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Abstract: Mapping and monitoring coral reef benthic composition using remotely sensed imagery
provides a large-scale inference of spatial and temporal dynamics. These maps have become essential
components in marine science and management, with their utility being dependent upon accuracy,
scale, and repeatability. One of the primary factors that affects the utility of a coral reef benthic
composition map is the choice of the machine-learning algorithm used to classify the coral reef
benthic classes. Current machine-learning algorithms used to map coral reef benthic composition
and detect changes over time achieve moderate to high overall accuracies yet have not demonstrated
spatio-temporal generalisation. The inability to generalise limits their scalability to only those reefs
where in situ reference data samples are present. This limitation is becoming more pronounced
given the rapid increase in the availability of high temporal (daily) and high spatial resolution (<5 m)
multispectral satellite imagery. Therefore, there is presently a need to identify algorithms capable of
spatio-temporal generalisation in order to increase the scalability of coral reef benthic composition
mapping and change detection. This review focuses on the most commonly used machine-learning
algorithms applied to map coral reef benthic composition and detect benthic changes over time
using multispectral satellite imagery. The review then introduces convolutional neural networks
that have recently demonstrated an ability to spatially and temporally generalise in relation to
coral reef benthic mapping; and recurrent neural networks that have demonstrated spatio-temporal
generalisation in the field of land cover change detection. A clear conclusion of this review is that
existing convolutional neural network and recurrent neural network frameworks hold the most
potential in relation to increasing the spatio-temporal scalability of coral reef benthic composition
mapping and change detection due to their ability to spatially and temporally generalise.

Keywords: remote sensing; machine-learning; deep-learning; coral reefs; mapping; change detection;
spatio-temporal generalisation

1. Introduction

Coral reef benthic composition maps have become an essential component in marine
science and management [1]. In order for these maps to be most effective, they need
to represent the underlying benthic classes as accurately as possible. The field of coral
reef remote sensing science has established a number of key findings that have led to
improvements in coral reef benthic composition map accuracies. These include: identifying
the effects of spatial and spectral resolution [2–4]; the number of classes mapped [5–8]; the
spatial and spectral similarities between benthic classes [4,8]; the use of either pixel or object-
based classification methods [9]; and the in situ reference data collection method used [10].
The development of image pre-processing algorithms such as correction for absorption
and scattering of light in the water column [11], sunglint removal [12], and atmospheric
correction [13] have also contributed to improvements in the ability to accurately map coral
reef benthic composition using remotely sensed imagery.
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Another factor that affects the accuracy of a coral reef benthic composition map,
which is in the control of a remote sensing scientist, is the choice of the machine-learning
algorithm used to classify the coral reef benthic classes. To this end, these machine-
learning algorithms use labelled samples in the form of either individual pixels or ob-
jects (grouped pixels) from within an image that are representative of specific classes
in order to train an algorithm to subsequently classify all pixels or objects. In the field
of coral reef benthic composition mapping, machine-learning algorithms are now more
commonly used than manual delineation by expert interpretation [14], expert manual
class assignment [5,15], and expert-derived ruleset development [9,16–20] This is because
machine-learning algorithms are less subjective and more easily repeatable [21]. The most
commonly used machine-learning algorithms for coral reef benthic composition mapping
are the k-Nearest Neighbours (k-NN), Maximum Likelihood Classification (MLC), Mini-
mum Distance to Means (MDM), Random Forest (RF), and Support Vector Machine (SVM)
(Tables 1 and 2). A key advantage of these algorithms is the fact that they are able to
achieve moderate to high overall accuracies with only small amounts of training data
(i.e., <1000 training samples per class). To date, this has been a prerequisite for coral reef
benthic mapping due to the logistical complexities inherent in acquiring in situ reference
samples from a coral reef site, which are usually in the form of georeferenced benthic
photographs [10].

The scarcity of coral reef benthic in situ reference data is perhaps the reason almost
all related publications, to date, use training and testing data derived from the same
specific reef, or reef area, within the extent that they are mapping. While this is suitable for
mapping coral reef benthic composition at the target locations, where in situ reference data
are present, the inherent bias between the training and testing samples will result in the
machine-learning algorithm overfitting on this localised data. Therefore, it is unlikely that
the trained algorithm can then generalise to mapping the coral reef benthic composition
of a new reef (spatial generalisation), or even new imagery of the same reef (temporal
generalisation) since remote sensing conditions may vary between images. The inability to
spatially or temporally generalise therefore affects the spatio-temporal scalability of coral
reef benthic mapping by limiting the target extents to only those reefs or reef areas that
contain in-situ reference data.

In addition to mapping coral reef benthic composition at one point in time, on-
going monitoring is essential for conservation management. Coral reef benthic com-
position monitoring using remotely sensed imagery, to date, has relied primarily on
post-classification comparison change detection (PCCCD), which classifies each individ-
ual image separately [14,22–24] before subsequently overlaying the classified images
in order to identify where change has occurred. The accuracy of PCCCD methods
is therefore dependent upon the accuracy of each individual classified map in the se-
quence. Since each map in the multi-temporal sequence is usually classified using similar
machine-learning algorithms as those used in coral reef benthic composition mapping,
the same primary limitation in terms of spatio-temporal scalability, the inability to gen-
eralise, is also present in PCCCD methods used for coral reef benthic change detection.
The inability to generalise is becoming more pronounced given the rapid increase in the
availability of high temporal (daily) and high spatial resolution (<5 m) multispectral
satellite imagery [25].

Coincident with the increase in the availability of multispectral satellite imagery are
advancements in deep learning frameworks [26,27]. Of particular interest to remote sensing
scientists are convolutional neural networks (CNNs), which, in the field of land cover
mapping, have demonstrated superior overall accuracies compared to traditional machine-
learning classification algorithms such as object-based k-nearest neighbour (OBIA–KNN),
object-based support vector machine (OBIA–SVM), and object-based random forest (OBIA–
RF) [28,29], as well as spatio-temporal generalisation [30]. CNNs have only recently been
used in the field of coral reef benthic mapping [31–33] but have already demonstrated high
overall accuracies and spatio-temporal generalisation [32]. In relation to change detection,
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Long Short-Term Memory networks (LSTMs) and recurrent convolutional neural networks
(ReCNN) have been applied to binary (changed or unchanged) and multi-class land cover
change detection and achieved superior overall accuracies compared to traditional land
cover change detection methods, and they have demonstrated binary spatio-temporal
generalisation [34,35]. To the best of our knowledge, however, LSTMs have not yet been
applied to coral reef benthic change detection.

This review focuses on the most commonly used machine-learning algorithms applied
to map coral reef benthic composition and detect changes over time using multispectral
satellite imagery in order to identify their advantages as well as the primary limitations
impacting their spatio-temporal scalability. Recent publications that have used CNNs for
coral reef benthic mapping, and LSTMs in the field of land cover change detection are
subsequently reviewed with a focus on their potential utility for increasing the spatio-
temporal scalability of coral reef benthic mapping. Three keywords, ‘coral reef habitat
mapping’, ‘coral reef mapping using machine learning’, and ‘coral reef change detection’
were searched in ScienceDirect and Google Scholar. For each keyword the first 100 results
were screened in ScienceDirect and the first 10 pages in Google Scholar. No date range for
publications was applied. We limited publications to only those that used multispectral
satellite imagery and mapped shallow coral reef habitat classes. Multispectral satellite im-
agery was chosen since it is the most easily accessible imagery type for researchers, covers
the largest area globally, and has the highest temporal frequency compared to airborne
and/or UAV imagery. Publications focusing only on seagrass or coral reef geomorphologi-
cal classes were excluded. Book chapters, theses, reports, and reviews were also excluded.
From 600 screened results, 87 publications were deemed relevant based on the title and/or
the abstract. Of these, 6 could not be accessed and 15 after being reviewed did not include
enough detail to be included, as seen in Tables 1–3, leaving a total of 66 publications. A
further five additional publications were manually searched since they were referenced a
number of times within these 66 publications and therefore deemed important to include
in this review. These publications were: [7,9,15,17,21]. One additional publication [33], was
brought to our attention because it used a CNN for coral reef benthic mapping. In total,
72 publications based on coral reef mapping and change detection have been included in
this review.

For CNN publications used in Sections 2.2 and 2.2.1, in addition to recurrent neural
networks (RNNs) in Section 2.3.2, a keyword search methodology was not applied. CNNs
were included in this review based on the fact they are starting to be used for coral reef
benthic mapping. RNNs were included because they have demonstrated spatio-temporal
generalisation in the field of land cover change detection, which current coral reef change
detection methods have not demonstrated.

2. Machine-Learning Algorithms Applied to Coral Reef Benthic Mapping Using
Multispectral Satellite Imagery
2.1. Pixel-Based Machine-Learning Classification Algorithms

Pixel-based machine-learning classification algorithms applied to mapping coral reef
benthic composition, classify each individual pixel within an image as being one of a
certain number of classes (i.e., coral, algae, and sand). In order for pixel-based algorithms
to be feasible, two assumptions need to be met. First, each individual pixel needs to be
represented by only one benthic class, meaning the spatial resolution of the pixel is higher
than or similar to the target object. Secondly, pixels representing each class need to have
similar spectral reflectance values to each other (i.e., all coral pixels need to have similar
spectral reflectance signatures to each other, which are different to the spectral reflectance
signatures of sand and other classes) [36]. For coral reef benthic composition mapping, the
main pixel-based machine-learning algorithm used is MLC, based on the fact it is used by
47% of publications in Table 1 (In relation to calculating the number of publications that use
each specific machine learning algorithm in Tables 1–3, only one algorithm per publication
is used. When a publication compares multiple different machine learning algorithms, only
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the algorithm that achieves the highest overall accuracy is used in the calculation. This
was done in order to ensure that publications that use one machine learning algorithm and
those that are comparing multiple different ones are weighted equally in the calculation).
MLC, which first assumes the data are normally distributed, takes the mean vector and
covariance of each classes’ spectral values into account before subsequently determining
the membership of individual pixels to each class based on the highest statistical probability
(maximum likelihood). Figure 1 illustrates equiprobability contours forming probability
density regions around the mean of the class training samples that are used in order to
determine the probability of pixel x belonging to each class. In this example pixel x would
be classified as belonging to the coral class.
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Figure 1. Basic conceptualisation of maximum likelihood classification illustrating 3 different classes
with equiprobability contours.

Moderate to high overall accuracies can be achieved using pixel-based MLC to map
coral reef benthic classes (Table 1) (All overall accuracies reported in this review, except for
those in Section 2.3.2 have been rounded to the nearest whole number since there was not a
consistent level of precision between all publications (i.e., some recorded overall accuracy
to the nearest one decimal place while others to the nearest whole number)). Compared
to the second most commonly used machine-learning algorithms in Table 1, which are RF,
SVM, and MDM, each being used by 12% of publications, MLC has demonstrated higher
overall accuracies when directly compared to MDM in Hossain et al. [37]. Wicaksono and
Aryaguna [8], and Chegoonian et al. [38], however, found that RF and SVM, respectively,
achieved higher overall accuracies when directly compared to MLC (Table 1).
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Table 1. Pixel-based coral reef benthic mapping publications.

Authors Sensor/Spatial
Resolution

Pixel or
Object-Based

Classification
Algorithm(s)

Supervised or
Unsupervised

Number of
Benthic
Habitat
Classes

Accuracy (Overall
Accuracy)

[39] WorldView-3
(1.2 m). Pixel-based. SVM. Supervised. 15 79%

[37] QuickBird
(2.4 m). Pixel-based.

MLC, MD, k-NN,
Parallelepiped

classification (PP),
and Fisher (F); then

ensemble.
Classification using

Majority Voting
(MV), Simple

Averaging (SA),
and Mode

Combination (MC).

Supervised. 4

55% (MLC), 53%
(MD), 54% (KNN),
41% (PP), 47% (F),

83% (MV), 71% (SA),
and 68% (MC).

[8] WorldView-2
(1.9 m). Pixel-based. MLC, RF. Supervised. 2–26

74.01–22.15% (mean
MLC), 95.97–76.83%

(mean RF).

[40] PlanetScope
(3.7 m). Pixel-based. RF. Supervised. 4

78% (Cemara Islands
based on 500 trees),
61% (Gelang Island
based on 500 trees);

79% (Cemara Islands
based using Log and

Entropy function),
61% (Geland Island
using Square Root
and Gini function).

[41] Landsat-8 OLI
(30 m). Pixel-based.

Linear
Discriminant

Analysis (LDA).
Supervised. 4

80% (Palmyara Atoll),
79% (Kingman Reef),

69% (Howland
Island), 71% (Baker
Island Atoll), and
74% (Combined).

[42] Planet Dove
(4.7 m). Pixel-based. ISODATA

classification. Unsupervised. 8 63%

[38] Landsat-8
(30 m). Pixel-based. MLC, SVM, ANN. Supervised. 4

Lizard Island; 72%
(ANN), 67% SVM,
67% MLC; Qeshm
and Larak Islands;
58% (ANN), 68%

(SVM), 66% (MLC).

[43] IKONOS (4 m). Pixel-based. MLC. Supervised. 6 82%

[10] QuickBird-2
(2.4 m) local. Pixel-based. MDM. Supervised. 21

Suva site: 69% (photo
transect), 65%
(spot check).

[44] IKONOS (4 m). Pixel-based. MLC. Supervised. 9 89% (Bawe) and 80%
(Chumbe).

[45] QuickBird
(2.4 m). Pixel-based. MLC. Supervised. 6

67% (no water
column correction),

89% (with water
column correction.
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Table 1. Cont.

Authors Sensor/Spatial
Resolution

Pixel or
Object-Based

Classification
Algorithm(s)

Supervised or
Unsupervised

Number of
Benthic
Habitat
Classes

Accuracy (Overall
Accuracy)

[46] Landsat-7
ETM+ (30 m). Pixel-based. Ensemble of hybrid

SVM Classifiers. Supervised. 5 89%

[47]
QuickBird-2

(2.4 m), Landsat
5 TM (30 m).

Pixel-based. MDM. Supervised. 10–21 25–62%

[48] Landsat 5 TM
(30 m). Pixel-based. MLC. Supervised. 7 76%

[7] IKONOS (4 m). Pixel-based. MLC. Supervised. 4, 8, 13
75% (4 classes), ~65%
(8 classes), and 50%

(13 classes).

[49] Landsat TM
(30 m). Pixel-based. MLC followed by

contextual editing. Supervised. 4, 8, and 13 ~60%, ~40%, and
~25%, respectively.

[4] Landsat TM
(30 m). Pixel-based. MLC. Supervised. 4, 6, 9

~57% (4 classes),
~53% (6 classes), and

~50% (9 classes).

For both Tables 1 and 2, in publications that compared multiple different sensors, only the sensors with the highest
overall are in this table, since this is the most common metric reported in the majority of these publications.
Furthermore, we aimed to make overall accuracies as consistent as possible between publications, which was
difficult since many compared OA of different sensors, spatial resolution, classification algorithms etc., therefore,
as a general rule we aimed to report the highest OA from each publication. This resulted in some including more
information than others, which is a shortcoming of this review. Only the overall accuracies from the IKONOS
sensor used in Mumby and Edwards. Ref. [7] are included since it was thought to be the most relevant to that
particular publication even though it was not the highest overall accuracy achieved. While Andréfouët et al. [5]
mapped multiple sites, the overall accuracies reported in this table are derived from their abstract, which is
thought to be the average overall accuracy reported based on the number of classes mapped. When more than
two accuracy metrics were used, only the overall accuracies were included.

In relation to spatio-temporal generalisation, only one publication in Table 1 demon-
strated spatial generalisation [41] and none demonstrated temporal generalisation. Gap-
per et al. [41] used a pixel-based Linear Discriminant Analysis (LDA) classification algo-
rithm applied to mapping two coral reef benthic habitat classes (coral and algae/sand) and
two background classes (land/cloud and deep water) at four different coral reef sites using
Landsat-8 multispectral imagery with a spatial resolution of 30 m. Their results showed
the pixel-based LDA achieved an overall accuracy of 80% when trained and tested on the
same reef, and 79%, 69%, and 71% when tested on three different reefs that the LDA had
not been trained on; therefore, demonstrating spatial generalisation.

Although moderate to high overall accuracies can be achieved using pixel-based
machine-learning algorithms, there are three inherent problems that affect pixel-based
classification. The first is the problem of a mixed pixel, whereby a single pixel may
contain multiple benthic classes, as illustrated in Figure 2a. The mixed pixel problem
is a serious challenge for mapping coral reef benthic composition because of the spatial
heterogeneity inherent in coral reef benthic habitats. The second problem is known as the
‘salt and pepper effect’ whereby single pixels are classified differently to neighbouring
pixels surrounding them, since no information from the neighbouring pixels is considered
during per-pixel classification [50]. The third problem is pixel redundancy resulting from
the spatial resolution being much finer than the target objects as shown in Figure 2c, where
a large number of pixels represent the same target feature [51,52]. Pixel redundancy is
becoming more pronounced given the increasingly higher spatial resolutions of satellite
imagery (<5 m).
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resolution and are clearly separated meaning this 2.5 m resolution would not result in the mixed
pixel problem and pixel redundancy would not be an issue. (c) At 1 m resolution objects are larger
than pixels resulting in pixel redundancy. Illustration is based on Figure 1 in Blaschke [51].

Object-Based Image Analysis

An alternative approach to pixel-based classification is Object-based Image Analysis
(OBIA), which is a segmentation approach that is not as severely affected by mixed-pixels,
salt and pepper effects, and pixel redundancy. OBIA has also been referred to as Geographic
Object Based Image Analysis (GEOBIA) [53] and Object-oriented Image Analysis [54]. The
foundation for OBIA is image segmentation that dates back to the 1970s [55,56]. OBIA
considers contextual information, which, in addition to spectral information, includes
spatial dimensions of shape and compactness in order to generate relatively homogenous
segments of grouped pixels that are semantically significant [51] (Figure 3b,c). Compared
to individual pixels, these segmented objects have the advantage of containing much more
spectral information such as the mean, median, minimum, and maximum spectral values
per band in addition to mean ratios and variance [51].
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Figure 3. Example of object-based segmentation applied to an illustration depicting pixels. (a) Con-
sists of 5 × green pixels and 4 × yellow pixels, (b) shows the result of object-based segmentation
where all 5 × green pixels have been grouped into 1 × green object and 2 × yellow objects. The red A
represents a georeferenced in situ reference sample which in (a) represents 1 × pixel, however, after
OBIA segmentation in (b,c) it now represents 1 × green object consisting of 5 × grouped pixels.
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Segmenting individual pixels into objects can be done using specialised software such
as Trimble eCognition or ENVI [6,9,15–18,20,21,57–64]. Other approaches to generating
segmented objects include unsupervised ISODATA clustering [65,66], unsupervised k-
means cluster analysis [67], bag of features [68], seed pixel regional growing technique [69],
texture analysis [70], image patches [33], and manual polygon digitisation [71,72].

It is important to note that OBIA using specialised software such as Trimble eCognition
requires a user to determine a scale parameter. This scale parameter determines the output
object size, which is difficult to identify since semantically significant regions are found at
different scales [73]. While there have been techniques developed to objectively identify the
optimal scale parameter, such as the estimation of scale parameter tool (ESP) developed by
Dragut et al. [74], most coral reef benthic mapping publications that use OBIA determine
the scale parameter based on subjective trial and error [6,21,59].

In the field of coral reef benthic composition mapping, OBIA has been applied on
local [6,9,16,20,21,57,60–64,71] and regional scales [15,17,18,59]. In order to classify objects
derived from OBIA segmentation, expert class assignment, whereby the map producer
assigns classes to objects manually, has been shown to be an effective method for mapping
coral reef benthic habitat classes on regional scales [15]. The limitations associated with
expert class assignment, however, are the subjective nature of the map producer’s classifica-
tion ability, the limitation in the number of objects a map producer can manually label, and
the difficulty in replicating this same classification with a new map producer. These issues
therefore limit the spatio-temporal scalability of this approach. Phinn et al. [9] demon-
strated how OBIA followed by expert-driven membership rulesets, which are used to
assign classes to objects, can achieve overall accuracies of up to 78% for mapping 13 benthic
habitat classes using Quickbird-2 multispectral satellite imagery with a spatial resolution
of 2.4 m. OBIA followed by expert-driven membership rulesets is the most commonly used
approach in Table 2, which is used by 23% of publications. Using expert-driven membership
rulesets for classification, however, is also relatively subjective. For example, Phinn et al. [9]
developed a total of 36 membership rules (based on variables such as brightness, standard
deviation, blue/green band ratio, and others) with each rule containing an individual
threshold that is iteratively determined by comparing the resultant segmented objects with
expert knowledge of the reef, image interpretation, and references to in situ reference data
in order to label reef scale classes (i.e., land, deep water, and shallow reef), geomorphic
scale classes (i.e., outer reef flat and shallow lagoon), and benthic community scale classes
(i.e., algae, seagrass, sand, and rock) [9].

Apart from expert class assignment or developing expert driven rulesets in the field
of coral reef benthic composition mapping, one of the most commonly used machine-
learning algorithms applied to classifying segmented objects derived from OBIA is the k-NN
algorithm that is used by 12% of the publications in Table 2. The k-NN algorithm classifies
segmented objects based on the class most represented by their k nearest neighbours [75,76].
K is a user-defined parameter that is the number of nearest neighbouring objects that are
included in the majority voting process. When k is equal to one it is referred to as the
Nearest Neighbour (NN) [21] and simply classifies an object based on the class of its nearest
neighbour. The choice of k affects accuracy, as illustrated in Figure 4, whereby a value
of k = 1 would result in x being classified as algae while a value of k = 5 would classify x
as coral.

The accuracy of the k-NN algorithm is also affected (when not detected and separated)
by the presence of class outliers [77]. Class outliers will be defined here as objects with
classes other than their own surrounding them. These outliers can be the result of an
insufficient number of training samples associated with the outlier class or skewed class
distributions. Datasets used to train machine-learning algorithms for classifying coral
reef benthic composition may be prone to containing class outliers since coral reef benthic
classes are typically heterogenous in spatial distribution. Further, the logistical complexities
of acquiring in situ reference samples from a coral reef location limits the quantity of
samples that can be acquired.
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To address the fact that coral reef benthic habitat complexity varies across different
coral reef geomorphologic zones [5], hierarchical OBIA segmentation approaches were
developed by [9,15,21], which first segments a reef into different geomorphic zones and then
re-segments each of these geomorphic zones individually in order to generate segments
representing benthic habitat classes within each. Roelfsema et al. [21] compared a k-NN
classification algorithm to the expert driven membership rulesets classification approach
of Phinn et al. [9], applied to the same reef using the same in situ reference data and
Quickbird-2 multispectral imagery. The results showed the object-based k-NN achieved
an overall accuracy of 62% based on seven benthic classes, while the membership rulesets
classification approach achieved an overall accuracy of 78% based on eleven benthic classes
(Table 2). Although the overall accuracy of the object-based k-NN is lower, in addition to
being less subjective, Roelfsema et al. [21] estimated that their hierarchical object-based
k-NN approach is around twenty times faster to develop compared to Phinn et al. [9].

Another of the most commonly used object-based machine-learning classification
algorithms applied to mapping coral reef benthic composition is the SVM algorithm, which
is used in 17% of publications in Table 2. The modern formulation of an SVM, developed
by Vapnik and Cortes [78], classify inputs by identifying decision boundaries that split
input data points into two spaces that correlate to two different classes (Figure 5). This
is done by mapping the input data to a new high-dimensional representation where the
decision boundary (expressed as a hyperplane) is computed by maximising the distance
between the decision boundary and the nearest data points from each class [79]. In order
to find good decision boundaries, rather than explicitly computing the coordinates of
the points in the new representation space, which is often computationally intractable, a
kernel function is used. This maps two points in the initial representation space to the
distance between these points in the target representation space, which is more efficient [79]
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(Figure 5). Object-based SVM have been proven to achieve higher overall accuracies when
directly compared to k-NN [63,68,72] (Table 2).
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Table 2. Object-based coral reef benthic mapping publications.

Authors Sensor/Spatial
Resolution

Pixel or
Object-Based

Classification
Algorithm(s)

Supervised or
Unsupervised

Number of
Benthic
Habitat
Classes

Accuracy (Overall
Accuracy)

[58] Sentinel-2
(10 m). Object-based.

OBIA–RF
followed by

expert-driven
membership

rulesets.

Supervised. 4 62%

[70] Sentinel-2
(10 m). Object-based.

Mean Texture
Analysis

followed by
either RF or

SVM.

Supervised. 4 71% (RF, highest),
73 (SVM, highest).

[59]

Worldview-2
(1.9 m), Planet

Dove (5 m),
Sentinel-2 (10 m),

Landsat-8
(15 m).

Pixel-based and
object-based.

Pixel-based RF
and OBIA–RF
followed by

expert-driven
membership

rulesets.

Supervised. 8 78% (mean).
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Table 2. Cont.

Authors Sensor/Spatial
Resolution

Pixel or
Object-Based

Classification
Algorithm(s)

Supervised or
Unsupervised

Number of
Benthic
Habitat
Classes

Accuracy (Overall
Accuracy)

[17] Landsat OLI
(15 m). Object-based.

OBIA followed
by expert-driven

membership
rulesets.

Supervised. 6 50%

[31]

WorldView-2
(1.9 m),

Sentinel-2
(10 m).

Object-based. LAPDANN. Supervised. 10

86% (trained/tested on
same reef), 47%

(trained/tested on data
from Indian Ocean and

Pacific Ocean
simultaneously).

[32]

WorldView-2
(1.9 m),

PlanetScope
(3.7 m).

Object-based
and

pixel-based.

FCN–KNN,
VGG16–FCN,

DeepLab,
SharpMask.

Supervised. 9

WorldView-2 imagery:
84% (FCN–KNN), 80%

(VGG16–FCN), 81%
(DeepLab), 80%

(SharpMask);
PlanetScope imagery:

73% (FCN–KNN), 73%
(VGG16–FCN), 73%

(DeepLab), 71%
(SharpMask);

Generalisation tests:
85% (FCN–KNN), 83%

(VGG16–FCN), 78%
(DeepLab), 82%
(SharpMask).

[80]

WorldView-2
(1.9 m),

Gaofen-2
(3.2 m).

Object-based.
CNN–SVM,

CNN–RF, CNN,
RF, SVM.

Supervised. 4

WorldView-2 data set 1:
92% (CNN–SVM), 91%

(CNN–RF), 91%
(CNN), 90% (RF),

89% (SVM);
WorldView-2 data set 2:
86% (CNN_SVM), 85%

(CNN–RF), 85%
(CNN), 82% (RF),

84% (SVM)
Gaofen-2 data set: 91%

(CNN–SVM), 88%
(CNN–RF), 89%

(CNN), 87% (RF),
88% (SVM).

[33]

QuickBird
(0.6 m)

(benthic),
GeoEye-1

(0.5 m)
(seagrass).

Object-based. CNN. Supervised. 7 benthic,
4 seagrass.

90% (benthic),
91% (seagrass).

[67] Sentinel-2
(10 m). Object-based.

MD followed
by post-

classification
filtering.

Supervised.

17 (incl.
5 non-coral reef
benthic classes

(i.e., man-
groves, beach).

77%
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Table 2. Cont.

Authors Sensor/Spatial
Resolution

Pixel or
Object-Based

Classification
Algorithm(s)

Supervised or
Unsupervised

Number of
Benthic
Habitat
Classes

Accuracy (Overall
Accuracy)

[72] WorldView-
2 (1.9 m). Object-based.

MLC, Neural
Network

(NN), SVM.
Supervised. 5 86% (MLC), 87%(NN),

93% (SVM).

[15] WorldView-2
(1.9–2.4 m). Object-based.

OBIA followed
by manual class

assignment.
Expert-derived.

Atlantic sites:
7 (aggregated
Benthic cover
type and geo-
morphology
classes (i.e.,
Fore Reef

Sediment with
Algae),

Non-Atlantic
sites: 16.

81% (Atlantic sites),
90%

(non-Atlantic sites).

[60] WorldView-2
(1.9 m). Object-based.

OBIA–RF,
OBIA–

Classification
Tree Analysis
(OBIA–CTA),
OBIA–SVM.

Supervised. 14 89% (RF), 78% (CTA),
76% (SVM).

[61] Planet Dove
(3 m). Object-based. OBIA–KNN. Supervised. 11 82%

[57] GeoEye-1 (2 m). Object-based.

OBIA and
Jeffries–
Matusita
distance
measure.

Supervised. 175 72%

[21] QuickBird-2
(2.4 m). Object-based. OBIA–KNN. Supervised. 7 62%

[68] QuickBird
(2.4 m). Object-based.

Bag of Features
(BOF) followed

by either
Bagging (BAG),
KNN, or SVM
then lastly a

Weighted
Majority Voting

(WMV).

Supervised. 4
80% (BAG), 81%

(KNN), 86% (SVM),
89% (WMV).

[71] WorldView-2
(1.9 m). Object-based. SVM. Supervised. 5 78%

[16] Sentinel-2
(10 m). Object-based.

OBIA with
expert-driven
membership

rulesets.

Supervised. 6 49%

[19] Landsat 8
(15 m). Object-based.

OBIA with
expert-driven
membership

rulesets.

Supervised. 5 33%
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Table 2. Cont.

Authors Sensor/Spatial
Resolution

Pixel or
Object-Based

Classification
Algorithm(s)

Supervised or
Unsupervised

Number of
Benthic
Habitat
Classes

Accuracy (Overall
Accuracy)

[69]
Landsat 7 ETM+
(30 m), Landsat

8 (30 m).
Object-based.

Seed pixel
regional
growing.

Supervised.

3 coral reef
benthic and

2 non-benthic
(i.e., land and

human habitats).

75–99.7% based on
10 sites.

[20] WorldView-2
(1.9 m). Object-based.

OBIA with
expert-driven
membership

rulesets.

Supervised. 4 76%

[62] WorldView-2
(1.9 m). Object-based.

OBIA-
multinomial

logistic discrete
choice models.

Supervised.

8 benthic and 3
non-benthic

(i.e., terrestrial
vegetation).

85% (Vanua Vatu site).

[63] Landsat 8 OLI
(30 m). Object-based.

OBIA–SVM,
OBIA–RT,
OBIA–DT,

OBIA–KNN,
OBIA–Bayesian.

Supervised. 7

73% (OBIA–SVM), 68%
(OBIA–RT), 67%

(OBIA–KNN), 66%
(OBIA–Bayesian), and

56% (OBIA–DT).

[18]
QuickBird-2

(2.4 m),
IKONOS (4 m).

Object-based.

OBIA with
expert-driven
membership

rulesets.

Supervised.

14–17
(individual
reefs), 20–30

(reef systems).

52–75%.

[9] QuickBird-2
(2.4 m).

Pixel-based and
object based.

OBIA with
expert-driven
membership

rulesets;
pixel-based

MDM.

Supervised.

Heron Reef: 13
Ngderack
Reef: 11

Navakavu
Reef: 17.

78% (Heron Reef,
object-based),

52% (Ngderack Reef,
object-based), 65%, 57%

(Navakavu Reef,
object-based and

pixel-based,
respectively).

[64]
QuickBird-2

(2.4 m),
IKONOS (4 m).

Object-based.

OBIA with
expert-driven
membership

rulesets.

Supervised
22 benthic and
3 non-benthic
(i.e., cloud).

67%.

[6]
QuickBird
(0.6 m Pan-
sharpened).

Pixel-based and
object-based.

Pixel-based
MLC and
contextual

editing;
OBIA–NN.

Supervised. 5, 7, and 11.

59–77% (MLC), 61–76%
(contextual editing),

and 81–90%
(OBIA–NN).

[66] Landsat TM
(30 m). Object-based.

Unsupervised
ISODATA

Classification.
Unsupervised. 7 74%

[5]
IKONOS (4 m),

Landsat
7 ETM+ (30 m).

Object-based
(unsupervised
segments and

ground-truthed
polygons).

Unsupervised
segmentation
followed by
expert class
assignment
(applied to

2 reefs); MLC
(applied to

7 reefs).

Unsupervised
(2 reefs) and
supervised

(7 reefs).

4–5, 7–8, 9–11,
>13.

77% (4–5 classes), 71%
(7–8 classes), 65%

(9–11 classes), and 53%
(> 13 classes).
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Table 2. Cont.

Authors Sensor/Spatial
Resolution

Pixel or
Object-Based

Classification
Algorithm(s)

Supervised or
Unsupervised

Number of
Benthic
Habitat
Classes

Accuracy (Overall
Accuracy)

[65] IKONOS (4 m). Object-based. MLC. Supervised. 5 90% (Half Moon Bay),
89% (Tabyana Bay).

Unsupervised ISODATA clustering [65,66], unsupervised K-means cluster analysis [67], bag of features [68],
seed pixel regional growing technique [69], image patches [33], manual polygon digitisation [71], and digitising
regions of interest [57], have been grouped into the ‘object-based’ even though these polygons are not derived by
utilizing a segmentation algorithm such as those derived from OBIA (eCognition for example). Additionally, the
multi-scale feature extraction approach using bidimensional empirical mode decomposition (BEMD) [80] has also
been grouped into ‘object-based.’ Publications that included both pixel-based and object-based classifications are
included in Table 2 only, rather than Table 1 as well.

Second to the object-based SVM, and equal with the k-NN algorithm in terms of being
used in Table 2, is the RF algorithm that is used by 12% of publications. RFs construct
a wide variety of uncorrelated decision trees during training, with each individual tree
consisting of a random sample (bootstrapped) of the training data, and then takes the
aggregate (mode) of these individual trees as the output classification [81,82] (Figure 6).
RFs are less prone to overfitting compared to individual decision trees [82] and they use the
‘stochastic discrimination’ method [83], which has been proven to reduce overfitting and a
lack of generalisation properties [84–86]. These properties lead to RF algorithms gaining
accuracy as they become bigger and more complex [81,83].
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In Table 2 there are two publications that have directly compared object-based RF to
object-based SVM algorithms. One found the object-based RF algorithms to be inferior in
terms of overall accuracy compared to an object-based SVM [70], while the other found
the object-based RF to be superior [40] (Table 2). In relation to spatio-temporal generali-
sation, Lyons et al. [59], as part of the Allen Coral Atlas project that aims to map shallow
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water coral reefs on a global scale, adopted a similar hierarchical mapping approach to
Roelfsema et al. [21] in order to map fourteen geomorphic classes and eight benthic habitat
classes on individual (~200 km2 of reef) to regional scales (~200,000 km2 of reef). A key
difference, however, is that Lyons et al. [59] used an object-based RF algorithm rather than a
k-NN algorithm, which is used by Roelfsema et al. [21]. When applied to mapping benthic
habitat classes at different scales (individual reefs and regional scales), their frameworks
mean that the overall accuracy is 78%. This overall accuracy, however, is based on vali-
dation data derived from within the regions where in situ training and validation data
samples are present. Although this overall accuracy has been inferred to areas that contain
no in situ training or validation data, for example, when scaling up from individual reefs
to regional scales such as the entire GBR region, the accuracy for such areas is uncertain.
Therefore, while their framework can be transferred to new areas provided that coincident
in situ reference data (or expert derived polygons) is available, it is yet to be determined
if it can spatially or temporally generalise to areas where no in situ reference training or
validation data are present.

2.2. Convolutional Neural Networks

In relation to land cover mapping using remotely sensed imagery, convolutional neural
networks (CNNs) have emerged as new algorithmic approaches for object detection [87],
image classification [88], and image segmentation [89]. CNNs are a class of deep learning
algorithms, which, put generally, take an input image (Figure 7) and convolve it through a
series of successive layers in order to learn a hierarchical feature set that can subsequently
be used for supervised classification at the final layer of the framework (Figure 8). In
relation to remotely sensed imagery, the input layer is a tensor with shape dimensions
equal to the image height multiplied by image width, and the number of channels (spectral
bands) For instance, Figure 7 illustrates an example input from a multispectral satellite
image with dimensions of 256 pixels (image height) × 256 pixels (width) × 4 channels
(red, green, blue, and near-infrared bands). The input sample starts as 262,144 individual
pixels, each consisting of four spectral bands. If there are 65,536 pixels representing ‘coral’
(white), this then leaves 196,608 pixels that are ‘non-coral’ (black), which are assigned a
value of 0. This particular input sample will therefore consist of 65,536 individual pixels
each with four spectral values. This input sample differs from the pixel-based samples
in Figure 2, which each only contain one pixel with four spectral values, and also from
the OBIA sample in Figure 3, since it does not contain grouped information (i.e., mean,
minimum, maximum spectral values etc.) for the object itself, although CNNs do still
extract contextual information from the input sample.

The fundamental building blocks of a CNN are the convolution operations that work
by applying multiple filters each consisting of weights that either learn to find local patterns
such as edges and textures or have been predefined to do so. Each filter is usually 3 × 3 in
size and is applied across the width, height, and depth of the input image by computing
the dot product between filter weights and the input pixel values. These values are
then summed with their combined value outputting a summed activation. This summed
activation is subsequently transformed by applying an activation function in order to allow
the subsequent use of stochastic gradient descent with backpropagation. Backpropagation
computes the gradient of the loss function in order to learn and update weights and biases in
order to minimize the loss function, resulting in a more accurate identification of underlying
features that best represent the input. If, however, the filters have been predefined to search
for specific local patterns, such as edges in the case of an edge detection filter for example,
then the gradient of the loss does not need to be learnt. For CNNs, the most commonly
used activation function is the Rectified Linear Unit (ReLU), which is a calculation that
returns input values if they are positive (>0.0) or returns a value of zero if the input value
is 0.0 or less [90,91]. The bias is a learnable value that can be thought of as a threshold
applied to the activation function in order for the activation function to return values that
are most relevant to extracting the underlying features of the input layer. The output of



Remote Sens. 2022, 14, 2666 16 of 34

a convolution layer is an activated feature map that characterises features detected by
the filters.
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Figure 7. Example of a 256 × 256 × 4 training samples representing the class ‘coral’ (white) used as
input to a CNN. The values 256 × 256 represent height and width in pixels while 4 represents the
depth/number of bands in the multispectral image. The 256 × 256 × 4 sample is first extracted from
the satellite image on the left. Next, all ‘coral’ pixels (white) are masked in order to assign the value
of 0 to all non-coral pixels (black) from the training sample.
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In addition to the convolution operation, CNNs usually consist of pooling operations
that are most commonly applied after a convolution operation. Pooling operations are used
to reduce the dimensions (number of pixels) of the output feature map from the previous
convolutional layer. For example, the max pooling operation uses a 2 × 2 filter applied
across the height, width, and depth of the output feature map of the previous convolutional
layer and outputs the maximum value of each channel. Unlike most convolution operations,
max pooling uses a filter that is 2 × 2 in size rather than 3 × 3, and also uses a stride of two,
therefore reducing the dimensionality of the feature map by a factor of two. Furthermore,
max pooling filters do not learn weights like a convolutional filter. Max pooling, for
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example, does not have weights but instead takes the maximum value from each 2 × 2 filter
covering the region of the feature map from the previous convolutional layer as its output.
The resulting feature map after max pooling, therefore, only contains the most prominent
features from the previous feature map.

A key difference between MLC, k-NN, SVM, and RF classification algorithms com-
pared to CNNs is the incremental, layer by layer way in which CNNs extract increasingly
complex representations from inputs and the fact that these representations are learned
jointly. This means that, whenever the framework updates one of its internal features,
all dependent features automatically adapt to this update without manual human inter-
vention. This therefore allows CNNs to consist of tens to even hundreds of successive
layers of representations [79]. In contrast, traditional machine-learning algorithms usually
only transform the input data into one or two successive layers of representations such as
decision trees in the case of RFs, or high-dimensional non-linear projections in the case of
SVMs [79]. CNNs can therefore extract much more complex representations of the inputs
that can then be used for supervised classification at the end of the network (Figure 8).

2.2.1. Fully Convolutional Neural Networks

While there are CNN frameworks capable of object detection and image classification,
it is image segmentation frameworks that are most suited to mapping coral reef benthic
composition using remotely sensed imagery. Image segmentation frameworks assign a
class label based on a probability to each individual pixel. There have been a number of
different deep learning-based approaches identified for image segmentation. For example,
Cireşan et al. [92] developed a deep neural network (DNN) to segment neuronal membranes
in electron microscopy images based on a sliding-window approach. For this, a patch
(window) is placed around a pixel and a DNN is then used to classify the central pixel within
each patch. Farabet et al. [93] developed a multiscale feature extraction framework for scene
labelling (labelling each individual pixel based on the class it belongs to), and Pinheiro and
Collobert [94] demonstrated the use of recurrent convolutional neural networks (RCNN)
for scene labelling. Another approach was developed by Long et al. [95] using a fully
convolutional neural network (FCN) framework for semantic segmentation; this surpassed
previous approaches in terms of accuracy and learning speed. Building upon the FCN
framework of Long et al. [95], Ronneberger et al. [96] developed an FCN they called U-Net
(Figure 9), which was designed to work with very few training images and yields more
precise segmentations.
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Figure 9 illustrates the U-Net framework developed by Ronneberger et al. [96]. It
starts with a contracting path that resembles a typical CNN framework, illustrated as
contracting blocks in Figure 9, and consisting of convolutional and max pooling layers.
Next, the contracting path transitions into a bottleneck consisting of two convolution
layers followed by a ReLU and one up-convolution layer that initiates the expansive path.
After each up-convolution the input is concatenated with a cropped version of the input
from the corresponding block in the contracting path by using skip connections. The up-
convolutions allow the framework to propagate contextual information to higher resolution
layers, while the concatenation with corresponding contracting layers via skip connections
allows for a more precise localisation [96]. At the final layer of the framework, the input
passes through a 1 × 1 convolution with the number of output feature maps being equal to
the number of classes that are being segmented. A pixel-wise softmax with a cross-entropy
loss function is applied over the final feature map. Since its inception in 2015, U-Net has
been used in a range of remote sensing publications [89,97–99].

2.2.2. Convolutional and Fully Convolutional Neural Networks Applied to Coral Reef
Benthic Composition Mapping

Recently, a small number of publications have used CNN and FCN frameworks
to map coral reef benthic composition using multispectral satellite imagery [31–33,80].
Mohamed et al. [33] used a simple CNN framework consisting of seven layers in order to
classify seven coral reef benthic habitat classes located at Shiraho and four seagrass classes
located at Fukido on Ishigaki, Japan, using pansharpened QuickBird (0.6 m) and GeoEye-1
(0.5 m) imagery, respectively. The inputs to their CNN framework were 1500 image patches
that were each 2 × 2 pixels, which were placed around each correctly labelled in situ
reference image location (an individual pixel) in horizontal and vertical directions. The
results of their CNN frameworks showed an overall accuracy of 90% for mapping seven
benthic classes at Shiraho and 91% for mapping four seagrass classes at Fukido.

In order to overcome the problem of spectral similarity between coral reef benthic
classes, Wan and Ma [80] developed a CNN–SVM method that used spectral and multi-
scale spatial information to map three different reef substrate classes (reef-depositional area,
reef-clumping area, and submerged reef) and also ‘seawater’ using WorldView-2 (1.9 m)
and Gaofen-2 (3.2 m) imagery covering Qilianyu Island, South China Sea. In addition
to spectral and spatial information, Wan and Ma [80] use bidimensional empirical mode
decomposition (BEMD) to extract multiscale information to incorporate into their CNN–
SVM. The CNN is used to extract features of the four classes while the SVM is used in order
to classify these features [80]. To determine the utility of their CNN–SVM framework, Wan
and Ma [80] compared it to four other frameworks: SVM, RF, CNN, and CNN–RF, with the
CNN–SVM achieving the highest overall accuracies (Table 2).

In relation to spatio-temporal generalisation, two publications have tested the utility of
FCNs applied to coral reef benthic mapping [31,32]. Li et al. [32] developed an object-based
fully convolutional neural network (FCN), which is similar to the U-Net framework. Unlike
U-Net, however, for the contracting path Li et al. [32] use ResNet-50 adapted from [100],
and for the expanding path a RefineNet [101,102] framework that uses residual convolution
units (RCUs). Chained residual pooling (CRP) structures during the upsampling procedure
allow additional context to be inferred. After initial segmentation using their FCN frame-
work, they then used classified pixels in order to train a pixel-based k-NN algorithm based
on the nearest ten points to classify coral, sediment, and seagrass. A conditional random
field (CRF) on the k-NN algorithm was applied afterwards in order to reduce noise in the
k-NN output and refine the boundaries.

Li et al. [32] refer to their framework as NeMO-Net and tested its capability by classify-
ing five scenes, each with 256 × 256 patches covering Circa Island, Fiji, using WorldView-2
(1.9 m) imagery, and seven scenes, each with 256 × 256 patches using PlanetScope (3.7 m)
imagery. The scenes were acquired over different dates and therefore significant spectral
variations were present. NeMO-Net was compared to three other image FCN segmen-
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tation frameworks: VGG16–FCN, DeepLab, and SharpMask. The results showed that
NeMO-Net with the k-NN applied to coral, sediments, and seagrass achieved the highest
overall accuracy for both WorldView-2 and PlanetScope imagery (Table 2). In order to
test if NeMO-Net is capable of spatio-temporal generalisation using WorldView-2 imagery,
nine different patches each 256 × 256 covering a different island (Fulaga, Kabara, Mago,
Matuka, Moala, Nayau, Totoya, Tuvuca, and Vanua Vatu) on different days were tested
and compared to the three other FCN frameworks. The results showed that all four FCN
frameworks are capable of spatio-temporal generalisation based on overall accuracies >77%,
with NeMO-Net achieving the highest (85%).

In order to address the problem of limited training data for coral reef benthic mapping
algorithms, Asanjan et al. [31] developed a framework they refer to as LAPDANN, which
can use labeled samples from high-resolution WorldView-2 imagery (1.9 m) in order to
accurately predict benthic classes in medium-resolution Sentinel-2 imagery (10 m); the
classified Sentinel-2 imagery can then be downscaled to match the WorldView-2 spatial
resolution of 1.9 m. LAPDANN consists of an improved version of a Domain Adaptation
Neural Network (DANN) adapted from Ganin et al. [103] that is capable of learning from
source domains and subsequently transferring learnt information to the target domain by
implementing a three-part neural network consisting of: a generative network to extract
domain invariant features, a U-Net framework to segment and classify input images, and a
domain discriminative network to discern features from the source and target domains [31].
Next, a Laplacian Generative Adversarial Network (LAPGAN) framework proposed by
Denton et al. [104] is adapted in order to downscale the segmented Sentinel-2 imagery to
higher resolution (1.9 m) coral reef maps.

The results showed an overall accuracy of 86% for ten habitat classes consisting of a
mix of benthic and terrestrial classes when training and testing on Peros Banhos Island
in the Indian Ocean [31]. When testing the framework’s ability to generalise to new
geographical regions by training LAPDANN on data from the Indian Ocean and Pacific
Oceans simultaneously (information on number of samples or which reefs in the Pacific
Ocean are used for training are not included), the results showed an overall accuracy of
47%. Although this lower overall accuracy indicates an inability to generalise, Asanjan
et al. [31] anticipate a higher overall accuracy provided more training data capturing
variations in sensing conditions over multiple islands is used. They also tested the ability
of LAPDANN to generalise by training on a subset of islands and then testing on an
island that is new. The overall accuracy for this experiment, however, is not reported in
Asanjan et al. [31].

2.3. Change Detection
2.3.1. Coral Reef Benthic Change Detection Methods

Mapping changes in coral reef benthic composition using multi-temporal satellite
imagery is an inherently difficult task because atmospheric, water surface, water depth, and
water clarity conditions may differ between multi-temporal satellite imagery. Compared to
coral reef benthic composition mapping, there are a relatively small number of publications
(Table 2). This is likely due to the lack of available in situ reference data sets that have been
acquired consistently over such long timeframes. Benthic change detection publications
can generally be separated into either pixel-based change detection (PBCD) or object-based
change detection (OBCD).

PBCD methods, in general, first map benthic composition for each image separately
by using either an unsupervised or supervised pixel-based machine-learning classification
algorithm [22,23,105–111], or spectral unmixing [112]. The most used pixel-based machine-
learning algorithm in PBCD is the Mahalanobis distance classification algorithm, which is
used by 15% of publications in Table 3, followed by MLC and SVM, each used by 12%.

OBCD approaches on the other hand usually first generate segmented objects using
either manual delineation [14,24,113] or specialized object-based software such as Trimble
eCongition followed by the use of a machine-learning classification algorithm such as
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MLC [105] or RF [114,115]. Aside from manual polygon delineation and class assignment,
which is used by 12% of publications in Table 3, the RF algorithm is the most used object-
based machine-learning algorithm in OBCD, used by 8% of publications.

Once coral reef benthic composition has been mapped within each multi-temporal
image, in order to subsequently identify changes, the most common approach is to use
post-classification comparison change detection (PCCCD), which overlays classified images
in order to identify changes between either individual pixels (post-classification pixel-
based change detection (PC-PBCD)) or class objects (post-classification object-based change
detection (PC-OBCD)). Alternatively, pixel-based modelling [116], simulation [117], and
statistical analysis [118,119] approaches have been used to identify benthic change. These
approaches, however, are usually based on expert knowledge and may even require
coincident classified benthic maps to validate the models’ performance [116]. This makes
them prone to the similar scalability limitations of the PBCD and OBCD approaches.

The accuracies of PC-PBCD and PC-OBCD, are dependent upon the accuracy of the
initial benthic composition classification; therefore, the same primary limitation present
in benthic composition mapping (the inability to spatially or temporally generalise) is
also present in PC-PBCD and PC-OBCD. A further limitation with PC-PBCD or PC-OBCD
is the fact that image classification occurs separately between images, thus leaving the
change detection output maps prone to image misregistration errors. These errors are more
pronounced in PC-PBCD compared to PC-OBCD, with PC-PBCD also being prone to the
‘salt-and-pepper effect’ [50,115]. However, PC- OBCD accuracy is dependent on how well
the objects resulting from OBIA segmentation represent the underlying benthic classes.
Therefore, the choice of an optimal scale parameter used to determine the size of objects
resulting from the segmentation algorithm is very important [120].

An alternative approach to PC-OBCD, which reduces image misregistration errors,
is multi-temporal image object analysis (MTOA), which simultaneously segments each
image within a multi-temporal data set before using a machine-learning algorithm to
predict benthic change type [115]. Zhou et al. [115] developed a multi-temporal OBCD
(MT-OBCD) method that simultaneously segments images before using an RF algorithm
to predict change types (i.e., ‘reef sediment extension’, ‘algae grow’). To identify the optimal
scale parameter, Zhou et al. [115] used the Estimate Scale of Parameter Tool that is based
on the rate of local variance concept (ROC-LV). In this, the scale parameter is objectively
determined by automatically increasing the local variance (LV) incrementally until the
ROV-LV reaches a peak. At that point, it is considered to be the optimal scale parameter [74].
They applied this MT-OBCD method to Taiping Island, Zhongye Island, and two coral reef
sites on the Barque Canada Reef in the South China Sea to predict four different coral reef
benthic change types using QuickBird and World View-2 satellite imagery. They achieved
an overall accuracy >90% for each site.

Table 3. Coral reef benthic change detection publications summary.

Authors Pixel or
Object-Based Time-Series Classification Method Supervised or

Unsupervised

Number of
Classes
Mapped

Change
Detection
Method

[121] Pixel-based. 2015–2016

Radiometric
normalization with
pseudo invariant

features (PIFs),
multi-temporal depth

invariant indices
(DII), followed by SVM.

Supervised. 1 (bleached
coral). PCCCD.

[122] Object-based. 2017–2019 Unsupervised ISODATA
classification. Unsupervised. 4 PCCCD.
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Table 3. Cont.

Authors Pixel or
Object-Based Time-Series Classification Method Supervised or

Unsupervised

Number of
Classes
Mapped

Change
Detection
Method

[23] Pixel-based.
2000–2014,
2002–2014,
2001–2015

Pixel-based-SVM. Supervised. 2 PCCCD.

[112] Pixel-based. 2009–2015

Spectral linear unmixing
using IDL

CONSTRAINED_MIN
optimization algorithm
followed by assigning

class thresholds.

Supervised. 13 PCCCD.

[113] Object-based. 2001–2015 Manual
polygon delineation. Supervised.

8 (habitat
scenario

trajectories).
PCCCD.

[114] Object-based 2014–2016

Unsupervised IRMAD to
detect areas of change,

OBIA–RF to classify
classes, overlaying
images to perform

supervised
change detection.

Unsupervised
and

Supervised.

10 habitat
classes and 5

classes of
change type.

PCCCD.

[115]

Object-based
(multiresolution
segmentation)

and pixel-based.

2013–2015

OBIA–RF
change prediction,

pixel-based-RF
change prediction.

Supervised.

5 change types
(i.e., reef

sediments
extension).

MT-OBCD.

[123] Pixel-based. 1994–2014

Unsupervised Iterative
self-organizing class
analysis (ISOCLASS)

followed by supervised
reclassification based on

visual interpretation.

Unsupervised
and

Supervised.
5 PCCCD.

[110] Pixel-based. 2001–2014 SVM Supervised. 11 PCCCD.

[22] Pixel-based. 1987–2013

ISODATA clustering
followed by

unsupervised k-means
classification; MLC.

Unsupervised
and

Supervised.

10
unsupervised,
5 supervised.

PCCCD.

[124] Pixel-based. 2005–2008

MLC for mapping 5
classes then ‘differences in
reflectance values between
two images within the coral
classes were used to detect

bleached corals.’

Supervised. 5 PCCCD.

[24]

Object-based
(manually
delineated
polygons).

1972–2007
Photo-interpretation

based on manual
polygon delineation.

Supervised.

3, 19, and 42
(based on level

1, 2, and
3 maps).

PCCCD.
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Table 3. Cont.

Authors Pixel or
Object-Based Time-Series Classification Method Supervised or

Unsupervised

Number of
Classes
Mapped

Change
Detection
Method

[105] Pixel-based and
object-based. 2002–2004

Post-cyclone coral
community structure

maps:
Photo-interpretation

based on manual polygon
delineation, pixel-based

MLC, OBIA-MLC;
Pre-cyclone community
maps: post-cyclone coral

community structure classes
were used to label

pre-cyclone polygons based
on consistent colour and

texture visible on the images,
and also accounting for

proximity [105].

Supervised. 20 PCCCD.

[111] Pixel-based. 1991–2002 Parallelepiped
classification. Supervised. 6 PCCCD.

[14]

Object-based
(manually
delineated
polygons).

1973–2007
Photo-interpretation

based on manual
polygon delineation.

Supervised. 15 PCCCD.

[106] Pixel-based. 1984–2002 Mahalanobis distance
classification. Supervised. 4 PCCCD.

[116]

Object-based
(timed automata

model),
Pixel-based
(minimum

distance
classification).

2002–2004

A combined generic
timed automata model of
reef habitat trajectories
and classified remotely

sensed imagery based on
MD classification.

Supervised. 36 (habitat
classes).

PCCCD,
Modelling

(generic
timed

automata).

[119] Pixel-based. 1990–2001

Unsupervised
ISODATA classification
followed by calculating

the median coefficient of
variation (COV). Images
were then segmented by
habitat to create habitat

masks and also
segmented by

representative quadrants.
The median COV for

each habitat and quadrat
were calculated before

performing a
Kruskall–Wallis

nonparametric test to
determine whether

differences between the
median COV values

were significant at the
0.05 level.

Unsupervised
and

Supervised.

6 class habitat
map, test for
significant
differences.

PCCCD,
statistical
analysis.
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Table 3. Cont.

Authors Pixel or
Object-Based Time-Series Classification Method Supervised or

Unsupervised

Number of
Classes
Mapped

Change
Detection
Method

[125] Pixel-based. 1987–2000

Multi-component change
detection: image

differencing to determine
areas of significant
change followed by

MLC. Images were then
‘combined’ to create a

‘from-to change map.’

Supervised.

4 benthic
classes each

with 6 possible
change types.

PCCCD.

[126] Pixel-based. 1991–2003,
2000–2001

Unsupervised K-means
clustering followed

by PCA.
Unsupervised. 3 PCCCD.

[117] Pixel-based. 1984–2000

Radiative transfer
simulation and also an
image normalisation

method [127] followed
by digital

number comparison.

Supervised.

2 (radiative
transfer

simulation:
bleached coral,
healthy coral),
2 (normalisa-
tion method:

slightly or
non-bleached,

severely
bleached).

PCCCD (nor-
malisation
method),

Modelling
(radiative
transfer

simulation).

[109] Pixel-based. 1984–2000 Mahalanobis Distance
classifier. Supervised. 4 PCCCD.

[108] Pixel-based. 1981–2000 Mahalanobis Distance
classifier. Supervised. 4 PCCCD.

[128] Pixel-based.
1998 (February)–

1998
(August)

Image differencing based
on mean (3 × 3) filtering,
PCA, difference between
local variation calculated
as a standard deviation

in a 3 × 3
neighbourhood.

Supervised. 1 (bleaching
detection). PCCCD.

[118] Pixel-based. 1994–1996 Getis Statistic. Supervised.
Test for

significant
difference.

PCCCD—
Spatial

autocorrela-
tion.

[107] Pixel-based. 1984–1999 Mahalanobis Distance
classification. Supervised. 4 PCCCD.

(Unsupervised ISODATA Clustering [22,122] and photointerpretation based on manually delineating poly-
gons [14,24] has been grouped into ‘object-based’ even though these polygons are not derived by utilizing a
segmentation algorithm such as those derived from OBIA. Accuracies are not reported since no consistent accu-
racy metric (i.e., overall accuracy) is used between all publications. Sensor/spatial resolution of imagery used
is also not reported as it is in Tables 1 and 2 since it is not directly relevant in terms of identifying the change
detection methodology and since accuracies are not reported (i.e., sensor/spatial resolution affects accuracies,
therefore, should be included with accuracies). Pixel-based modelling [116], simulation [117] and statistical
analysis [118,119] approaches have been grouped into PCCCD).

Due to the logistical complexities inherent to collecting in situ reference data from
coral reef sites, there are very few consistent long-term in situ reference data sets available.
Therefore, to map benthic changes over long time periods (>30 years), scientists have had to
collate any available in situ reference data and imagery. This may not be consistent in terms
of in situ reference data acquisition methodology, imagery type (i.e., aerial photographs
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and satellite imagery), image extent, and imagery acquisition dates. For example, in order
to map fifty years of benthic habitat changes occurring on the outer reef flats of Grand
Recif of Toliara in southwest Madagascar, Andréfouët et al. [129] used an imagery data set
consisting of a combination of irregularly dated historical aerial photographs and satellite
imagery from different satellite sensors (Quickbird, WorldView-2, Landsat-5, Landsat-7). In
addition, there was a training and validation data set consisting of a combination of in situ
reference data derived from benthic photo-transects as well as data derived from reference
to hand drawn maps. Such mixed data sets make it difficult to train machine-learning
algorithms to produce accurate benthic maps that can be used in PCCCD. In such instances,
photointerpretation based on manual polygon delineation has been demonstrated as being
a suitable alternative [14,129], although as previously mentioned, it is difficult to replicate
since it is relatively subjective.

Because of the increase in high temporal and high spatial resolution satellite imagery
now available to coral reef remote sensing scientists, it is now possible to ensure the
consistent spatial and spectral resolution of imagery to be used for coral reef benthic change
detection. For example, Planet Labs provide high spatial resolution (<5 m) multispectral
satellite imagery covering the entire Earth’s landmass with a daily temporal resolution.
However, even with high temporal resolution satellite imagery, for a benthic change
detection methodology to be relatively objective in nature compared to manual delineation,
coincident in situ reference data are required. This requirement remains a primary limitation
in relation to the spatio-temporal scalability of coral reef benthic change detection regardless
of whether PC-PBCD, PC-OBCD, or MT-OBCD is used.

To address this limitation, Gapper et al. [23] investigated the use of an SVM algorithm
applied to binary (coral and not coral) PC-PBCD and tested its spatial generalisability
when applied to new reef sites that contained no site-specific in situ reference data. Four
reef sites were used with an iterative classification process applied whereby each reef
was first classified individually (training and test data derived from the same reef) using
a site-specific SVM algorithm, then subsequently applying an SVM algorithm that has
been trained on data derived from the three other reefs that they refer to as a controlled
parameter cross-validation (CPCV) procedure. Site-specific overall accuracies ranged from
69% to 88% while the CPCV overall accuracies ranged from 65% to 81%. Although the
CPCV overall accuracies were on average 10% lower than the overall accuracies of the
site-specific SVM algorithms, and the fact this approach was tested on medium resolution
(30 m) Landsat-7 and Landsat-8 imagery, which only allowed for binary (coral or not coral)
PC-PBCD, Gapper et al. [23] has demonstrated the ability of an SVM to spatially generalise
to new reefs, while maintaining moderate to high overall accuracies.

2.3.2. Recurrent Neural Networks Applied to Land Cover Change Detection Using
Multispectral Satellite Imagery

Deep learning frameworks are also emerging as new algorithmic approaches for
change detection using multispectral satellite imagery. So far though, they have not
been applied to coral reef benthic change detection. When it comes to processing multi-
temporal imagery, there is a subset of deep learning frameworks known as recurrent
neural networks (RNNs) that are suited to dealing with sequential time series data [34,35].
A key difference between RNN frameworks compared to the PC-PBCD, PC-OBCD, and
MT-OBCD methods currently used for coral reef benthic change detection is their ability
to learn information relating to the difference between corresponding pixels within multi-
temporal imagery (i.e., the difference between a pixel in the time-two image compared
to the corresponding pixel in the time-one image) and store that learned information as a
hidden state. This hidden state allows the RNN framework to detect changes in any new
corresponding pixels added to the sequence (i.e., the corresponding pixel at time-three
compared to the same pixel at time-two) without further training, since it still contains
the stored memory of prior inputs.
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While simple RNNs can suffer from the vanishing and exploding gradient problems,
recurrent neural networks composed of Long Short-Term Memory units (LSTM), first
introduced by Hochreiter and Schmidhuber [130], are less prone to this problem. Each
LSTM unit contains a core memory cell that is regulated by three gates: an input gate, an
output gate, and a forget gate (Figure 10). The core memory cell remembers information
between multi-temporal data, while the input gate controls what new information is added
into the cell, the forget gate controls what information is kept within the core memory cell
or forgotten, and the output gate controls the information used to compute the output
activation. For multi-temporal satellite imagery, recurrent connections between LSTM units
at each time step allow the model to learn information relating to the difference between
corresponding pixels (pixel from the time-two image and the corresponding pixel from
the time-one image) that can subsequently be used for binary and/or multi-class change
detection [34].
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Lyu et al. [34], who were perhaps the first to use an RNN framework for the purpose of
land cover change detection using multispectral satellite imagery, detected binary (changed
and unchanged) and multi-class (i.e., city expansion, changed soil region, and changed
water areas) changes at three different city sites in China using an LSTM framework they
refer to as REFEREE (Figure 11). Looking at their REFEREE framework in Figure 11, it
can be seen that first the input layer receives a 6-band pixel (pixel from a multispectral
image with six spectral bands) that has been extracted from the T1 image (image at time-1).
Next, the hidden layer receives this input and calculates its state information (which
can be thought of as information about this particular pixel at this particular point in
time) and stores this information. It is important to note that the hidden layer consists of
LSTM units. The corresponding 6-band pixel from the T2 image (image at time-2) is then
input to the hidden layer simultaneously, whereby change information between these two
corresponding pixels can be learned by the current hidden layer. The label of ‘changes’ or
‘no changes’ can then be predicted in the decision layer.

Lyu et al. [34] compared their LSTM framework to four conventional change detection
methods (change vector analysis (CVA), principal component analysis (PCA), iteratively
reweighted multivariate alteration detection (IRMAD), and Slow Feature Analysis (SSFA))
for their binary change detection and three methods for their multi-class change detection
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(support vector machine (SVM), Decision Tree (DT), and a CNN). The results of their binary
change detection experiments showed that their LSTM framework achieved the highest
overall accuracies at three sites (the overall accuracies were all 98%), outperforming CVA
(70–87%), PCA (74–90%), IRMAD (84–94%), and supervised slow feature analysis (SSFA)
(95–98% (When overall accuracies are rounded to the nearest whole number of the LSTM
of Lyu et al. [34], the highest is 98%, which is the same as the highest overall accuracy
for SSFA, however, when rounded to the nearest one decimal place the LSTM is higher
(98.4%) compared to the SSFA (97.6%)). Their multi-class change detection experiments
resulted in their LSTM framework again achieving the highest overall accuracies (95–96%),
outperforming CNN (92–93%), SVM (80–84%), and DT (70–71%). Lyu et al. [34] also
demonstrated that their LSTM framework is capable of spatio-temporal generalisation
when applied to binary change detection. This means it can transfer a learned change rule
(information relating to the difference between corresponding pixels from multi-temporal
imagery) to new multi-temporal imagery of a different city that the LSTM framework has
not been trained on without requiring any extra learning processes. All imagery used in
their transfer experiments had a similar spectral resolution (six bands) and the same spatial
resolution (30 m). Their transfer experiments for binary change detection using different
numbers of training samples ranging from 200–1000 resulted in overall accuracies ranging
from 72–97%.
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Another binary and multi-class land cover change detection framework was developed
by Mou et al. [35] who used a recurrent convolutional neural network (ReCNN) that
extracts joint spectral-spatial-temporal features from bi-temporal multispectral images.
Their ReCNN combined the ability of a CNN to extract contextual features with an RNN’s
ability to model the temporal correlation between multi-temporal data. Their publication
compared their ReCNNs’ overall accuracy with the overall accuracy of six conventional
land cover change detection methods (CVA, PCA, multivariate alteration detection (MAD),
IRMAD, DT, and SVM). In addition, the LSTM framework referred to as REFEREE that was
developed by Lyu et al. [34] was also compared, as well as three variations in the recurrent
sub-network of their ReCNN framework. One had a fully connected RNN (ReCNN–FC),
a second had LSTM units as the recurrent component (ReCNN–LSTM), and a third had
Gated Recurrent Units (ReCNN–GRU). For both binary and multi-class change detection
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experiments, the overall accuracy of their ReCNN–LSTM achieved the highest overall
accuracies ranging from 98–99%, which proved superior to the six conventional change
detection methods (75–96%), as well as the REFEREE model of Lyu et al. [34] and the three
variations in the recurrent sub-network of their ReCNN (95–99% (When the ReCNN–LSTM
and ReCNN–GRU frameworks of Mou et al. [35] are rounded to the nearest whole number
of 99%, they are the same. However, in Mou et al. [35] they round overall accuracies to the
nearest two decimal points which shows the ReCNN–LSTM achieving the highest (98.70)
compared to the ReCNN–GRU (98.64)). However, the spatio-temporal generalisability of
their ReCNN framework was not tested.

3. Conclusions
3.1. Coral Reef Benthic Mapping

In relation to mapping coral reef benthic composition using multispectral satellite
imagery, Tables 1 and 2 show a total of 47 papers; 17 are pixel-based and 30 are object-
based. The most used pixel-based machine-learning classification algorithm is MLC, which
is used by 47% of publications in Table 1, followed by RF, SVM, and MDM in second
with each being used by 12%. In relation to object-based publications, aside from OBIA
followed by expert driven membership rulesets (23%), SVM is the most used machine-
learning classification algorithm, being used by 17%, followed by RF and k-NN in second
place, each being used by 12%. Based on these two tables, we can conclude that object-
based machine-learning classification algorithms are more commonly used compared to
pixel-based. Furthermore, object-based machine-learning algorithms are not as prone to
pixel-based issues mentioned in Section 2.1.

It is not possible to directly compare all machine-learning algorithms and change
the detection methods covered in this review because of inconsistencies in classification
schemes. These inconsistencies can be caused by a variety of differences in imagery
(spectral and spatial resolutions), in situ reference data collection methodologies, the
number and types of benthic classes mapped, and accuracy assessment protocols. It is
clear that currently the main limitation in relation to spatio-temporal scalability is the
requirement of coincident in situ reference data. It should be noted that this review focused
on overall accuracy as the metric used to determine the accuracy of each machine-learning
algorithm reviewed. However, the overall accuracy does not provide insight into class-
specific accuracies. Therefore, further investigation is required to determine the utility of
each algorithm in relation to class-specific accuracies.

In relation to spatio-temporal generalisation, only three publications in Tables 1 and 2
tested the generalisability of machine-learning algorithms [31,32,41], and one is still yet
to verify the accuracy of their OBIA–RF s generalisability [59]. Based on the findings of
these four publications, we believe there are two current approaches that have the potential
to increase the spatio-temporal scalability of coral reef benthic mapping. The first is to
use expert-derived training and validation samples [59,131]. This approach is necessary
because existing pixel- and object-based machine-learning classification algorithms require
coincident in situ reference data. Therefore, to increase their spatial scalability to a global
scale, in situ reference data sets need to increase to a global scale as well. While [59], as part
of the Allen Coral Atlas, have adopted this approach developed by Roelfsema et al. [131] on
a global scale, they do not, however, report the accuracy of their object-based RF algorithm
in areas outside the extent of their reference data; therefore, it remains currently unvalidated
in those areas.

The second approach is to identify machine-learning algorithms capable of spatio-
temporal generalisation. To this end, Gapper et al. [41] used pixel-based Linear Discrimi-
nant Analysis to map two benthic classes (coral and algae/sand). However, this was based
on low resolution (30 m) Landsat-8 imagery, making it prone to pixel-based issues and
was limited in terms of the number of benthic classes that could be mapped. Li et al. [32]
demonstrated that na FCN framework combined with a k-NN classification algorithm can
achieve high overall accuracies in relation to mapping three benthic classes (coral, seagrass,
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and sediment) using high resolution WorldView-2 (1.9 m) and PlanetScope (3.7 m) imagery
and also demonstrated spatio-temporal generalisation. Furthermore, Asanjan et al. [31]
developed the LAPDANN framework that can use labeled samples from high resolution
WorldView-2 imagery (1.9 m) to accurately predict five benthic classes (reef crest—coralline
algae ridge, fore-reef, back-reef pavement or sediment, back-reef coral framework, and
seagrass meadows) in medium resolution Sentinel-2 imagery (10 m) with a high over-
all accuracy. This demonstrates an ability to generalise to different sensors and spatial
resolutions. Based on these papers, the deep learning frameworks of Li et al. [32] and Asan-
jan et al. [31] appear to hold the most potential in relation to increasing the spatio-temporal
scalability of coral reef benthic mapping.

3.1.1. Coral Reef Benthic Change Detection

In relation to change detection, Table 3 shows 26 papers that have mapped coral reef
benthic change over time. Most (54%) of these use some form of pixel-based PCCCD.
The most used pixel-based machine-learning algorithm used in PBCD is the Mahalanobis
distance classification algorithm, used by 15% of publications in Table 3 followed by MLC
and SVM, each used by 12%. Aside from manual polygon delineation and class assignment
which is used by 12% of publications in Table 3, the RF algorithm is the most used object-
based machine-learning algorithm in OBCD, used by 8% of publications. None of the
26 publications in Table 3 have demonstrated spatio-temporal generalisation. However,
in this review we did identify the LSTM framework of Lyu et al. [34] that has proven
superior in terms of overall accuracy compared to post-classification land-cover change
detection methodologies. It has also demonstrated spatio-temporal generalisability. Coral
reef benthic mapping and change detection may be a more difficult task to accomplish
compared to land cover mapping and change detection because of the further complication
of the water surface and water column light scattering and absorption affecting spectral
reflectance. However, we believe it is reasonable to hypothesize the potential utility of the
LSTM framework for binary and/or multi-class coral reef benthic change detection using
multispectral satellite imagery.

3.1.2. Future Research

Given the increase in the number of publications using deep learning frameworks for
the purpose of mapping and change detection using remotely sensed imagery, we acknowl-
edge that other deep learning frameworks may also be candidates for spatio-temporal
generalisation in relation to coral reef benthic mapping and change detection. However,
based on examples in this review we believe there are four potential areas for further
investigation relevant to increasing the spatio-temporal scalability of coral reef benthic
mapping and change detection. These potential areas are to determine: (1) whether the FCN
framework of Li et al. [32] (NeMO-Net) can generalise to different biogeographical regions
that might exhibit different benthic compositions and spatial complexity; (2) whether the
LAPDANN framework of Asanjan et al. [31] can spatially generalise when more training
data-capturing variations in sensing conditions over multiple reefs is used; (3) whether
the OBIA–RF of Lyons et al. [59], using the expert-derived training and validation data
approach of Roelfsema et al. [131], can generalise to areas outside the extent of their refer-
ence data; and (4) the utility of the LSTM framework of Lyu et al. [34] for coral reef benthic
change detection.
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