±
4.57

71.09 ±
2.90

78.50 ±
1.63

82.55 ±
2.67

84.15 ±
1.53

85.53 ±
0.16

87.57 ±
0.46

89.59 ±
3.46

6 66.38 ±
0.54

69.65 ±
3.10

70.24 ±
1.24

77.43 ±
0.93

85.15 ±
2.24

90.80 ±
2.35

89.62 ±
3.58

92.47 ±
3.05

94.56 ±
1.48

7 62.29 ±
0.66

66.56 ±
3.36

69.95 ±
4.02

83.88 ±
1.90

84.70 ±
0.23

85.68 ±
1.85

86.06 ±
2.89

88.40 ±
3.93

90.77 ±
4.51

8 70.25 ±
1.48

74.82 ±
0.98

79.60 ±
4.22

92.10 ±
0.76

95.17 ±
0.93

96.52 ±
0.19

95.25 ±
0.35

97.88 ±
4.03

98.67 ±
3.51

9 82.64 ±
1.43

86.32 ±
2.36

89.94 ±
0.48

93.93 ±
1.30

94.78 ±
0.94

95.82 ±
4.24

95.94 ±
3.67

96.81 ±
0.79

97.69 ±
3.04

10 88.78 ±
1.84

89.25 ±
1.22

91.52 ±
0.98

94.77 ±
1.34

96.30 ±
0.05

97.48 ±
0.38

96.24 ±
2.55

98.87 ±
1.29

99.04 ±
3.46

11 89.65 ±
0.46

91.38 ±
2.01

95.91 ±
3.55

96.51 ±
0.48

95.54 ±
3.06

96.98 ±
2.91

96.41 ±
1.68

97.03 ±
3.57

98.57 ±
2.11

12 88.35 ±
2.19

91.01 ±
0.58

93.39 ±
2.20

95.09 ±
3.95

96.30 ±
1.47

94.84 ±
0.91

95.62 ±
0.85

96.87 ±
0.24

97.88 ±
4.62

13 92.26 ±
0.24

93.31 ±
0.32

95.84 ±
0.04

96.65 ±
0.05

96.28 ±
0.18

97.85 ±
0.33

96.81 ±
2.76

98.63 ±
3.28

99.35 ±
2.16

OA(%) 81.65 ±
2.08

83.97 ±
0.27

86.04 ±
1.62

90.75 ±
3.54

93.41 ±
1.08

94.93 ±
3.83

95.82 ±
0.14

96.76 ±
1.73

98.49 ±
2.64

AA(%) 79.91 ±
1.63

82.57 ±
3.21

86.05 ±
2.56

89.11 ±
4.06

92.35 ±
2.16

93.18 ±
1.74

94.21 ±
2.03

95.24 ±
3.25

97.65 ±
4.26

100 K 78.39 ±
2.46

80.98 ±
1.31

84.67 ±
5.78

88.86 ±
0.96

93.16 ±
2.04

94.35 ±
1.98

94.05 ±
3.72

96.22 ±
1.28

97.83 ±
3.29
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Taking Salinas dataset as an example, compared with RBF-SVM, OA, AA and Kappa
coefficients of DMLPFFN increased by 13.01%, 11.47% and 10.72%, and improved by 2.07%,
2.67% and 2.31% compared with DFFN, respectively. Taking the KSC dataset as an example,
OA reached 98.49%, compared with RBF-SVM, EMP-SVM, CNN, ResNet, MLP-Mixer,
RepMLP and DFFN, increased by 16.84%, 14.52%, 12.45%, 7.74%, 5.08%, 3.56%, 2.67%
and 1.73% respectively. AA reached 97.65%, compared with DFFN, RepMLP, MLP-Mixer,
ResNet, CNN, EMP-SVM and RBF-SVM, increased by 2.41%, 3.44%, 4.47%, 5.30%, 8.54%,
11.60%, 15.08% and 17.74%. All the experimental results show that the proposed DMLPFFN
is superior to other methods.

In order to fully analyze the effect of the water absorption band on the experimental
results, we downloaded the Salinas dataset with the water absorption band from the official
website and conducted experimental analysis on it. As shown in Table 4, compared with
RBF-SVM, OA, AA and Kappa coefficients of DMLPFFN increased by 16.89%, 15.10% and
14.61%, and improved by 3.80%, 3.15%, and 3.81% compared with DFFN, respectively. All
the experimental results show that the proposed DMLPFFN is superior to other methods
on the Salinas dataset with the water absorption bands.

Besides the quantitative classification results reported, we simultaneously visualized
the classification maps of different methods discussed above, as shown in Figures 7 and 8.
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Figure 8. The classification results of KSC dataset. (a) Ground Truth; (b) RBF-SVM; (c) EMP-SVM;
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Obviously, it can be seen that RBF-SVM results have the most misclassified pixels
in all classification maps, with many pretzel noises throughout, and each part is un-
avoidable for the classification confusion. Taking the dataset of Salinas as an example, in
Figure 7b–d, a large amount of noise is generated in the upper left corner. Part of the area
Vinyard untrained was misclassified as grapes_untrained. The classification confusion of
Grapes_untrained, Grapes_untrained and Fallow_rough_pow in the middle part is serious.
Compared with SVM, CNN and ResNet classification methods, the classification effect
of MLP-Mixer, RepMLP and DFFN is improved, but there are still some misclassification
phenomena. In addition, Figure 7i,j are the classification renderings of our algorithm; an
obvious observation is that the classification map of the proposed method is the closest
to the reference ground truth, which produces less internal noise and a cleaner boundary.
Experiments show that the proposed method can effectively extract more refined features
from two kinds of datasets, and cross-dimensional information interaction focuses on more
important features, thus improving the classification accuracy.

4. Application in Fine Classification of Crops

In order to verify the classification performance and generalization ability of the DMLP
and DMLPFFN, the WHU-Hi-LongKou and WHU-Hi-HanChuan hyperspectral datasets
were selected in this paper for fine crop classification [36,37].

The WHU-Hi-LongKou dataset is located in a simple agricultural area and was cap-
tured by an 8 mm focal length steeple-wall Headwall Nano-HyperSpec sensor equipped
with a receiver Matrix 600 Pro UAV platform with six kinds of crops. The image size was
550× 400 pixels, with 270 bands between 400 and 1000 nm. The WHU-Hi-HanChuan
dataset was collected in HanChuan, Hubei Province, using a 17 mm focal length Head-
wall Nano-HyperSpec sensor installed on the Leica Aibot X6 UAV V1 platform. The trial
area has seven kinds crops and size 1217× 303 pixels with 274 bands ranging from 400
to 1000 nm. Tables 6 and 7 report the detailed number of pixels available in each class
for the two datasets, respectively, and show the false-color composite image and Ground
Truth map.
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Table 6. WHU-Hi-LongKou Dataset Labeled Sample Counts.

No Name Color Number False-Color Map Ground-Truth Map

1 Corn
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Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

8374

3 Sesamc
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

3031

4 Broad-leaf soybean
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

63,212

5 Narrow-leaf
soybean
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

4151

6 Rice
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

11,854

7 Water
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

67,056

8 Roads and houses
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

7124

9 Mixed weed
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

5229

Total Numbers 204,542

Table 7. WHU-Hi- HanChuan Dataset Labeled Sample Counts.

No Name Color Number False-Color Map Ground-Truth Map

1 Strawberry
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

44,735
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7 Water  67,056 

  

8 Roads and houses  7124 

9 Mixed weed  5229 

Total Numbers  204,542   

Table 7. WHU-Hi- HanChuan Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Strawberry  44,735 

  

2 Cowpea  22,753 

3 Soybean  10,287 

4 Sorghum  5353 

5 Water spinach  1200 

6 Watermelon  4533 

7 Greens  5903 

8 Trees  17,978 

9 Grass  9469 

10 Red roof  10,516 

11 Gray roof  16,911 

12 Plastic  3679 

13 Bare soil  9116 

Total Numbers  257,530   

In LongKou dataset, soybean occupies a prominent position, and its plot is continu-

ous and extensive. Sesame and cotton are interlaced around the corn planting field. As 

shown in Table 8, the OA of DMLPFFN obtained 99.16%. Among all classification groups, 

the classification method DMLPFFN proposed in this paper has the highest OA, AA and 

Kappa coefficients, reaching 99.16%, 98.59% and 96.88, respectively. Compared with RBF-

SVM, EMP-SVM, CNN, ResNet, MLP-Mixer, RepMLP, DFFN and DMLP, OA increased 

by 10.00%, 6.95%, 4.38%, 3.53%, 2.84%, 1.58%, 1.19% and 0.91%, respectively. 

Table 8. Classification results on the LongKou dataset by different classification methods. 

Method RBF-SVM EMP-SVM CNN ResNet MLP-Mixer RepMLP  DFFN DMLP DMLPFFN 

1 88.56 ± 1.28 89.24 ± 1.59 91.07 ± 1.95 93.29 ± 1.82 94.71 ± 2.35 95.05 ± 3.87 95.38 ± 4.75 96.25 ± 0.22 97.18 ± 4.76 

2 91.23 ± 3.54 92.36 ± 0.49 94.48 ± 1.67 95.17 ± 2.79 94.53 ± 3.76 95.88 ± 1.62 94.26 ± 5.31 96.17 ± 3.47 97.45 ± 1.29 

3 90.54 ± 1.59 91.57 ± 3.29 92.36 ± 0.69 93.51 ± 2.93 94.58 ± 1.96 95.47 ± 3.16 96.15 ± 1.67 96.20 ± 5.58 97.80 ± 2.75 

4 89.01 ± 2.68 92.15 ± 2.36 94.43 ± 3.51 95.27 ± 1.59 96.73 ± 1.25 97.45 ± 2.46 96.89 ± 4.14 98.22 ± 3.34 98.64 ± 0.45 

5 85.15 ± 1.34 86.20 ± 2.42 91.86 ± 0.39 92.08 ± 4.07 93.37 ± 2.15 94.87 ± 3.25 95.64 ± 3.59 96.56 ± 2.28 97.57 ± 0.86 

6 84.60 ± 2.36 85.71 ± 1.99 88.10 ± 3.08 90.46 ± 2.54 89.78 ± 3.61 91.33 ± 5.46 92.24 ± 4.02 93.37 ± 0.61 95.83 ± 1.40 

7 91.36 ± 0.74 92.01 ± 3.49 93.22 ± 5.44 92.03 ± 2.65 93.76 ± 4.95 94.59 ± 2.54 94.67 ± 3.09 95.68 ± 4.57 96.51 ± 2.37 
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7 Water  67,056 

  

8 Roads and houses  7124 

9 Mixed weed  5229 

Total Numbers  204,542   

Table 7. WHU-Hi- HanChuan Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Strawberry  44,735 

  

2 Cowpea  22,753 

3 Soybean  10,287 

4 Sorghum  5353 

5 Water spinach  1200 

6 Watermelon  4533 

7 Greens  5903 

8 Trees  17,978 

9 Grass  9469 

10 Red roof  10,516 

11 Gray roof  16,911 

12 Plastic  3679 

13 Bare soil  9116 

Total Numbers  257,530   

In LongKou dataset, soybean occupies a prominent position, and its plot is continu-

ous and extensive. Sesame and cotton are interlaced around the corn planting field. As 

shown in Table 8, the OA of DMLPFFN obtained 99.16%. Among all classification groups, 

the classification method DMLPFFN proposed in this paper has the highest OA, AA and 

Kappa coefficients, reaching 99.16%, 98.59% and 96.88, respectively. Compared with RBF-

SVM, EMP-SVM, CNN, ResNet, MLP-Mixer, RepMLP, DFFN and DMLP, OA increased 

by 10.00%, 6.95%, 4.38%, 3.53%, 2.84%, 1.58%, 1.19% and 0.91%, respectively. 

Table 8. Classification results on the LongKou dataset by different classification methods. 

Method RBF-SVM EMP-SVM CNN ResNet MLP-Mixer RepMLP  DFFN DMLP DMLPFFN 

1 88.56 ± 1.28 89.24 ± 1.59 91.07 ± 1.95 93.29 ± 1.82 94.71 ± 2.35 95.05 ± 3.87 95.38 ± 4.75 96.25 ± 0.22 97.18 ± 4.76 

2 91.23 ± 3.54 92.36 ± 0.49 94.48 ± 1.67 95.17 ± 2.79 94.53 ± 3.76 95.88 ± 1.62 94.26 ± 5.31 96.17 ± 3.47 97.45 ± 1.29 

3 90.54 ± 1.59 91.57 ± 3.29 92.36 ± 0.69 93.51 ± 2.93 94.58 ± 1.96 95.47 ± 3.16 96.15 ± 1.67 96.20 ± 5.58 97.80 ± 2.75 

4 89.01 ± 2.68 92.15 ± 2.36 94.43 ± 3.51 95.27 ± 1.59 96.73 ± 1.25 97.45 ± 2.46 96.89 ± 4.14 98.22 ± 3.34 98.64 ± 0.45 

5 85.15 ± 1.34 86.20 ± 2.42 91.86 ± 0.39 92.08 ± 4.07 93.37 ± 2.15 94.87 ± 3.25 95.64 ± 3.59 96.56 ± 2.28 97.57 ± 0.86 

6 84.60 ± 2.36 85.71 ± 1.99 88.10 ± 3.08 90.46 ± 2.54 89.78 ± 3.61 91.33 ± 5.46 92.24 ± 4.02 93.37 ± 0.61 95.83 ± 1.40 

7 91.36 ± 0.74 92.01 ± 3.49 93.22 ± 5.44 92.03 ± 2.65 93.76 ± 4.95 94.59 ± 2.54 94.67 ± 3.09 95.68 ± 4.57 96.51 ± 2.37 

2 Cowpea
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

22,753

3 Soybean
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

10,287

4 Sorghum
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The details of each dataset are as follows. The Salinas dataset was acquired by an Airborne 

Visible-Infrared Imaging Spectrometer (AVIRIS) sensor at the Salinas Valley in California 

and consists of 512 × 217 pixels and 224 spectral reflectance bands. The number of bands 

was reduced to 204 by removing the bands covering the water-absorbing area (108–112, 

154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 

up by AVIRIS sensors flying over the Kennedy Space in Florida. The number of spectral 

bands is 176, and the size is 512 × 614 pixels with 13 categories.  

Tables 1 and 2 report the detailed number of pixels available in each class for the two 

datasets, respectively, and show the false-color composite image and ground truth map. 

Table 1. Salinas Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Brocoli_green_weeds_1  1997 

  

2 Brocoli_green_weeds_2  3726 

3 Fallow  1976 

4 Fallow_rough_ pow  1394 

5 Fallow_smooth  2678 

6 Stubble  3979 

7 Celery  3579 

8 Grapes_ untrained  11,213 

9 soil_vinyard_develop  6197 

10 Corn_snesced_green_weeds  3249 

11 Lettuce_romaine_4wk  1058 

12 Lettuce_romaine_5wk  1908 

13 Lettuce_romaine_6wk  909 

14 Lettuce_romaine_7wk  1061 

15 Vinyard_untrained  7164 

16 Vinyard_vertical_trellis  1737 

Total Numbers  53,785   

Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

5353

5 Water spinach
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2 Willow  3726 

3 Palm  1976 
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7 Swap  3579 

1200

6 Watermelon
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Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

4533

7 Greens
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Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

5903

8 Trees
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Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

17,978

9 Grass
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Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

9469

10 Red roof
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No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 
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6 Hardwood  3979 

7 Swap  3579 

10,516

11 Gray roof
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No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

16,911

12 Plastic
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No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

3679

13 Bare soil
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154–167, 224). Ground Truth contains 16 types of land cover. The KSC dataset was picked 
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Table 2. KSC Dataset Labeled Sample Counts. 

No Name Color Number False-Color Map Ground-Truth Map 

1 Scrub  1997 

  

2 Willow  3726 

3 Palm  1976 

4 Pine  1394 

5 Broadleaf  2678 

6 Hardwood  3979 

7 Swap  3579 

9116

Total Numbers 257,530

In LongKou dataset, soybean occupies a prominent position, and its plot is continuous
and extensive. Sesame and cotton are interlaced around the corn planting field. As shown
in Table 8, the OA of DMLPFFN obtained 99.16%. Among all classification groups, the
classification method DMLPFFN proposed in this paper has the highest OA, AA and Kappa
coefficients, reaching 99.16%, 98.59% and 96.88, respectively. Compared with RBF-SVM,
EMP-SVM, CNN, ResNet, MLP-Mixer, RepMLP, DFFN and DMLP, OA increased by 10.00%,
6.95%, 4.38%, 3.53%, 2.84%, 1.58%, 1.19% and 0.91%, respectively.

As shown in Table 9, in the HanChuan dataset, there are only a small number of soy-
bean samples with 1335 pixels, thus affecting the classification effect of various algorithms.
For soybean with poor classification performance in other algorithms, the accuracy of the
two algorithms proposed in this paper can reach 93.37% and 94.16%, indicating that DMLP
and DMLPFFN algorithms are suitable for separating similar ground objects. The methods
proposed in this paper effectively solve the problem of spectral variation and heterogeneity
within the same object.
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Table 8. Classification results on the LongKou dataset by different classification methods.

Method RBF-
SVM

EMP-
SVM CNN ResNet MLP-

Mixer RepMLP DFFN DMLP DMLPFFN

1 88.56 ±
1.28

89.24 ±
1.59

91.07 ±
1.95

93.29 ±
1.82

94.71 ±
2.35

95.05 ±
3.87

95.38 ±
4.75

96.25 ±
0.22

97.18 ±
4.76

2 91.23 ±
3.54

92.36 ±
0.49

94.48 ±
1.67

95.17 ±
2.79

94.53 ±
3.76

95.88 ±
1.62

94.26 ±
5.31

96.17 ±
3.47

97.45 ±
1.29

3 90.54 ±
1.59

91.57 ±
3.29

92.36 ±
0.69

93.51 ±
2.93

94.58 ±
1.96

95.47 ±
3.16

96.15 ±
1.67

96.20 ±
5.58

97.80 ±
2.75

4 89.01 ±
2.68

92.15 ±
2.36

94.43 ±
3.51

95.27 ±
1.59

96.73 ±
1.25

97.45 ±
2.46

96.89 ±
4.14

98.22 ±
3.34

98.64 ±
0.45

5 85.15 ±
1.34

86.20 ±
2.42

91.86 ±
0.39

92.08 ±
4.07

93.37 ±
2.15

94.87 ±
3.25

95.64 ±
3.59

96.56 ±
2.28

97.57 ±
0.86

6 84.60 ±
2.36

85.71 ±
1.99

88.10 ±
3.08

90.46 ±
2.54

89.78 ±
3.61

91.33 ±
5.46

92.24 ±
4.02

93.37 ±
0.61

95.83 ±
1.40

7 91.36 ±
0.74

92.01 ±
3.49

93.22 ±
5.44

92.03 ±
2.65

93.76 ±
4.95

94.59 ±
2.54

94.67 ±
3.09

95.68 ±
4.57

96.51 ±
2.37

8 80.47 ±
4.16

82.28 ±
3.79

86.25 ±
2.19

88.03 ±
1.43

90.27 ±
1.39

91.36 ±
5.16

92.16 ±
2.14

93.59 ±
1.68

94.26 ±
3.59

9 79.02 ±
4.39

82.13 ±
2.16

86.24 ±
4.82

89.76 ±
2.65

91.33 ±
5.54

92.55 ±
4.12

93.68 ±
0.56

94.03 ±
2.44

94.85 ±
1.85

OA(%) 89.16 ±
3.51

92.21 ±
4.03

94.78 ±
2.52

95.63 ±
4.36

96.32 ±
1.93

97.58 ±
3.48

97.97 ±
4.09

98.25 ±
0.77

99.16 ±
3.64

AA(%) 87.31 ±
3.64

91.45 ±
1.38

95.36 ±
1.04

95.88 ±
2.61

96.39 ±
3.95

97.55 ±
4.32

98.06 ±
5.23

98.17 ±
4.34

98.59 ±
2.65

100 K 89.54 ±
4.16

90.86 ±
2.05

92.02 ±
3.86

93.87 ±
4.18

94.01 ±
1.95

95.17 ±
2.08

95.82 ±
4.17

96.03 ±
4.09

96.88 ±
3.87

Table 9. Classification results on the HanChuan dataset by different classification methods.

Method RBF-
SVM

EMP-
SVM CNN ResNet MLP-

Mixer RepMLP DFFN DMLP DMLPFFN

1 80.25 ±
0.12

82.62 ±
3.61

88.34 ±
3.49

90.91 ±
1.96

91.67 ±
1.51

93.89 ±
0.57

92.05 ±
2.06

94.25 ±
1.87

96.33 ±
1.28

2 64.22 ±
2.02

70.86 ±
4.09

76.15 ±
2.36

83.04 ±
1.49

85.26 ±
6.24

86.12 ±
2.48

88.38 ±
0.74

90.02 ±
1.23

92.97 ±
2.29

3 73.27 ±
1.28

78.15 ±
2.81

85.37 ±
3.63

91.65 ±
1.91

90.95 ±
1.25

92.39 ±
2.36

92.65 ±
3.28

93.37 ±
3.68

94.16 ±
1.61

4 88.02 ±
0.88

89.34 ±
2.69

92.06 ±
1.67

94.65 ±
5.66

93.38 ±
3.97

94.93 ±
4.23

95.54 ±
1.08

95.37 ±
1.06

97.24 ±
0.98

5 78.22 ±
3.56

83.37 ±
1.63

89.38 ±
1.06

93.98 ±
3.26

94.33 ±
4.15

95.21 ±
1.89

95.48 ±
4.73

94.07 ±
1.36

95.19 ±
4.11

6 70.52 ±
4.82

84.39 ±
2.57

86.38 ±
4.39

89.32 ±
2.32

90.72 ±
3.15

91.26 ±
1.37

92.22 ±
0.27

92.18 ±
3.03

93.51 ±
0.88

7 69.22 ±
2.67

72.38 ±
0.31

86.31 ±
0.98

90.70 ±
3.82

91.31 ±
10.97

92.64 ±
2.06

93.46 ±
4.79

93.37 ±
0.46

95.07 ±
1.54

8 72.02 ±
5.92

74.20 ±
1.58

77.27 ±
3.18

82.08 ±
6.67

84.08 ±
4.37

86.10 ±
2.70

89.22 ±
3.17

90.56 ±
2.30

92.24 ±
1.85

9 82.20 ±
3.52

81.26 ±
4.54

88.09 ±
0.95

91.73 ±
5.95

89.90 ±
1.65

92.84 ±
1.19

91.34 ±
3.29

93.06 ±
3.75

94.51 ±
4.18

10 85.22 ±
0.45

87.66 ±
3.10

89.09 ±
2.16

91.33 ±
5.14

92.98 ±
7.37

93.12 ±
0.58

94.05 ±
2.44

94.34 ±
2.88

95.46 ±
3.56

11 84.27 ±
3.74

86.57 ±
1.93

91.37 ±
1.06

94.36 ±
0.96

94.72 ±
2.61

93.71 ±
2.82

94.54 ±
1.28

94.09 ±
3.85

95.58 ±
2.60

12 85.02 ±
4.31

87.34 ±
0.43

89.76 ±
0.41

90.17 ±
0.61

91.01 ±
0.61

92.70 ±
7.52

92.09 ±
5.06

93.45 ±
0.14

94.02 ±
1.03
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Table 9. Cont.

Method RBF-
SVM

EMP-
SVM CNN ResNet MLP-

Mixer RepMLP DFFN DMLP DMLPFFN

13 72.22 ±
2.59

79.61 ±
0.39

86.05 ±
3.28

88.39 ±
1.22

90.91 ±
2.54

91.89 ±
2.93

92.16 ±
3.08

93.07 ±
4.39

94.78 ±
2.37

14 69.52 ±
1.02

75.17 ±
2.09

84.36 ±
1.02

88.03 ±
2.36

88.55 ±
1.89

90.95 ±
1.70

92.81 ±
1.46

93.03 ±
2.69

94.36 ±
2.09

15 81.22 ±
3.05

84.20 ±
1.43

95.06 ±
2.47

94.84 ±
1.45

95.75 ±
3.26

94.65 ±
3.16

95.89 ±
2.04

94.90 ±
1.88

95.33 ±
2.76

16 86.63 ±
0.98

88.05 ±
3.27

93.67 ±
4.09

93.87 ±
2.93

92.65 ±
2.79

94.35 ±
4.59

95.73 ±
2.17

95.37 ±
2.63

97.13 ±
1.58

OA(%) 81.05 ±
1.43

84.64 ±
0.47

89.21 ±
1.43

91.66 ±
0.60

93.61 ±
3.49

95.46 ±
3.91

95.95 ±
2.27

96.38 ±
4.67

98.05 ±
4.63

AA(%) 77.17 ±
2.58

81.76 ±
2.14

83.65 ±
0.48

85.83 ±
3.37

88.76 ±
2.35

90.27 ±
0.12

91.96 ±
0.25

93.66 ±
2.23

95.24 ±
1.73

100 K 79.93 ±
3.86

82.59 ±
4.75

88.93 ±
1.28

89.34 ±
0.69

90.61 ±
1.89

91.78 ±
1.08

92.34 ±
4.87

93.92 ±
0.27

94.88 ±
1.83

Experimental results corresponding to different classification algorithms are shown in
Figures 9 and 10 for HanChuan and LongKou datasets, respectively. As shown in Figure 9,
it can be seen that there are still a large number of “salt and pepper” noises in RBF-SVM
and EMP-SVM. The classification results of CNN and ResNet methods showed that the
noise was greatly reduced after considering the contextual information. The classification
results of ResNet, MLP-Mixer, RepMLP and DFFN methods showed that a large part of the
samples of strawberry, cowpea, soybean and water oat were incorrectly classified into other
categories in the middle region of the dataset. This is due to the fact that sowing at the
edge of the field is even less compact than sowing in the center. The network misclassified
crops as other categories at the margins of some plots owing to the sparse distribution of
plants causing leakage of bare land area. Moreover, soybeans and cowpeas are crops of the
same origin and exhibit highly similar spectral properties in a certain wavelength range,
carrying a negative burden on the classification. Nevertheless, in our approaches, there is
barely any misclassification of dense plants in the marginal areas and in the center of the
plots, indicating that our method effectively discriminates between confusing crop classes
due to spectral variation.

The color and edge features extracted from the low-level branch enable one to dis-
tinguish more conveniently between different types of crops and amplify the differences
between different crops, whereas the regional features extracted in the middle-level branch
lead to more apparent boundaries between crops in different places and perform better
identification of crop areas and non-crop areas. The global features extracted at the high
level minimize the clutter between sophisticated backdrops and crops to a certain extent
and provide a better assessment of the overall crop area. Multi-level feature fusion can
sufficiently extract and leverage the feature information of crops and fine classifications of
them. Consequently, DMLPFFN is considered suitable for fine crop classification.
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5. Discussion

In order to find the optimal network structure, it is necessary to experiment with
different parameters, which play a crucial role in the size of the model and the complexity
of the proposed DMLPFFN. In this paper, the optimal parameter combination is determined
by analyzing the influence of parameters on the accuracy of classification results, including
the number of PCAs, the expansion rate of dilated convolution, the percentage of training
samples and the number of branches in the feature fusion strategy.

5.1. The Number of Principal Components

The first parameter is the number of principal components selected for PCA on HSI,
which is used to extract the main spectral components to improve the algorithm’s efficiency
and reduce noise interference. In the case of principal component number, the control
variable method is used for all datasets in the experiment. That is to say, the value of training
sample number, expansion rate and deep feature fusion strategy is fixed. As shown in
Figure 11, OA increased and then tended to be stable with the increase of the principal
component number for the four HSI datasets. Most of the information in the hyperspectral
image exists in the first few principal components. However, it was concluded that using
many principal components did not further improve performance.
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5.2. The Expansion Rate of Dilated Convolution

The second parameter is the distribution of the expansion rate. In this experiment,
seven circulation structures with expansion rate distributions of [1,1,2], [2,2,2], [1,2,2], [1,2,3],
[1,2,4], [1,2,5] and [1,2,6] are selected for comparative analysis, as shown in Figure 12.

By comparing the experimental results, it can be found that the classification accuracy
of the expansion rate distributions of [1,1,2] is lower than that of the expansion rate
distributions of [1,2,2]. The receptive field size of [1,1,2] is 9 × 9. In [2,2,2], although
the range of the receptive field increases to 13×13, the classification accuracy is lower than
the average overall accuracy of the expansion rate distributions of [1,1,2]. This is because
the superposition of three dilated convolutions will result in more feature information
being omitted.

The latter five experiments used the combination of two dilated convolution layers
and one ordinary convolution layer, and the receptive fields were 11× 11, 13× 13, 15× 15,
17× 17 and 19× 19. Nonetheless, [1,2,5] has the largest range of receptive fields; with
the increase of expansion rate, the data of input sampling become more and more sparse,
resulting in local information loss and damage to information continuity. According to the
experimental results in Figure 12, when the expansion rate distribution is [1,2,5], the four
HSI datasets can obtain the optimal classification results.
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5.3. The Percentage of Training Samples

The third parameter is the proportion of training samples to the total number of
samples. We carried out experiments on the practical crop hyperspectral datasets LongKou
and HanChuan, as shown in Figure 13. 0.4%, 0.6%, 0.8%, 1.0% and 1.2% of LongKou and
HanChuan dataset training samples were selected for experiment, respectively. At the
beginning, the classification accuracy increased with training samples. When the training
sample of LongKou and HanChuan datasets was 1.2%, the OA value basically reached
the highest point and then tended to be flat or even showed a downward trend. When
the number of training samples reaches the required level, it can precisely illustrate the
distribution of all pixels in the studied area; continuously increasing the number of training
samples will not increase the classification accuracy. Therefore, 1.2% is chosen as the
percentage of training samples, and the proposed DMLPFFN method always provides
better performance than other comparison methods.
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5.4. The Number of Branches in Feature Fusion Strategy

The fourth parameter is the number of branches in feature fusion strategy. This
paper analyzes the correlation and complementarity of information in the deep network
using multibranch feature fusion. DMLPFFN2, DMLPFFN3, DMLPFFN4 and DMLPFFN5
refer to methods that fuse two, three, four and five hierarchical branches. Among them,
DMLPFFN2 represents the fusion of lower-level and higher-level sorts. It can be seen
from Figure 14 that in different datasets, DMLPFFN3 obtained precision values that are
superior to DMLPFFN2, DMLPFFN4 and DMLPFFN5. In addition, taking the LongKou
dataset as an example, compared with the DMLPFFN2, the OA, AA and Kappa values
of the DMLPFFN3 fusion strategy increased by 3.05%, 9.5%, and 1.97%, respectively.
That is because the features extracted by DMLPFFN2 contain only details and global
information, and regional feature information is dropped. To some extent, fusing multiple
layers improves classification results. However, DMLPFFN5 has the lowest classification
accuracy, which shows that too many fusion layers may bring redundant information and
significantly reduce the performance. Specifically, middle-level information overlap can
cause accuracy degradation. So the DMLPFFN method proposed in this paper used three
branches for feature fusion and the structure is as shown in Figure 1.
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5.5. The Number of Classes for HSI Classification

We conducted experiments on the KSC dataset for different numbers of classes. The
KSC dataset was picked up by AVIRIS sensors flying over the Kennedy Space in Florida.
The number of spectral bands is 176, and the size is 512 × 614 pixels with 13 classes.
Table 10 shows the OA, AA and Kappa values of the DMLPFFN method when the number
of classes is 10, 11, 12 and 13. The results show that the accuracy of the result decreases
when the number of classes reduces. The highest precision is achieved when the number
of classes is 13, which is the original number of classes. This shows that if the number of
classes in the experimental dataset is not utilized sufficiently, it will lead to a decrease in
the accuracy of the experimental results.

Table 10. Classification results on the KSC dataset with different numbers of classes with the
DMLPFFN method.

Number of
Classes 10 Classes 11 Classes 12 Classes 13 Classes

OA(%) 92.87 ± 1.63 94.26 ± 1.35 95.37 ± 1.74 98.60 ± 2.26
AA(%) 92.13 ± 1.82 94.38 ± 1.61 95.52 ± 1.36 98.65 ± 1.57
100 K 90.47 ± 0.68 93.75 ± 1.87 94.94 ± 1.79 97.83 ± 1.65
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5.6. Time Consumption and Computational Complexity

In order to comprehensively analyze the methods proposed in this paper and current
research methods, this paper analyzes the average training time, average test time and total
parameters of different methods. Table 11 reports the time consumption and computational
complexity of different methods.

Table 11. Comparison of time consumption and computational complexity of different classifica-
tion methods.

Datasets Methods Training
Time (s) Test Time (s) Parameters

(M) OA(%)

Long
Kou

CNN 56.37 3.82 3.29 94.78
ResNet 1150.61 215.12 22.12 95.63

MLP-Mixer 421.29 61.63 5.81 96.32
RepMLP 418.29 66.42 7.84 97.58

DFFN 111.7 7.95 8.55 97.97
DMLP 459.71 71.24 6.36 98.25

DMLPFFN 83.35 5.94 9.86 99.16

Han
Chuan

CNN 71.09 2.86 3.48 89.21
ResNet 1233.39 484.61 22,15 91.66

MLP-Mixer 586.49 97.87 5.14 93.61
RepMLP 471.27 75.79 6.83 95.46

DFFN 201.76 15.78 7.96 95.95
DMLP 497.61 51.16 5.26 96.38

DMLPFFN 112.26 9.51 8.31 98.05

In terms of running time, taking the HanChuan dataset as an example, although DMLP
has a larger receptive field to extract more delicate features and consumes more training
time than RepMLP, the total parameters are reduced by 22.98%. Moreover, compared
with ResNet and the MLP-Mixer, the training times of DMLP are reduced by 59.65% and
15.15%, and DMLP has better classification accuracy. The results show that, compared
with ResNet, DMLP and DMLPFFN have fewer parameters on all datasets. Compared
with CNN and the MLP-Mixer, the proposed method has a few more parameters because
of its greater depth and width, but the accuracy of the proposed method is the highest.
Moreover, compared with DFFN, DMLPFFN has a shorter training time on four datasets
because DMLPFFN improves the training performance of the model by combining the
fusion strategy with MLP. Taking the LongKou dataset as an example, DMLPFFN training
time and test time are reduced by 25.20% and 25.28%, respectively, compared with DFFN.
In addition, DMLPFFN has the lowest training time and test time next to CNN among all
deep learning methods and achieves better OA than other classification algorithms.

6. Conclusions

In this paper, two classification frameworks based on MLP are proposed: DMLP and
DMLPFFN. Firstly, in order to expand the perceptual field and aggregate multi-branch
contextual information and avoid losing the feature map resolution, we introduced a
dilated convolution layer instead of ordinary convolution. Secondly, for the purpose of
fully utilizing the features of HSI to improve the classification efficiency, we use fusing
residual blocks and the DMLP mechanism to extract deeper features and obtain the state-
of-the-art performance. Finally, we designed comprehensive experiments and executed
them to prove the effectiveness of DMLPFFN by different hyperspectral datasets and to
prove that it has better classification performance and generalization ability for agricultural
classification.

The proposed DMLP and DMLPFFN were tested on two public datasets (Salinas and
KSC) and two real HSI datasets (LongKou and HanChuan). Compared with the classical
methods (RBF-SVM and EMP-SVM) and deep learning-based methods (CNN, ResNet,
MLP-Mixer, RepMLP and DFFN), the experiments show that the proposed DMLP algorithm
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and DMLPFFN algorithm are meaningful and can obtain better classification results. We
also validate the classification performance and generalization ability of DMLPFFN in fine
crop classification, which contributes to promoting the specific application of hyperspectral
remote sensing technology in agricultural development.

However, in the task of hyperspectral image classification, the available marker sam-
ples are usually very limited. When analyzing the classification effect of the number of
training samples, take the KSC dataset as an example; the DMLPFFN proposed in this
paper reveals that an effectiveness of 10% of the sample size is superior to the others. As a
future step, we are conducting further experiments to probe the prevalence suitability of
DMLPFFN in small sample cases.
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