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Abstract: As a novel method of earth observation, video satellites can observe dynamic changes
in ground targets in real time. To make use of satellite videos, target tracking in satellite videos
has received extensive interest. However, this also faces a variety of new challenges such as global
occlusion, low resolution, and insufficient information compared with traditional target tracking. To
handle the abovementioned problems, a multi-feature correlation filter with motion estimation is
proposed. First, we propose a motion estimation algorithm that combines a Kalman filter and an
inertial mechanism to alleviate the boundary effects. This can also be used to track the occluded
target. Then, we fuse a histogram of oriented gradient (HOG) features and optical flow (OF) features
to improve the representation information of the target. Finally, we introduce a disruptor-aware
mechanism to weaken the influence of background noise. Experimental results verify that our
algorithm can achieve high tracking performance.

Keywords: satellite video; object tracking; correlation filter; motion estimation; disruptor-aware mechanism

1. Introduction

With the development of the commercial satellite industry, various countries have
launched a large number of video satellites, which provide us with high-resolution satellite
videos [1]. Different from traditional videos, satellite videos have a wider observation
range and richer observation information. Based on these advantages, satellite videos are
applied in fields, such as:

1. Traffic monitoring, where relevant departments can use satellite videos to monitor
road conditions and reasonably regulate the operation of vehicles;

2. Motion analysis, where satellite videos can be used to observe sea ice in real time and
analyse its trajectory;

3. Fire controlling, where satellite videos are able to monitor the spread trend of fire and
control it before it causes major damage.

To make use of satellite videos, a variety of scholars began to pay attention to target
tracking in satellite videos. As one of the most popular research directions, target tracking
aims to locate the target and calculate the target trajectory [2]. However, compared with
target tracking in traditional videos, target tracking in satellite videos faces more severe
challenges. For example, the targets in satellite videos often have lower resolution, which
accounts for only dozens of pixels. From Figure 1a, we can see that the car is just a point. In
addition, occlusion is also a great challenge for satellite video tracking. The target has been
occluded in Figure 1b, which is very unfavourable to the whole tracking process and may
make it difficult for the algorithm to track the target again. Finally (see Figure 1c for an
example), the target is much like the backdrop, which makes the target hard to distinguish.
In this case, there is a great possibility that tracking drift will occur.
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an example), the target is much like the backdrop, which makes the target hard to distin-
guish. In this case, there is a great possibility that tracking drift will occur. 
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Figure 1. The object to be tracked is surrounded by the red box. Satellite images where object is (a) 
small, (b) occluded and (c) similar to the background. 

To date, many methods for target tracking have been presented. All are roughly clas-
sified into generative methods [3–5] and discriminant methods [6–16]. The generative 
methods generate a target template by extracting the representation information of the 
target and searching the area resembling the template. One obvious disadvantage of gen-
erative methods is that they only use the target information and ignore the role of the 
background. Different from generative methods, discriminant methods treat target track-
ing as a classification task with positive and negative samples, in which the target is a 
positive sample and the background is a negative sample. Because discriminant methods 
obtain robust tracking performance, discriminant methods have become the mainstream 
tracking methods. 

Recently, two kinds of popular discriminant methods are deep learning (DL) based 
[6–8] and correlation filter (CF) based [9–16]. DL-based methods use the powerful repre-
sentation ability of convolution features to realise target tracking. The method using hier-
archical convolutional features (HCF) [6] obtains great tracking performance by using fea-
tures extracted from the VGG network. Fully-convolutional Siamese networks (SiamFC) 
[7] use a Siamese network to train a similarity measure function offline and select the tar-
get most similar to the template. Voigtlaender et al. [8] present Siam R-CNN, a Siamese 
re-detection architecture, which unleashes the full power of two-stage object detection ap-
proaches for visual object tracking. In addition, a novel tracklet-based dynamic program-
ming algorithm is combined to model the full history of both the object to be tracked and 
potential distractor objects. However, DL-based methods require abundant data for train-
ing. In addition, millions of parameters make it difficult for DL-based methods to achieve 
real-time tracking performance. 

The CF-based methods transform the convolution operation into the Fourier domain 
through a Fourier transform, which greatly speeds up the calculation. In this case, CF-
based methods are better suited for target tracking in satellite videos. The minimum out-
put sum of squared error (MOSSE) [9] applies a correlation filter to target tracking for the 
first time. Due to the extremely high tracking speed of MOSSE, CF-based methods have 
been developed. The most famous correlation filter is the kernel correlation filter (KCF) 
[10], which defines the multichannel connection mode and enables the correlation filter to 
use various features. However, KCF is often arduous to track the target with scale change 
accurately. To settle the impact of scale change on the performance of the tracker, the scale 
adaptive kernel correlation filter (SAMF) [11] introduces scale estimation based on KCF. 

Figure 1. The object to be tracked is surrounded by the red box. Satellite images where object is
(a) small, (b) occluded and (c) similar to the background.

To date, many methods for target tracking have been presented. All are roughly
classified into generative methods [3–5] and discriminant methods [6–16]. The generative
methods generate a target template by extracting the representation information of the
target and searching the area resembling the template. One obvious disadvantage of
generative methods is that they only use the target information and ignore the role of
the background. Different from generative methods, discriminant methods treat target
tracking as a classification task with positive and negative samples, in which the target is a
positive sample and the background is a negative sample. Because discriminant methods
obtain robust tracking performance, discriminant methods have become the mainstream
tracking methods.

Recently, two kinds of popular discriminant methods are deep learning (DL) based [6–8]
and correlation filter (CF) based [9–16]. DL-based methods use the powerful representation
ability of convolution features to realise target tracking. The method using hierarchical
convolutional features (HCF) [6] obtains great tracking performance by using features
extracted from the VGG network. Fully-convolutional Siamese networks (SiamFC) [7] use
a Siamese network to train a similarity measure function offline and select the target most
similar to the template. Voigtlaender et al. [8] present Siam R-CNN, a Siamese re-detection
architecture, which unleashes the full power of two-stage object detection approaches
for visual object tracking. In addition, a novel tracklet-based dynamic programming
algorithm is combined to model the full history of both the object to be tracked and potential
distractor objects. However, DL-based methods require abundant data for training. In
addition, millions of parameters make it difficult for DL-based methods to achieve real-time
tracking performance.

The CF-based methods transform the convolution operation into the Fourier domain
through a Fourier transform, which greatly speeds up the calculation. In this case, CF-
based methods are better suited for target tracking in satellite videos. The minimum
output sum of squared error (MOSSE) [9] applies a correlation filter to target tracking for
the first time. Due to the extremely high tracking speed of MOSSE, CF-based methods
have been developed. The most famous correlation filter is the kernel correlation filter
(KCF) [10], which defines the multichannel connection mode and enables the correlation
filter to use various features. However, KCF is often arduous to track the target with
scale change accurately. To settle the impact of scale change on the performance of the
tracker, the scale adaptive kernel correlation filter (SAMF) [11] introduces scale estimation
based on KCF. To make the tracker better describe the target, a convolution feature is
used in correlation filtering in [12]. The background-aware correlation filter (BACF) [13]
can effectively simulate the change in background with time by training real sample data.
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Tang et al. proposed a multikernel correlation filter (MKCF) [14] and an effective solution
method. The hybrid kernel correlation filter (HKCF) [15] adaptively uses different features
in the ridge regression function to improve the representation information of the target.
Although the performance gradually improves, the speed advantage of the correlation filter
also gradually decreases. To strike a balance between performance and speed, the efficient
convolution operator (ECO) [16] introduces a factorised convolution operator to reduce the
number of parameters, which can reduce computational complexity. However, the above
methods cannot track the occluded target. In addition, the boundary effects caused by
cyclic sampling is also a great challenge to the abovementioned methods.

Inspired by the correlation filter with motion estimation (CFME) [17], we propose
a motion estimation algorithm combining the Kalman filter [18] and an inertial mecha-
nism [19]. Because the target in the satellite videos performs uniform linear motion in most
cases, the Kalman filter can accurately calculate the location of the target. However, in some
cases, the trajectory of the target bends, and the position predicted by Kalman filter is no
longer accurate. Therefore, we use an inertial mechanism to correct the position predicted
by Kalman filter. The motion estimation algorithm not only places the target in the centre
of the image patch to mitigate the boundary effects but also tracks the occluded target.
Furthermore, considering the low target resolution in satellite videos, we use the HOG and
OF features to improve the representation information of the target. However, background
noise is inevitably introduced when fusing features. To weaken the interference of back-
ground noise on tracking performance, we introduce the disruptor-aware mechanism used
in [20].

This paper makes the following contributions:

1. We propose a motion estimation algorithm that combines the Kalam filter and an
inertial mechanism to mitigate the boundary effects. Moreover, the motion estimation
algorithm can also be used to track the occluded target;

2. We fuse the HOG feature and OF feature to improve the representation information
of the target;

3. We introduce a disruptor-aware mechanism to attenuate the interference of backdrop
noise.

The rest of the paper is arranged as follows. Section 2 represents the materials and
methods. Section 3 shows the experiments that we have conducted. Section 4 discusses the
results and future work. Section 5 provides a concise summary.

2. Materials and Methods

A flowchart of our algorithm is shown in Figure 2. Based on KCF [10], our algorithm
includes a motion estimation algorithm, feature fusion and a disruptor-aware mechanism.
It is noted that we artificially give the position of the target in the first frame, and the
proposed algorithm tracks the target according to the position of the target in the first frame.
First, we use a motion estimation algorithm to calculate the location of the target in the
present time. Second, the image patch is cropped according to the predicted position. Third,
the HOG and OF features of the image patch are extracted, and their response maps are
denoised by a disruptor-aware mechanism. Fourth, feature fusion is carried out, and the
maximum response value is calculated. If the peak value of the response patch is greater
than the threshold, then the location predicted by the correlation filter is output; otherwise,
the location calculated by the motion estimation algorithm is output.
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Figure 2. Flowchart of our algorithm.

2.1. Introduction of KCF Tracking Algorithm

KCF trains a detector to detect the target. It constructs training samples by cyclic
sampling of the central target. Assume that s = [s1, s2, s3, s4, · · · , sn] is one-dimensional
data. Ps can be obtained by a cyclic shift of s, which is expressed as [sn, s1, s2, s3, · · · , sn−1].
All circular shift results of s are spliced into a cyclic matrix S, which can be expressed by
the following equation:

S =


s1 s2 s3 · · · sn
sn s1 s2 · · · sn−1

sn−1 sn s1 · · · sn−2
...

...
...

. . .
...

s2 s3 s4 · · · s1

. (1)

Cyclic matrices have the following properties:

S = FHdiag(ŝ)F (2)

where F is the discrete Fourier transform (DFT) matrix. H means conjugate transpose, and
ŝ is the DFT transformation of s. The diagonal matrix is shown as diag.

KCF uses ridge regression to train a classifier. At the same time, the label function is
a Gaussian function in which the value of the centre point is 1 and the convenient value
gradually decays to 0. It initialises the filter ω by solving f (si) = ωTsi, which can minimise
the difference between training sample si and label yi. The objective function is

min
ω

∑
i
( f (si)− yi)

2 + λ||ω||2 (3)

where λ is a regularisation factor.
According to Equation (3), we can obtain the following equation:

ω =
(

STS + λI
)−1

STy. (4)

where I is the identity matrix. Using the properties of the Fourier transform and substituting
Equation (2) into Equation (4), we can obtain Equation (5).

ω̂ =
ŝ∗ ◦ ŷ

ŝ∗ ◦ ŝ + λ
(5)
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where ω̂, ŝ, and ŷ are the DFT of ω, s, and y, respectively. ŝ∗ is the complex conjugation of ŝ.
The operator ◦ is the Hadamard product of matrix.

The performance of the tracker can be improved by using the kernel trick. Suppose
the kernel κ is κ(s, s′) = 〈Φ(s), Φ(s′)〉. f (s) can be written as

f (s) = ωTΦ(s) =
n

∑
i=1

αiκ
(
s, s′

)
(6)

For most of the kernel function, the properties of Equation (2) still hold. Then, α̂ can
be solved by

α̂ =
ŷ

k̂ss′ + λ
(7)

where ŷ is the DFT of y, and α̂ is the trained filter. Because we make use of a Gaussian
function as the label, kss′ can be shown as

kss′ = exp

{
− 1

σ2

[
‖ s ‖2 + ‖ s′ ‖2 − 2F−1

(
∑

c
ŝ?c ◦ ŝ′c

)]}
(8)

where ŝ? is the complex conjugation of ŝ, and ◦ is the Hadamard product of the matrix. The
number of characteristic channels is represented by c. F−1 is the inverse transform of the
Fourier transform.

When tracking the target, the algorithm cuts out the candidate region centred on the
target. Then, the response patch is calculated by

f (z) = F−1(k̂lz ◦ α̂) (9)

where z is the representation information of the candidate region, and l is the target
template.

When the target is moving, the apparent characteristics of the target often vary. There-
fore, to better describe the target, the correlation filter also needs to be updated dynamically.
The KCF is updated by using {

α̂t = (1− η)α̂t−1 + ηα̂new
lt = (1− η)lt−1 + ηsnew

(10)

where η is the learning rate. α̂new and snew are the new filter and samples, respectively.

2.2. Motion Estimation Algorithm

We introduce motion estimation to make our tracker work more accurately. This
includes the Kalman filter [18] and an inertial mechanism [19]. Kalman filter calculates
the location of the target in the current time through the location of the target in the
previous frame. However, sometimes the position predicted by Kalman filter is not credible.
Therefore, an inertial mechanism is used to correct the position predicted by Kalman filter.
A flowchart of the motion estimation algorithm is shown in Figure 3.
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2.2.1. Kalman Filter

The state and observation equations are{
Xk = Ak−1Xk−1 + Wk−1

Yk = CkXk + Vk
(11)

where Ak−1 is the state transition matrix in the k − 1 frame, and Ck is the observation
transition matrix in the k frame. X and Y are the state vector and the observation vector,
respectively. W. and V are the white Gaussian noise with covariance matrices Q and R.

In our algorithm, the location of the target can be written as

Xk = [xsk, ysk, ∆xk, ∆yk] (12)

where xsk and ysk are the abscissa and ordinate of the target, respectively. ∆xk and ∆yk are
the horizontal velocity and vertical velocity of the target, respectively.

Because the moving distance of the target between adjacent frames is very short, we
think that the target moves at a uniform speed. In this situation, the state transition matrix
and the observation matrix can be expressed as

Ak−1 =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 (13)

Hk =

(
1 0 0 0
0 1 0 0

)
(14)
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The update process of Kalman filter is as follows:

X̂k = AkX̂k−1 + Hk
(
Yk − Ck Ak M̂k−1

)
(15)

Hk = PkCT
k

(
CkPkCT

k + Rk

)−1
(16)

Pk = AkPk−1 AT
k + Qk−1 (17)

Pk = (I − HkCk)Pk (18)

where M̂k−1 is the state vector in frame k− 1, and Yk is the observation vector in frame k. P
is the prediction error covariance matrix, and I is the identity matrix.

2.2.2. Inertial Mechanism

A video satellite can observe the long-term motion state of the target. Different from
traditional videos, the target moves linearly most of the time, and the Kalman filter can
calculate the location of the target well. However, the trajectory sometimes bends. In this
case, the Kalman filter cannot accurately calculate the location of the target, so an inertial
mechanism is introduced to correct the location estimated by the Kalman filter. From [19],
we can see that the performance of the inertial mechanism is obviously better than the
Kalman filter when the target trajectory is curved.

When tracking the target in frame t, position P(t) predicted by the Kalman filter is
sent into the inertial mechanism. If the difference between P(t) and position Pi(t) predicted
by the inertial mechanism is beyond the threshold, then Pi(t) is used to replace P(t). Pi(t)
can be calculated by using

Pi(t) = P(t− 1) + I(t− 1) (19)

where I(t− 1) is the inertia distance. I(t) can be updated by linear interpolation:

I(t) = (1− γ)I(t− 1) + γ(P(t)− P(t− 1)) (20)

where γ is the inertia factor. The threshold of the triggering inertia mechanism is related to
the residual distance R(t). R(t) can also be updated by linear interpolation:

R(t) = (1− γ)R(t− 1) + γ(P(t)− Pi(t)) (21)

2.3. Feature Fusion

OF can well describe the moving state of the target. Therefore, OF is well suited for
satellite video tracking. OF assumes that pixels within a fixed range have identical speeds.
The pixels centred on P satisfy the following equation:

Ix(P1)Vx + Iy(P1)Vy = −It(P1)
Ix(P2)Vx + Iy(P2)Vy = −It(P2)

...
Ix(Pn)Vx + Iy(Pn)Vy = −It(Pn)

(22)

where P1, P2, P3, · · · , Pn are pixels centred on P. Ix(Pi), Iy(Pi) and It(Pi) are the partial
derivatives of Pi with respect to x, y, and t. Equation (22) can be shown by using the matrix

AV = B (23)

where

A =


Ix(P1) Iy(P1)
Ix(P2) Iy(P2)

...
...

Ix(Pn) Iy(Pn)

, V =

(
Vx
Vy

)
, B =


−It(P1)
−It(P2)

...
−It(Pn)

 (24)
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We multiply Equation (23) left by AT , which can be written as

AT AV = AT B. (25)

The following equation can be obtained by solving Equation (25):

(
Vx
Vy

)
=

(
∑i Ix(Pi)

2 ∑i Ix(Pi)Iy(Pi)

∑i Iy(Pi)Ix(Pi) ∑i Iy(Pi)
2

)−1

×
(
−∑i Ix(Pi)It(Pi)
−∑i Iy(Pi)It(Pi)

)
(26)

The HOG feature is widely used in correlation filtering. It divides the input image into
several cells according to a certain proportion and calculates the gradient in the discrete
direction to form a histogram. HOG can well represent the contour features of the target.
Therefore, HOG and OF can describe the target from different angles to enhance the
representation information.

The peak-to-side Lobe ratio (PSR) [9] is utilised to describe the tracking performance
of the tracker. The higher the PSR value, the better the tracking performance. If the value
of PSR is lower than a certain value, then it can be considered that the tracking quality is
poor. The calculation formula of PSR is as follows:

PSR(i) =
gmax(i)− µsl(i)

σsl(i)
(27)

where i ∈ {HOG, OF}, and gmax is the maximum response value. µsl and σsl are the mean
and variance of the sidelobe, respectively. In this paper, we use PSR to fuse the HOG feature
and OF feature, which can be expressed as

Res = βRes(HOG) + (1− β)Res(OF) (28)

where Res is the final response patch. Res(HOG) and Res(OF) are the response patches of
HOG and OF, respectively. β can be shown as

β =
PSR(HOG)

PSR(HOG) + PSR(OF)
(29)

where PSR(HOG) and PSR(OF) are the PSR of the HOG response patch and OF response
patch, respectively.

2.4. Disruptor-Aware Mechanism

As we all know, a smooth response patch will make the tracker achieve excellent
tracking performance. However, when tracking the target, the target is easily disturbed by
a similar background, which makes the response value of noise too large. This may affect
the follow-up tracking performance and even lead to tracking failure. Therefore, we must
remove points with abnormal response values.

In this paper, we introduce a disruptor-aware mechanism [20] to suppress background
noise. We first divide the response patch into α× α blocks and find the local maximum
m(i, j) of the block in the ith row and jth column, where i, j ≤ α. When α is 5, the divided
response patch is shown in Figure 4. Then, we find the global maximum max and set the
penalty mask of its location to 1. Finally, we set the penalty mask for other blocks through
Equation (28). {

ρ(i, j) = 1
ξθ(i,j) , v < θ(i, j)

ρ(i, j) = 1, others
(30)

where ξ is a penalty coefficient, and v is a threshold to trigger the disruptor-aware mecha-
nism. θ(i, j) is calculated as

θ(i, j) =
m(i, j)
max

. (31)
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By using Equations (30) and (31), we can obtain the matrix composed of penalty masks.
The matrix is shown as

ρ(1, 1) ρ(1, 2) ρ(1, 3) · · · ρ(1, α)
ρ(2, 1) ρ(2, 2) ρ(2, 3) · · · ρ(2, α)
ρ(3, 1) ρ(3, 2) ρ(3, 3) · · · ρ(3, α)

...
...

...
. . .

...
ρ(α, 1) ρ(α, 2) ρ(α, 3) · · · ρ(α, α)

. (32)

Finally, we can obtain the denoised response patch by dot multiplying the response
patch with Equation (30).
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2.5. Occlusion Detection

Because the targets in satellite videos have very low resolution, there is a great possi-
bility that occlusion will occur, as shown in Figure 5. We can see that the movement of the
car is divided into three stages.

1. Before occlusion occurs, the car runs normally.
2. When occlusion occurs, the car is occluded by the overpass, and the whole car disap-

pears from view. In this case, the correlation filter often fails to track the target.
3. When the occlusion ends, the car returns to our view.
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To make our algorithm able to track the occluded target, we introduce an occlusion
detection mechanism. The occlusion detection mechanism should be able to judge when
occlusion occurs and when occlusion ends. When the target is occluded, the position
predicted by the correlation filter will no longer be credible. In view of the particularity of
target motion in satellite videos, we regard the position predicted by the motion estimation
algorithm as the position of the target in the current frame. In addition, if we continue to
update the template when the target is occluded, it is easy to cause template degradation. To
prevent template degradation, the correlation filter will not be updated at this time. When
the occlusion is over, we continue to output the position predicted by the correlation filter.

When the target is accurately tracked, it often has a large response value. In contrast,
if the tracking quality is poor, then the response value of the response patch will decrease
rapidly. Therefore, we use the maximum response value of the response patch to judge
whether occlusion occurs. Through experiments, the threshold is set to 0.3. When the
maximum response value is less than 0.3, we think that the target is occluded at this time
and take the position predicted by the motion estimation algorithm as the position of the
target and stop updating the template. The update process is expressed as Equation (33).
Otherwise, the location predicted by the correlation filter is output.{

α̂t = (1− η)α̂t−1 + ηα̂new, maximum response value > 0.3
α̂t = α̂t−1, others

(33)

where η is the learning rate, α̂t is the trained filter and α̂new is the new filter.

3. Results
3.1. Setting of Parameters

Our algorithm involves many parameters. To facilitate viewing the parameters in this
paper, this part introduces the details on the setting of parameters. The specific settings of
the parameters involved in this paper are listed in Table 1.

Table 1. Parameter values.

Parameters Description Value

η The learning rate 0.012
λ The regularisation factor 0.0001
γ The inertia factor 0.075
α Block number 11
v The disruptor-aware threshold 0.47
ξ The penalty coefficient 3
y The label function a 2-D Gaussian function
/ The cell of HOG 4 × 4
/ The size of search area 2.5 times the target size

3.2. Setting of Threshold to Detect Occlusion

We use the peak value to judge whether the target is occluded. From Figure 6, we can
see that the peak value decreases rapidly when occlusion occurs. What is more, when the
peak value is lower than 0.3, the whole car disappears from view.
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We use a grid search to select the best performing threshold from [0.1, 0.2, 0.3, 0.4].
The success plot on every threshold is shown in Figure 7. The AUC is highest when the
threshold is 0.3, therefore we choose 0.3 as the threshold.
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3.3. Datasets and Compared Algorithms

Some datasets are provided by the Jilin-1 satellite, and the other part is public data [21].
We select nine videos to test our tracker. In this paper, the results of five representative
videos are shown. Video 1–4 are provided by Jilin-1 satellite and video5 is public data.
The targets tracked in the videos include planes, cars and ships. In addition, the tracked
target has the following challenges: low resolution, global occlusion and fast rotation.
The detail information about the dataset is listed in Table 2. To measure the performance
of our algorithm, we select the following popular algorithms for comparison: CFME,
MOSSE, KCF, multiple instance learning (MIL) [22], BOOSTING [23] and median flow
(MEDIANFLOW) [24]. The motion estimation algorithm of our tracker is inspired by CFME.
KCF is the baseline of our tracker. MOSSE is the first algorithm to use correlation filtering
for tracking. Other algorithms are classical tracking algorithms.
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Table 2. The detail information about the datasets.

Videos Target Type Image Size Target Size Frame Number Data Source

Video1 Plane 1450 × 750 30 × 30 180 Jilin-1
Video2 Ship 512 × 512 27 × 29 300 Jilin-1
Video3 Car 1024 × 1024 9 × 13 130 Jilin-1
Video4 Car 1024 × 1024 6 × 8 320 Jilin-1
Video5 Car 1920 × 1080 8 × 10 140 Public data

3.4. Evaluation Metrics

The centre location error (CLE) and Tanimoto Index [25] are the two most commonly
used evaluation metrics in target tracking. CLE means the Euclidean distance between
the real position and the predicted position. The Tanimoto Index S is used to describe the
proportion of overlapping area between the predicted area and real area in the total area,
which can be shown as

S =
Sg ∩ Sp

Sg ∪ Sp
(34)

where Sg and Sp are the ground truth position and the position predicted by the algorithm,
respectively. ∪ and ∩ denote the union and intersection of two positions.

To better compare the performance of different algorithms, we use additional metrics,
such as FPS, precision score, precision plot, success score, success plot and area under the
curve (AUC). FPS is the number of frames that the tracker can process per second. The
precision score is used to describe the proportion of frames whose CLE is less than the
threshold (5 pixels) in the total number of frames. The precision plot is a curve according to
the precision score. The success score denotes the proportion of frames whose overlap ratio
is larger than the threshold (0.5) in the total number of frames. The success plot is drawn
by success score. AUC describes the offline area of the success plot. The larger the AUC is,
the better the tracking effect. We rank each tracker through the AUC.

3.5. Comparative Experiments
3.5.1. Quantitative Analysis

We first choose the plane and ship of satellite videos as the tracked targets. The results
are shown in Figure 8. Because our algorithm and CFME alleviate the boundary effects, the
tracking performance is obviously better than that of other algorithms. However, according
to Tables 3 and 4, our algorithm achieves higher tracking accuracy than CFME. The reason
is that our algorithm uses the HOG and OF features, while CFME only uses the HOG
feature. Therefore, our algorithm can extract more information about the target.
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For the KCF, which also uses the HOG feature, good performance is also obtained,
and KCF ranks third, while MOSSE uses the grey feature of the target. Due to the low
resolution of the target in satellite videos, the grey feature cannot accurately describe the
target, so the performance of MOSSE is not ideal. Therefore, in satellite video tracking, the
features have a wonderful impact on tracking performance. Our algorithm utilises two
complementary features and obtains great performance.

Table 3. Results of video1.

Ours CFME MOSSE KCF MIL BOOSTING MEDIANFLOW

Precision Score 0.971 0.956 0.032 0.928 0.301 0.852 0.578
Success Score 1.000 1.000 0.033 0.842 0.548 1.000 0.786

AUC 0.783 0.778 0.062 0.663 0.526 0.752 0.624
FPS 64 108 598 113 7 49 81

Table 4. Results of video2.

Ours CFME MOSSE KCF MIL BOOSTING MEDIANFLOW

Precision Score 1.000 1.000 0.163 0.907 0.608 0.828 0.376
Success Score 1.000 1.000 0.086 1.000 0.816 1.000 0.733

AUC 0.802 0.795 0.087 0.732 0.636 0.713 0.595
FPS 66 109 600 115 7 51 83

Occlusion is the most common challenge in target tracking. Especially in satellite
video tracking, the tracked target is often completely occluded. Therefore, to validate
the tracking performance of our algorithm for occluded targets, we specifically select a
video with global occlusion. Table 5 and Figure 9 show that both our algorithm and CFME
have achieved great performance. Our algorithm and CFME can track the occluded target
through the occlusion detection mechanism. The other algorithms fail to track. The AUC of
our algorithm is 0.704, and the AUC of CFME is 0.698. KCF ranks third, but its AUC is only
0.426. Before the target is occluded, the KCF can accurately track the target. However, the
KCF gradually loses the target after the target is occluded. In this case, our algorithm and
CFME are obviously superior to other algorithms.
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Table 5. Results of video3.

Ours CFME MOSSE KCF MIL BOOSTING MEDIANFLOW

Precision Score 0.935 0.920 0.024 0.521 0.557 0.578 0.596
Success Score 0.843 0.840 0.029 0.593 0.551 0.590 0.483

AUC 0.704 0.698 0.068 0.426 0.417 0.395 0.367
FPS 70 118 605 127 8 58 88

From Table 6 and Figure 10, we can see that the performance of our algorithm is
the best of all algorithms. The tracked target in this video has low resolution and rotates
fast at the same time. The performance of CFME has decreased considerably and finally
fails to track. Because the target rotates fast, the response value at a certain time is lower
than the occlusion threshold of CFME. Under these circumstances, the occlusion detection
mechanism of CFME is activated. CFME considers the location predicted by the motion
estimation mechanism as the real location, which may lead to tracking failure. In addition,
the performance of KCF is better than that of CFME. When the target rotates fast, the
motion estimation algorithm of CFME has a negative impact and leads CFME to fail to
track. Making a comparison with CFME, the precision score of our algorithm is increased
by approximately 0.406, the success score of our algorithm increases by approximately
0.431 and the AUC of our algorithm increases by approximately 0.301. In summary, when
the tracked target rotates fast, our algorithm can still track the target accurately.
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Table 6. Results of video4.

Ours CFME MOSSE KCF MIL BOOSTING MEDIANFLOW

Precision Score 0.969 0.563 0.114 0.745 0.664 0.527 0.515
Success Score 0.905 0.474 0.024 0.689 0.453 0.489 0.274

AUC 0.723 0.422 0.069 0.541 0.482 0.417 0.291
FPS 73 121 608 129 9 61 91

To test the proposed method, we use a video from other sensors. From Table 7 and
Figure 11, we can see that our algorithm achieves the best performance. Because the target
in video5 is moving in a uniform liner motion, CFME effectively alleviates the boundary
effect through motion estimation algorithm and performs well. Due to the use of HOG
feature and OF feature, the performance of our algorithm is better than CFME.
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Figure 11. Precision plot and success plot. The values in legends are the AUC. (a) Precision plot of
video5. (b) Success plot of video5.

Table 7. The results of video5.

Ours CFME MOSSE KCF MIL BOOSTING MEDIANFLOW

Precision Score 0.974 0.952 0.124 0.754 0.921 0.700 0.855
Success Score 0.821 0.802 0.056 0.596 0.450 0.132 0.334

AUC 0.703 0.698 0.083 0.461 0.519 0.288 0.421
FPS 71 118 606 127 8 59 89

3.5.2. Qualitative Analysis

Figure 12 represents the visualised results. In Figure 12a,b, there is no severe challenge
to the tracked target, and the size of the target is large. Therefore, our algorithm and
CFME perform well. In addition, due to the use of HOG features, KCF also achieved good
performance and ranks third. However, KCF is unable to track the occluded target. From
Figure 12c, we can see that when the target crosses the overpass, it is completely occluded
and disappears in the field of vision. At this time, KCF cannot find the location of the target
and fails to track the target. However, our algorithm and CFME can predict the position
of the target through motion estimation. Thus, even if the target is completely occluded,
our algorithm and CFME can still track the target. When the target appears again, our
algorithm and CFME can track the target. However, KCF has been hovering beside the
overpass. Owing to motion estimation, our algorithm and CFME can solve the occlusion
problem well. However, CFME only uses Kalman filter to calculate the location of the
next frame. If fast rotation occurs, then the position predicted by CFME will often deviate
from the real position of the target and eventually lead to tracking failure. According to
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Figure 12d, our algorithm can accurately track rotating targets. Although MIL achieved
good tracking accuracy for rotating targets, when similar targets appear around them, MIL
has a high probability of tracking the wrong target. From Figure 12e, we can see that our
algorithm still achieves the best performance when we use a video from other sensors.
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3.6. Ablation Experiment

To verify the significance of the motion estimation algorithm M1, feature fusion M2
and the disruptor-aware mechanism M3, we perform the following experiments: “Baseline,”
“Baseline + M1,” “Baseline + M1 + M2” and “Baseline + M1 + M2 + M3.” Among them,
“Baseline” denotes the KCF tracker. The results are shown in Table 8. We can see that M1,
M2 and M3 improve the performance of the KCF in precision score, success score and
AUC. Moreover, compared with KCF, our algorithm improves the performance by 0.198,
0.170 and 0.178 in precision score, success score and AUC, respectively.

Table 8. Results of ablation experiment.

Baseline +M1 +M1+M2 +M1+M2+M3

Precision Score 0.771 0.933 0.951 0.969
Success Score 0.744 0.891 0.906 0.914

AUC 0.565 0.722 0.736 0.743
FPS 122 107 86 69

4. Discussion
4.1. Analysis of Proposed Algorithm
4.1.1. Boundary Effects

CF-based method utilises a periodic assumption of the training samples to efficiently
learn a classifier on all patches in the target neighbourhood. However, the periodic as-
sumption also introduces unwanted boundary effects, which severely degrade the quality
of the tracking model. In the training stage, because the training samples are obtained
by cyclic shifts of the central image, they all have boundary effects except for the central
image. When tracking the target, if the moving speed of the target is too fast, then tracking
drift easily occurs. Most algorithms add a cosine window to the image to weaken the
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influence of the boundary effects on the tracking performance. However, this also shields
the background information and reduces the discrimination ability of the classifier. To
alleviate the boundary effects, a spatially regularised correlation filter (SRDCF) [26] intro-
duces a spatial regularisation component. In addition, Galoogahi et al. [27] used larger
image blocks and smaller filters to increase the proportion of real samples. However, its
computational complexity is unaffordable.

Considering that the moving objects in the satellite videos are vehicles, planes or ships,
the acceleration of these objects is not particularly large, which means that the motion
state of these objects does not change in a short period of time. Therefore, the movement
of objects in satellite videos is usually regular. Inspired by the observation, we propose
a motion estimation algorithm that combines Kalman filter and inertial mechanism to
alleviate the boundary effects.

From Table 8, it is obvious that compared with the baseline, i.e., KCF, the precision
score of “baseline+M1” is increased by approximately 0.162, the success score of “base-
line+M1” is increased by approximately 0.147 and the AUC of “baseline+M1” is increased
by approximately 0.157. By alleviating the boundary effects, the performance of our
algorithm is obviously better than that of KCF.

4.1.2. Target Occlusion

With the development of the commercial satellite industry, satellite video tracking
has attracted extensive attention. To track the target in satellite videos, many methods
have been developed. HKCF [15] uses an adaptive feature fusion method to enhance
the representation information of the target. Du et al. proposed a multiframe optical
flow tracker (MOFT) [28] that fuses the Lucas–Kanade optical flow method with the HSV
colour system. A Gabor filter is utilised to strengthen the contrast between the target and
background in [29]. A detection algorithm based on a local noise model [30] is proposed
to track city-scale moving vehicles. Although the above algorithms can track the target
well, these algorithms often fail if occlusion occurs. Through the use of motion estimation,
our algorithm can not only track the target robustly but also track the target that reappears
after being occluded.

From Figure 12c, we can see that when the target is occluded, the occlusion detection
mechanism of our algorithm is activated and our algorithm can go on tracking the target.
In this case, our algorithm tracks the target through the motion estimation algorithm, and
the model will not be updated at this time, which can avoid model degradation. When the
target reappears, our algorithm tracks the target through the correlation filter.

4.2. Future Work
4.2.1. Satellite Video Tracking by Deep Learning

Deep learning has made rapid development in recent years, and is widely used in
various fields, such as computer vision, natural language processing and so on. As one of
the most popular research directions, object tracking aims to locate the target and calculate
the trajectory. Presently, many DL-based methods are used in object tracking, and have
achieved excellent performance. But compared with object tracking in traditional videos,
object tracking in satellite videos faces more severe challenges.

Some methods have been proposed for satellite video tracking. A regression network
is used to combine a regression model with convolutional layers and a gradient descent
algorithm in [31]. The regression network fully exploits the abundant background context
to learn a robust tracker. In [32], an action decision-occlusion handling network based on
deep reinforcement learning is built to achieve low computational complexity for object
tracking under occlusion. Besides, the temporal and spatial context, the object appearance
model, and the motion vector are adopted to provide the occlusion information. The above
methods have achieved great performance. However, the timing performance is not ideal.

Because of the low resolution, the manual features cannot accurately describe the target
in satellite videos. It can be observed that compared with manual features, convolution
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features have better representation ability. In future work, deep learning will be used
for object tracking in satellite videos. Meanwhile, the timing performance also has to
be considered.

4.2.2. Multi-Object Tracking in Satellite Videos

Multi-object tracking (MOT) aims to assign an ID to each target in the video and
calculate the trajectory of each target. According to whether there is a model, MOT is
classified into a model-free method and tracking by detection method. Considering the
great performance, the tracking by detection method [33–36] has been rapidly developing.

Presently, deep learning is widely used in MOT and performs well. However, MOT
in satellite videos still faces great challenges. On the one hand, due to the lack of satellite
datasets and strong confidentiality, it is difficult to have enough data to train the model.
On the other hand, the targets in satellite videos are very similar, which may lead to
frequent ID switch. He et al. [21] propose an end-to-end online framework that models
MOT as a graph information reasoning procedure from the multitask learning perspective.
However, most point-like objects are very similar to the background in space, easily leading
to omissions in detection. Aguilar et al. [37] propose a patch-based convolutional neural
network (CNN) that focuses on specific regions to detect and discriminate nearby small
objects. Besides, an improved Gaussian mixture-probability hypothesis density filter is
used for data-association. Due to the patch selection and CNN inference, the computational
burden is increased.

With the development of commercial satellite industry and deep learning, more open
satellite data are available and more efficient algorithms are proposed, which will advance
the development of relevant research work. Therefore, MOT in satellite videos will play an
important role in the future.

5. Conclusions

In this paper, we proposed a multi-feature correlation filter with motion estimation
to track the target in satellite videos. This has obvious superiority over representative
methods. First, a motion estimation algorithm that combines the Kalman filter and inertial
mechanism was employed to alleviate the boundary effects and track occluded targets. In
addition, considering the low resolution of targets in satellite videos, HOG features and OF
features were integrated to improve the presentation information of the target. Finally, a
disruptor-aware mechanism was introduced to suppress the interference of background
noise. Several experiments were carried out to prove the effectiveness of our algorithm.
Future work will focus on applying deep learning to satellite video tracking and studying
MOT in satellite videos.
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