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Abstract: Mu Us Sandy Land is a typical semi-arid vulnerable ecological zone, characterized by
vegetation degradation and severe desertification. Effectively identifying desertification changes has
been a topical environmental issue in China. However, most previous studies have used a single
method or remote sensing index to monitor desertification, and lacked an efficient and high-precision
monitoring system. In this study, an optimal monitoring scheme that considers multiple indicators
combination and different machine learning methods (Classification and Regression Tree-Decision
Tree, CART-DT; Random Forest, RF; Convolutional Neural Networks, CNN) was developed and used
to analyze the spatial–temporal patterns of desertification from 2000 to 2018 in Mu Us Sandy Land.
The results showed that: (a) The random forest model performed best for monitoring desertification
based on medium and low-resolution remote sensing images, and the four-index combination
(Albedo, NDVI, LST and TGSI) obtained the highest classification accuracy (OA = 87.67%) in Mu Us
Sandy Land. Surprisingly, the model accuracy of the three-index combination (NDVI, LST and TGSI)
(OA = 85.74%) is comparable to the four-index combination. (b) The TGSI index used to characterize
soil information performs well, while the LST is not conducive to the extraction of desertified land in
several desertification monitoring indicators. (c) Since 2000, the area of extremely severe desertified
land has shown a reversal trend; however, there is significant interannual fluctuation in the total and
light desertification land area affected by extreme climate. This research provides a novel approach
and a valuable reference for monitoring the evolution of desertification in regional studies, and the
results improve the research system of desertification and provide a data basis for desertification
cause analysis and prevention.

Keywords: desertification; CART-DT; RF; CNN; image classification; remote sensing index

1. Introduction

Desertification is the degradation of land in arid, semi-arid and dry sub-humid areas
primarily caused by human activities and climatic variations [1]. It occurs because dryland
ecosystems, which cover over one-third of the world’s land area, are extremely vulner-
able to overexploitation and inappropriate land use [2]. As one of the most important
environment–economy–society problems of the world, desertification threatens regional
ecological security and limits economic development at national levels, accompanying de-
clining soil fertility and vegetation degradation [3,4]. The UNCCD 2017 report showed that
some 10–20% of drylands are already degraded, the total area affected by desertification is
between 6 and 12 million km2, about 1–6% of the inhabitants of drylands live in desertified
areas, and one billion people are under threat from further desertification [5]. China is also
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deeply affected by desertification, particularly by aeolian desertification. By 2014, the area
of aeolian desertified land in northern China had reached 37.59 × 104 km2 and the land
directly affected by wind and sand disasters reached 166.9 × 104 km2 with 400 million
people in 16 provinces affected and causing average annual losses of RMB 50 billion [6].
Therefore, it is necessary to accurately monitor the dynamic changes in desertified land to
understand the occurrence and development of desertification and provide a framework
for preventing desertification in the future.

Although the biophysical processes of desertification at local scales have been researched
extensively via long-term investigation and monitoring of field stations [7–9], research about
the spatio-temporal variability of large-scale desertification is currently lacking and requires
further exploration. The development of remote sensing technology allows for long-term
and large-space studies to understand the evolution and driving mechanism of desertifica-
tion [10–12]. Previous studies have obtained desertification data by visual interpretation
based on Landsat data [11,13]. Although the accuracy of the visual interpretation method
is high, it is time-consuming, laborious and expensive to monitor a large area. In addition,
these analyses are influenced by subjective factors and require the interpreter to master the
spectral, spatial and temporal properties of the research objective and the geological laws
of ground objects.

As image recognition and remote sensing technologies advanced, Qi et al. applied
supervised classification and other computer-automatic classification methods to extract
desertification data based on Landsat images, accelerating the efficiency of desertification
information acquisition [10]. However, the temporal resolution of desertification data
obtained using Landsat data is low, limiting interpretations about the driving mechanism
of desertification at large spatial scales. Xu et al. applied hyperspectral and low-medium
resolution images from MODIS for desertification monitoring [14]. Most studies apply
vegetation indices (i.e., NDVI, EVI, MSAVI, etc.) that characterize vegetation information
as a proxy for desertification [15–18]. However, these studies only use vegetation indices
and do not include information about soil the and surrounding environment, meaning
that the accuracy of desertification is limited. To address this, Wei et al. and Guo et al.
used multi-index monitoring to obtain desertification information, and the results showed
that this method effectively improved the monitoring accuracy [19,20]. Gradually, Albedo,
NDVI, LST, MSAVI and other indicators that characterize vegetation–soil–temperature
information were applied to monitor desertification. Duan et al. obtained the spatial and
temporal dataset of desertification in Horqin Sandy Land in the past 15 years by using
machine learning based on the decision tree and multi-index method [12]. Subsequently,
Munkhnasan et al. analyzed the spatial–temporal pattern of desertification in the study
area by combining the TGSI index, representing topsoil information, with the analytic
hierarchy process [21].

The development of machine learning methods has effectively promoted desertifi-
cation classification research. Among them, the decision tree (DT) is employed by many
academics, and the classification accuracy is excellent with an overall classification accu-
racy exceeding 86.69% [12,22,23]. With the application of RF in image classification, Fan
et al. compared the classification results of RF, CART and SVM with Landsat images in
desertification identification. However, RF did not provide benefits, and its classification
accuracy was lower than that of CART [24]. Meng et al. compared the classification effect
of RF and five other machine learning methods in desertification at the same time, and the
classification accuracy was 90% [25]. Deep learning technology is currently widely used
in image classification, particularly in the fields of land cover/land use, water and crop
mapping [26]. Nevertheless, it is still unknown in the application of multispectral remote
sensing desertification monitoring, which is only used in hyperspectral remote sensing
at the local scale [27,28]. As a result, this study selected the CART, RF and CNN for a
comparative study of desertification classifications.

Large-scale and multi-index remote sensing monitoring of desertification has become
a topical research direction and an important component of global land-surface process
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research. However, there are many monitoring indicators, and there is often acorrelation
between these indicators. The repeated expression of information on the same desertifi-
cation phenomenon can affect the monitoring accuracy [20]. In addition, there is no clear
classification method suitable for quantifying desertification on a regional scale. Therefore,
it is necessary to establish a scientific monitoring system for multi-index desertification
monitoring based on computer-automatic classification.

As a transitional zone between the Loess Plateau and Ordos Plateau, the Mu Us
Sandy Land is one of the four major sandy lands in northern China and an important
part of the northern agro-pastoral ecotone [29]. Since the 1960s, frequent agricultural and
grazing activities have made the ecological environment of this area change, worsening the
problem of desertification [30,31]. In the 21st century, people continue to carry out ecological
restoration activities led by the government, and desertification has been gradually reversed
since 2000 [32,33]. However, the problem of desertification cannot be ignored, and studies
show that desertification still exists in some parts of Mu Us Sandy Land [34].

The purpose of this study is to propose a feasible methodology that combines mul-
tiple remote sensing monitoring indicators and machine learning methods to obtain the
optimal combination of indicators and methods for desertification monitoring. Specifically,
(1) to explore efficient and accurate theoretical methods for regional-scale desertification
monitoring; (2) to provide a set of high precision and high time resolution desertification
datasets. This paper aims to improve desertification research by developing monitoring
indicators and monitoring methods and to provide data basis for understanding the cause
and prevention of desertification.

2. Materials and Methods
2.1. Study Area

The Mu Us Sandy Land is located between 106◦26′–110◦55′E and 36◦48′–40◦12′N, and
includes 11 banners (counties, districts) in most areas of Ordos City in Inner Mongolia
Autonomous Region, northern Yulin City in Shaanxi Province, and northeastern Ningxia
Hui Autonomous Region, covering an area of approximately 87,353 km2 (Figure 1). This
area is located in the intermediate zone between the Ordos Plateau and the Loess Plateau
and is a transitional zone between wind erosion and water erosion following from sandy
to loess areas. The elevation ranges from 1000 to 1400 m, and the terrain slopes from
northwest to southeast [29]. Mu Us Sandy Land has a semi-arid climate that transitions
from temperate grassland to desert grassland and is the transition zone from animal
husbandry to agriculture, which belongs to the typical temperate continental climate. The
annual average precipitation is 150–500 mm, decreasing from southeast to northwest. The
annual average temperature is 5.5–8.7 ◦C, the annual evapotranspiration is 2200–3000 mm,
and the annual average wind speed is 2.00–3.60 m·s−1 [29]. In the study area, both zonal
and non-zonal soil coexist. The zonal soil consists primarily of chestnut soil, while the
non-zonal soil consists primarily of aeolian sandy soil, swamp soil, saline-alkali soil, and
meadow soil. The vegetation is primarily grassland and sandy shrub vegetation, with
Artemisia ordosica as the dominant plant species [35]. Mu Us Sandy Land is one of China’s
four major sand lands and a key component of the northern farming-pastoral ecotone. It is
situated in a typical fragile ecological environment and is a significant source of sediment
in the Yellow River. As a sensitive ecological transition zone in northern China, the Mu Us
Sandy Land has always been an important region of desertification research [36].
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Figure 1. Study area. The information on precipitation, land cover, administrative division and 
verification points are shown. The 400 verification points include 191 field verification points and 
209 Google Earth verification points. Field working time: 2015-07 to 2015-08: (a) Landsat OLI 
false-color synthesis image (S); (b) Field landscape photo (S); (c) Landsat OLI false-color synthesis 
image (ES); (d) Google Earth image (ES). S—severe desertification, ES—extremely severe deserti-
fication. 
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Remote sensing data—The Terra moderate-resolution imaging spectroradiometer 

(MODIS) product data provided by NASA LAADS DAAC data center 
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surface reflectance (MCD43A4), albedo (MCD43A3), vegetation index (MOD13A1), and 
land-surface temperature (MOD11A2). The study also employed USGS-shared Landsat8 
OLI remote sensing images of 2015 (https://glovis.usgs.gov/, 31 October 2015) to visually 
interpret and generate a sample database of machine learning. 

Table 1. Summary of the four typical surface parameters. 

Product Data Used Spatial Resolution Temporal Res-
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NDVI MOD13A1 500 m 16 d [37] Fan and Liu (2016) 
Albedo MCD43A3 500 m Daily [38] Wu et al. (2018) 

LST MOD11A2 1000 m 8 d [39] Wan (2014) 
TGSI MCD43A4 500 m Daily [40] Liu et al. (2018) 

Note: NDVI, Normal Difference Vegetation Index; LST, Land Surface Temperature; TGSI, Topsoil 
Grain Size Index. The source data (MODIS) of each index are avaliable during the growing season 
(May–October) of 2000 to 2018. 
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Figure 1. Study area. The information on precipitation, land cover, administrative division and
verification points are shown. The 400 verification points include 191 field verification points and
209 Google Earth verification points. Field working time: 2015-07 to 2015-08: (a) Landsat OLI false-
color synthesis image (S); (b) Field landscape photo (S); (c) Landsat OLI false-color synthesis image
(ES); (d) Google Earth image (ES). S—severe desertification, ES—extremely severe desertification.

2.2. Data Source and Preprocessing

Remote sensing data—The Terra moderate-resolution imaging spectroradiometer
(MODIS) product data provided by NASA LAADS DAAC data center (https://ladsweb.
modaps.eosdis.nasa.gov/, 31 December 2018) were used as remote sensing inversion in-
dexes for desertification monitoring in this study (Table 1), including surface reflectance
(MCD43A4), albedo (MCD43A3), vegetation index (MOD13A1), and land-surface tempera-
ture (MOD11A2). The study also employed USGS-shared Landsat8 OLI remote sensing
images of 2015 (https://glovis.usgs.gov/, 31 October 2015) to visually interpret and gener-
ate a sample database of machine learning.

Table 1. Summary of the four typical surface parameters.

Product Data Used Spatial
Resolution

Temporal
Resolution Reference

NDVI MOD13A1 500 m 16 d [37] Fan and Liu (2016)
Albedo MCD43A3 500 m Daily [38] Wu et al. (2018)

LST MOD11A2 1000 m 8 d [39] Wan (2014)
TGSI MCD43A4 500 m Daily [40] Liu et al. (2018)

Note: NDVI, Normal Difference Vegetation Index; LST, Land Surface Temperature; TGSI, Topsoil Grain Size Index.
The source data (MODIS) of each index are avaliable during the growing season (May–October) of 2000 to 2018.

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://glovis.usgs.gov/
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Vegetable Index data—Vegetation Indices 16-Day L3 Global 500 m product (MOD13A1)
from 2000 to 2018 was used to acquire the normalized difference vegetation index (NDVI)
in this study. The NDVI is derived from atmospherically corrected reflectance in the red,
near-infrared, and blue wavebands [37,41,42], as shown in Equation (1):

NDVI =
ρnir − ρred
ρnir + ρred

, (1)

where ρnir , ρred are the surface reflectance for the near-infrared and red bands.
Land surface temperature (LST) data—MOD11A2 land surface temperature prod-

uct data are retrieved at 1 km pixels by the generalized split-window algorithm, with
1 km spatial resolution and 8-day temporal resolution, provided along with the day-
time and nighttime surface temperature. This study used daytime LST data after denois-
ing from 2000 to 2018, which were converted to Celsius temperature using the formula:
LST (◦C) = DN × 0.02 − 273.15 [39].

Albedo data—The Albedo Daily L3 Global 500 m product (MCD43A3) from 2000
to 2018 was used to derive the albedo in this study. The albedo of the product was
calculated based on the Bidirectional Reflectance Distribution Function (BRDF) model
after atmospheric correction [38]. These data included black space albedo and white space
albedo of seven narrow bands and three wide bands (visible band 0.3–0.7 µm, near-infrared
band 0.7–5.0 µm and shortwave band 0.3–5.0 µm). In this study, the white sky albedo in
the shortwave band was selected.

Topsoil Grain Size Index (TGSI) data—The Topsoil Grain Size Index was calculated
using the daily composite Albedo product (MCD43A4; [40,43]) from 2000 to 2018. Albedo
measurements were derived simultaneously from the BRDF for bands 1–7.

TGSI =
ρred − ρblue

ρred + ρblue + ρgree
, (2)

where ρred , ρblue and ρgreen are the albedo measurements for the red, blue and green bands,
respectively.

The above index data were chosen in this study combined with vegetation, soil
and environmental information representative of desertification. All of these data were
processed by mosaic, cutting and monthly value synthesis, and the monthly average of the
vegetation growing season (May–October) was chosen as the model input data.

2.3. Methods

This section elaborates on different machine learning methods for desertification
monitoring. The evaluation methods of result precision and field verification of training
samples are also included to identify modeling processes, analysis and evaluation.

2.3.1. Classification System, Model Samples and Field Verification
Classification System of Desertification Land

The surface landscape characteristics of aeolian desertification land are primarily the
appearance of surface wind and sand activities, which are characterized by an increasing
proportion of mobile dunes, decreasing vegetation coverage and soil coarsening. According
to the current remote sensing methods and the characteristics of surface morphology, vege-
tation and natural landscape of desertification land, this study divided desertification land
into four levels: light, moderate, severe and extremely severe (Table A1, [11]). Using the
spectral differences in remote sensing images of ground object types and the desertification
land classification system, the interpretation marks of desertification land were established
based on the texture, color, brightness, shape and other characteristics of remote sensing
images of different desertification land (Table A2, [29]).
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The Sample Selection and Sample Size

Since the spatial resolution of the MODIS data to be classified was 500 m, the study
established a 500 × 500 m grid, and selected the 500 m resolution of the pure pixel set as
the training sample to refer to the visual interpretation results based on Landsat images.
The sample size of different levels of desertification land is shown in Figure 2, and the total
sample size reaches 1455 (9000 pixels, evenly distributed on different levels of desertification
land) in machine learning methods.
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Model Samples Verification

The study chose 400 verification points (including 191 field verification points and
209 Google image verification points, Figure 1) to validate and improve the sample database’s
accuracy.

2.3.2. Models Used—CART-DT, RF and CNN
Classification and Regression Tree-Decision Tree (CART-DT)

The decision tree algorithm [44] is a fundamental classification method that is based
on a tree structure and can be thought of as a set of if-then rules. It consists of one root
node, several internal nodes, and several leaf nodes, with the leaf node representing the
outcome of the decision. It is non-parametric and nonlinear because the model results are
simple to explain [12]. The CART algorithm assumes that the decision tree is all binary
trees, and the decision tree divides each feature recursively into two parts before obtaining
the decision result. In other words, the feature space is divided into finite elements through
continuous division, and the probability distribution of prediction is determined by these
elements [45]. The idea behind constructing a CART-DT is to generate a large tree with
multiple levels and leaf nodes based on the overall sample data, then delete it to generate
a series of sub-trees, from which the appropriate size of the tree is selected to classify the
data. It is further subdivided into tree growth and tree pruning. To prune the optimal tree,
the CART algorithm employs the cross-validation method. In this study, the test error is
evaluated using 10-fold cross validation. At the same time, the maximum depth of the
decision tree model is 2, and there are at least 10 samples in the node data set to continue
the division of the node data set to prevent overfitting or underfitting of the model and
reduce the time complexity of the training model, and a leaf node must contain at least six
samples, and the model can only contain four leaf nodes. This model was run using the
package scikit-learn in Python version 2.7 software [46].
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Random Forest (RF)

RF is a machine learning method that assigns a value or class to a response variable
by using regression or classification trees. In the classification mode, RF uses an ensemble
classification with multiple classifiers and a fully non-parametric statistical method [47].
There are hundreds of decision trees built into RF classification, and their decisions are usu-
ally combined by multiple votes. The general principle of group training is that ensemble
models are superior to single models, avoiding the clashes between feature subsets [48].
Consequently, the RF classification is extensively used to process remote sensing imagery.
The important training options in the RF model are the number of trees, the maximum
number of features in RF splitting, and the variant for the sampling process [49]. Following
the results of the experiments, the maximum number of trees used in this study was set to
100, and this study selected the square root of the total feature as the maximum number of
features, which concerns the best splitting scenario. Additionally, the out-of-pocket (OOB)
sample statistics are used in this model. When new input is used, the OOB sample statistics
determine how the model will be implemented. This model was run using the package
Random Forest in Python version 2.7 software [50].

Convolutional Neural Networks (CNN)

CNN is a deep neural network originally designed for image analysis [51]. This model
is analogous to the neurons in the brain and it is a normalized version of multi-layer
perceptrons in fully interconnected networks [52]. Specifically, the CNN consists of a single
input layer, several hidden layers and a layer of output. Convolutional layers, activation
function, pooling layers and fully connected layers are structurally included in the hidden
layers [53]. CNN requires much less preprocessing than other classification algorithms and
produces better results as the number of training data increases [54].

The CNN structure of this study is shown in Figure 3. The input data of the input layer
are the normalized sample grid, and the size of each sample is 7 × 7, with four bands (four
monitoring indicators). In general, the higher the number of convolution layers, the more
abstract features can be extracted. Because the pooling layer is usually more important
in target detection, this model only has two convolution layers. The activation function
ReLU can reduce the output of some neurons to zero, increasing the network’s sparse
expression ability and preventing overfitting in this study. SoftMax, a classifier modeled by
polynomial distribution and suitable for classifying multiple mutually exclusive categories,
was used in the output layer. Dropout is used to prevent overfitting of the model training
in order to improve the network’s generalization ability. Some neurons are randomly
deleted during each iteration of the model training, avoiding the simultaneous updating of
all feature weights at each iteration and, thus, weakening the synergistic effect between
various features. Dropout was set to 0.25 in this model. This model was run using the
package Tensorflow in Python version 2.7 software [55].
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2.3.3. Models Accuracy Assessment

The confusion matrix approach is often used to evaluate land use/land cover(LU/LC)
classification outcomes, it is a standard format accuracy of the evaluation, with k rows
and k columns (Table 2); k = 5 is used to represent five different levels of desertification
in the study. This method provides an assessment of the classified results and referenced
data [56,57].

Table 2. The confusion matrix.

Predicted Results

L M S ES Non

Actual Results

L p11 p12 p13 p14 p15
M p21 p22 p23 p24 p25
S p31 p32 p33 p34 p35

ES p41 p42 p34 p44 p45
Non p51 p52 p35 p45 p55

pij is the proportion of sample size (in the i, jth cell) to total sample size.
pi+ is the sum of rows i; p+i is the sum of columns i.
The accuracy of Class i prediction is true: Precision =

pii
p+i

; The accuracy of Class i actual is true:

Recall =
pii
pi+

.

Prediction consistency (overall classification accuracy, OA): Po =
k
∑

i=1
pii;

Actual consistency: Pe =
k
∑

i=1
pi+p+i, k = 5.

Kappa coefficient: k =
Po − Pe

1− Pe
; Kappa coefficient of class i: ki =

pii − pi+p+i
p+i − pi+p+i

.

Note: L—light desertification, M—moderate desertification, S—severe desertification, ES—extremely severe
desertification, Non—non-desertification.

Precision and recall are used to evaluate each class prediction result. Prediction
precision is the number of positive samples correctly classified all of the positive sample
accounts for the number of divided classifier ratio; Recall (Sensitivity) is the number
of positive samples correctly classified accounting for the proportion of the number of
positive samples. The overall accuracy (OA) and Kappa coefficient resulting from the
confusion matrix were used to evaluate model accuracy [58,59]. In this study, both of
these measurement approaches were used to evaluate desertification classification results.
Simultaneously, the variance analysis of Kappa of different classes was used to evaluate
the significance of differences between groups of classification results.

2.3.4. Landscape Index and Surface Wetness Index

In this study, the landscape indices (fragmentation index and separation index) were
used to analyze and evaluate the monitoring results of desertification; the fragmentation in-
dex refers to the fragmentation degree of landscape segmentation, reflecting the complexity
of landscape spatial structure [60]. The formula is:

FN1 = (Np − 1)/Nc, (3)

where FN1 is the landscape fragmentation index of the whole study area; Np is the total
number of landscape patches; Nc is the ratio of the total area of the study area to the
minimum patch area. FN1 ∈ (0, 1), 0 means that the landscape is completely undamaged,
and 1 means that the landscape is completely destroyed.

The separation index refers to the degree of dispersion (or agglomeration) of the spatial
distribution of different patches in a landscape. The formula is:

Ni = Di/Si, (4)
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where Ni is the separation index of landscape type i; Di is the distance index of landscape

type i; Di =
1
2

√
n
A , n is the number of patches of landscape type i; A is the total area of

the study area (km2); Si is the area index of landscape type i, Si = Ai/A, Ai is the area
of landscape type i. The separation degree is used to analyze the spatial distribution
characteristics of landscape elements. The larger the separation degree is, the more discrete
the patches are and the greater the distance between patches is.

The surface wetness index (SWI) is commonly used to detect inter-annual dry/wet
climate change [61]. Therefore, SWI was applied in this study to determine the occurrence
time of extreme dry/wet climate in Mu Us Sandy Land from 2000 to 2018.

SWI = ∑12
i=1 Pi

∑12
i=1 PEi

, (5)

where Pi and PEi are monthly precipitation and potential evapotranspiration, respectively.
SWI < 0.05 is extreme arid area, 0.05≤ SWI < 0.20 is arid area, 0.20≤ SWI < 0.50 is semi-arid
area, 0.50 ≤ SWI < 0.65 is semi-humid arid area, SWI ≥ 0.65 is humid area.

Monthly precipitation and potential evapotranspiration data for 2000–2018 are derived
from National Meteorological Information Center (http://data.cma.cn/, 31 December 2018).

2.3.5. Scheme Optimization

Given the uncertainty of selecting monitoring indicators and the different advantages
of machine learning methods, we aim to explore the ideal combination of monitoring indi-
cators and the optimal machine learning method suitable for the study area by excluding
the repeated expression of monitoring information. We propose the following scheme
(Figure 4).
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3. Results

The accuracy of desertification information under different machine learning algo-
rithms and index combinations was compared, and the optimal model and index com-
bination of desertification land classification in the Mu Us Sandy Land was identified.
The optimal model and index combination were then used to obtain the spatial distribu-
tion of desertified land in the Mu Us Sandy Land in 2018, and the temporal change of
desertification areas in the study area from 2000 to 2018.

3.1. Comparison of Model Accuracy

Combined with vegetation information (NDVI), temperature information (LST), top-
soil information (TGSI) and surface radiation information (Albedo), three machine learning
methods of CART-DT, RF and CNN were applied to obtain 33 groups of desertification land
classification based on the optimization scheme in Mu Us Sandy Land. Using the overall
accuracy and Kappa coefficient and comparing 33 groups of accuracy results of extracting
desertification information via machine learning algorithm, we found that the combination
accuracy of the RF model and four indicators (ANLT) is the highest with an overall accuracy
of classification of 87.67% and a Kappa coefficient of 0.84 (Table 3). As shown in Table 3,
from the perspective of the algorithm, the accuracy of the RF model is the highest, the
CNN is the second-highest, and the CART-DT algorithm is the lowest. Considering the
combination of indicators involved, the accuracy of desertification information extraction
is from high to low: the combination of four indicators, the combination of three indicators,
and the combination of two indicators.

Unexpectedly, the results also show that the combination of the two indicators with
the highest accuracy is NT, and the combination of the corresponding three indicators is
NTL. In particular, the lowest accuracy of the combination of two indicators is AN, and the
lowest accuracy of the three indicators is ANL, which is even lower accuracy than the two
indicators NT.

Table 3. The results of model accuracy with different indicator combinations.

Different Combinations
CART-DT RF CNN

OA(%) Kappa OA(%) Kappa OA(%) Kappa

C(4,4) ANLT 69.07 0.59 87.67 0.84 78.46 0.73

C(4,3)

ANL 60.05 0.45 82.86 0.77 72.08 0.68
ANT 64.32 0.52 83.72 0.78 74.78 0.69
ATL 66.61 0.55 85.25 0.80 76.29 0.71
NTL 68.17 0.58 85.74 0.81 76.47 0.71

C(4,2)

AN 52.32 0.32 77.65 0.70 61.42 0.58
AL 54.68 0.36 78.88 0.72 65.87 0.60
AT 58.69 0.44 80.47 0.74 68.22 0.62
NL 57.79 0.41 79.68 0.73 67.48 0.61
NT 61.34 0.48 81.40 0.75 72.20 0.66
TL 58.36 0.44 80.40 0.74 68.37 0.62

Note: Different Combinations are identified in the form of alphabetical combinations of indicators, in which
A is Albedo; N is NDVI; L is LST; T is TGSI; OA is Overall accuracy; Kappa is Kappa coefficient. C(4,4): One
combination of four indicators selected from four indicators; C(4,3): Four combinations of three indicators selected
from four indicators; C(4,2): Six combinations of two indicators selected from four indicators.

We now focus, firstly, on the nine groups of classification results with the highest
accuracy under different index combinations and methods in the typical area, and, secondly,
on the three groups of classification results of AN combinations with the lowest accuracy
(Figure 5). The patch separation degree is low for classification results obtained by the
CART-DT algorithm (Table 4), and the accuracy decreases in turn with the decrease in
the index. Most categories of desertified land from the AN combination are identified as
non-desertified land, except for extremely severe desertification. The classification results
extracted by the RF algorithm showed significant patch fragmentation with decreasing
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index accuracy. This trend is especially apparent for the AN combination, except for
extremely severely desertified land (Table 4). The classification result produced by the
CNN algorithm also decreases with the reduction in the index accuracy, but the law of
patch separation (fragmentation) is not obvious, and there is an overestimation of the area
of extremely severely desertified land (Table 4).
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Figure 5. The desertification land classification results of the typical region based on different
indicators and different machine learning methods with corresponding satellite images (see Figure 1
for the location of the typical region). L—light desertification, M—moderate desertification, S—severe
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Table 4. The landscape indices of desertification land based on different combinations.

Combination Fragmentation Index Separation Index_ES

CART-DT

ANLT 0.078 1.47
NTL 0.071 1.03
NT 0.052 0.67
AN 0.013 0.46

RF

ANLT 0.091 1.12
NTL 0.105 1.55
NT 0.376 1.74
AN 0.411 1.68

CNN

ANLT 0.054 0.82
NTL 0.086 1.13
NT 0.235 1.55
AN 0.022 0.66
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3.2. Optimal Classification Results

This study obtained the classification accuracy of desertification in Mu Us Sandy
Land in 2018 by applying the optimal RF model and ANLT combination of monitoring
indices. As shown in Table 5, the classification accuracy of light desertification is the
lowest (precision = 80.43%, recall = 81.57%) and the classification accuracy of the extremely
severe desertification is the highest (precision = 94.84%, recall = 92.38%). The results of
the confusion matrix of accuracy show that the confusion pixels of light and moderate
desertification account for a large proportion in the results of the automatic classification
based on the machine learning algorithm and affect the prediction accuracy.

Table 5. Prediction accuracy of desertification at different levels based on random forest model.

Level of Desertification
Prediction Accuracy (%)

Prediction Precision Prediction Recall

Light Desertification (L) 80.43 81.57
Moderate Desertification (M) 82.05 82.96

Severe Desertification (S) 83.19 84.19
Extremely Severe Desertification (ES) 94.84 92.38

Non-Desertification (Non) 93.92 90.08
Overall Classification Accuracy 87.67

3.3. Distribution of Desertification in Mu Us Sandy Land

In the following sections, we discuss the spatial distribution of desertified land in Mu
Us Sandy Land in 2018 and investigate the temporal changes to the area of desertified land
from 2000 to 2018. The classification results of the optimal scheme are based on the RF
algorithm and four monitoring indicators (ANLT).

3.3.1. Current Status and Spatial Distribution of Desertified Land in 2018

The results of the computer-automatic classification show that the desertified land has
mainly experienced light desertification, accounting for 41.89% of the total desertified land
area in Mu Us Sandy Land (Figure 6), followed by extremely severe and severe desertified
land. The proportion of moderate desertified land is the lowest (7.39%). Desertified land is
principally distributed in the hinterland and the northwest margin of the sandy land. The
hinterland is mainly extremely severe and severe desertified land, while the northwest,
west and north of the hinterland are generally light and severe desertified land. The
southeast edge of sandy land is the transitional region from sandy land to loess area and is
dominated by non-desertified land that is not at risk from desertification.

From the perspective of the administrative division, the desertified land is mainly
distributed in Otog Banner and Otog Front Banner in the west of Mu Us Sandy Land
and Wushen Banner in the middle of the sandy land (Table 6), which together account
for 67.10% of the total area of desertified land in the study area. Specifically, Otog Banner
has the largest proportion of desertified land (28.20%) and contains all different levels of
desertification. The area of desertified land in Wushen Banner accounts for 16.94%, ranking
third out of the different administrative divisions, but contains the largest area of severely
and extremely severely desertified land. The banners (counties/districts) with the least
desertified land are Hengshan District, Dingbian County and Jingbian County in the south
of the sandy land, where the proportion of desertified land is less than 3.00%.
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Table 6. Area of desertification land in various counties at different levels in 2018.

Counties L/km2 M/km2 S/km2 ES/km2 Total/km2 Percentage/%

Otog Banner 5431.85 6003.52 2538.33 1321.37 15,295.07 28.20
Otog Front Banner 4431.60 4036.53 2475.10 968.33 11,911.57 21.96

Wushen County 2709.19 2247.98 2905.14 1326.61 9188.92 16.94
Yuyang District 1568.00 1334.38 1412.71 136.23 4451.32 8.21

Ejin Horo Banner 2576.71 703.83 348.52 69.30 3698.35 6.82
Yanchi County 2294.00 907.84 246.83 52.62 3501.28 6.46

Shenmu 896.40 611.87 649.29 98.15 2255.71 4.16
Jingbian County 1132.03 213.22 193.31 16.88 1555.44 2.87
Dingbian County 999.63 327.64 166.93 19.68 1513.89 2.79
Hengshan District 680.02 104.55 72.19 6.28 863.04 1.59

Note: L—light desertification, M—moderate desertification, S—severe desertification, ES—extremely severe
desertification.

3.3.2. The Changes in Time Series Desertification Land from 2000 to 2018

Since the 1960s, climate warming caused by human activities and land use cover
change (LUCC) has aggravated the problem of grassland degradation and desertification
in northern China [10]. However, since 2000, desertification has been reduced across China
by environmental initiatives [6]. The results of this study show that there is a decreasing
trend of desertified land in Mu Us Sandy Land since 2000, especially for extremely severe
desertified land. The area of moderate and severe desertified land has remained relatively
stable over the past 18 years, and the area of light desertification has increased. Since 2007,
the area of extremely severe desertified land was smaller than that of the other categories,
and the area of light desertified land was greater than that of all other categories combined
(Figure 7). The interannual changes in the area of light desertified land and total desertified
land showed strong volatility, and the magnitude of fluctuation was relatively consistent
(Figures 7 and 8).
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Figure 7. The temporal trends of different levels of desertification in Mu Us Sandy Land from 2000 to
2018. L—light desertification, M—moderate desertification, S—severe desertification, ES—extremely
severe desertification, Total—total desertification. 2000, 2005 and 2017 are classified as relatively arid
years (orange histogram); 2003 and 2012 are classified as relatively humid years (yellow histogram).
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4. Discussion
4.1. The Optimal Method and Index Combination for Desertification Monitoring in Mu Us Sandy Land

The results of this study show that the random forest method outperforms all other
models in the extraction of desertified land based on medium–low-resolution remote
sensing images. This finding corresponds to previous studies on image classification
whereby the RF classification accuracy is higher than the support vector machine and
decision tree using medium–low-resolution data resources [62]. The CNN classification
accuracy is lower than that of RF on a regional scale. As the CNN classification method
is restricted to large-sized sample acquisitions [26], it is more suitable for global-scale
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classification research using the Google Earth Engine (GEE) platform to take advantage of
the CNN classification benefit [63]. Fortunately, RF can solve the problem of over-fitting of
decision tree and obtain high-precision classification results using the automatic acquisition
of land cover data [64]. In the current era of big data, RF has become the most commonly
used machine learning method for remote sensing image classification based on the GEE
platform [63].

The combination of four indices (ANLT) obtains higher classification accuracy than
that of two or three indices, irrespective of the method used to classify desertified land in the
study area. Nonetheless, overall classification accuracy and Kappa comparability are poor
across model groups. In the three groups, OA and Kappa were very close, with an overall
accuracy of more than 85%. However, the variance analysis of Kappa coefficient ki of ANLT
and NTL (ANLT and NTL) classification results under the RF model showed that p = 0.006
(p = 0.005). This demonstrates that, while overall classification accuracy is similar, there are
significant differences, and that the combination of RF and ANLT is the best classification
scheme in the study. Notably, the contribution of each monitoring index varies greatly
with threshold intervals for different levels of desertification (Figure 9). For example, we
show that LST is the least important factor and does not separate the different levels of
desertification. This finding indicates that the LST index is not effective for classifying
desertified land, as corroborated by [12] in Horqin Sandy Land in northern China. In
contrast, the TGSI index could directly separate non-desertified land from desertified land
with excellent performance, which has also been shown for the Mongolian Plateau [19].
Albedo and NDVI are common remote sensing indicators that characterize vegetation
and soil information to monitor desertification information. In our study region, these
indices could effectively separate extremely severe desertified land (Figure 9), supporting
the Albedo–NDVI point-to-point feature space model applied to study desertification
in areas with high vegetation coverage [20]. However, these indices were not effective
at distinguishing between light and moderate desertification (Figure 9), suggesting that
additional indices should be considered.
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Figure 9. Threshold interval of monitoring indicators across different levels of desertification. In
this study, 6000 pixels of monitoring indicators were randomly selected for box chart statistics
from different desertified land. L—light desertification, M—moderate desertification, S—severe
desertification, ES—extremely severe desertification, Non—non-desertification.
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4.2. The Spatio-Temporal Changes in Desertification in Mu Us Sandy Land Based on the Optimal
Method and Index Combination
4.2.1. The Inter-Annual Volatility of Light Desertification Land Area

The results of this study demonstrate that the area of light desertified land fluctuates
significantly between years (Figure 7), showing that it is difficult to quantify the area
affected by light desertification. We believe this fluctuation is due to interannual variation
in the monitoring indicators. As a result, we obtained the interannual variation trend
of each monitoring index from 2000 to 2018 (Figure 10). The results revealed that all
monitoring indices fluctuate across the time series. Zhang’s research indicated that the
vulnerability of light desertified land to extreme climate change is unstable, meaning that
these areas could be temporarily restored during periods with abundant rainfall or rapidly
deteriorate into moderate desertified land during periods of drought [65]. Comparing the
trend of the drought index SWI and the area of desertified land in Mu Us Sandy Land
from 2000 to 2018 (Figures 7 and 11), we find that both the light desertified land area and
the total desertified land area fluctuated the most during extremely dry/wet years. In
extremely dry years (2000, 2005 and 2017), the total desertified land area had three peaks,
and in extremely wet years (2003 and 2012), the total desertified land area ushered in two
valleys. The large fluctuation of the total desertified land area is primarily affected by the
area of light desertification, which in turn responds to the occurrence of extreme climate
events. Therefore, the volatility of light desertification could be defined as an unstable
desertification area and represents an unavoidable problem in desertification monitoring.
Future research should focus on how to determine the size and characteristics of this
unstable region and how to protect against worsening desertification in the future.
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4.2.2. The Transformation of Extremely Severe Desertification Land Area

As shown in Figure 7, the area of extremely severe desertification land in Mu Us
Sandy Land has decreased since 2000, compared to all other land with different levels of
desertification. Wang Tao et al. demonstrated that the change in desertification over time,
being the pattern of change between the levels of desertification from “desertification to non-
desertification”, requires a long process [6]. However, since 2000, there has been no obvious
decrease in the total area of desertified land in Mu Us Sandy Land, indicating that the
conversion of extremely severe desertified land to other desertified land is relatively active,
and the desertification problem generally exhibits a reverse trend, primarily manifested as
a decrease in the level of desertification. Then, according to this dynamic mechanism of
desertification, the primary task of desertification control is the governance of extremely
severe desertification.

4.2.3. The Ecological Restoration of Sandy Land

Combined with the changing trend of desertified land area and monitoring indica-
tors in Mu Us Sandy Land from 2000 to 2018 (Figures 7 and 10). After 2000, under the
background of a warm and humid climate, Mu Us Sandy Land has experienced a series of
ecological restoration projects and measures (i.e., the Return Grazing to Grass Program [66]
and the “Three-North-Shelterbelt” Project [10]). Desertification has gradually been re-
duced, and the environment has been restored by the decrease in albedo and land surface
temperature, the reduction in soil grain size and the increase in land surface greenness.
This reduction in the area of desertified land in the Mu Us Sandy Land demonstrates that
ecological restoration is an effective method to control desertification.

4.3. The Advantages and Limitations

According to MODIS data products, computer automatic classification technology
is used to obtain high temporal resolution desertification data set in Mu Us Sandy Land.
The results in this study provide useful mechanistic insights into the monitoring of de-
sertification. The multi-index multi-model reveals the optimal method of desertification
monitoring in the study area and is more advanced than using the single-index single
model and multi-index single model. We also reveal that in the arid and semi-arid desert
steppe areas of northern China, the area of light desertified land fluctuates significantly
on interannual time scales depending on the weather and rainfall during a specific year.
These fluctuations affect the total area of desertified land and could cause discrepancies
in desertification monitoring results between different studies in the same region if not
accounted for. Future research should quantify the potential area that is vulnerable to
desertification to obtain more accurate results. The accuracy of the optimal monitoring
scheme for the Mu Us Sandy Land should also be investigated for other regions.

5. Conclusions

In this study, the spatio-temporal patterns of desertification in the Mu Us Sandy Land
were monitored with a machine learning model and multi-index remote sensing data.
Since 2000, the total area of desertified land has reduced in the study region, although
with significant interannual fluctuation primarily driven by changes in the area of light
desertified land. The Random forest (RF) model is the optimal method for monitoring
desertification in Mu Us Sandy Land using medium–low-resolution remote sensing images.
The accuracy of land classification results extracted by the combination of four monitoring
indicators (Albedo, NDVI, LST and TGSI) was the highest. Using the RF method and four
monitoring indicators, the level of desertification in Mu Us Sandy Land was classified with
an accuracy of 87.67%. However, the strong correlation between monitoring indicators
may affect the classification accuracy due to the greater the information redundancy. The
TGSI, which characterizes soil information, is an excellent monitoring index, while LST is
not effective for classifying desertified land. The interannual variation in each index has
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a specific response to extreme climate, which may be the cause of the low classification
accuracy of light desertification.
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Appendix A

Table A1. Classification system of desertification land.

Levels of
Desertification Land

Percentage of Mobile
Sand Dunes (%)

Vegetation Cover
(%) Landscape Characteristics

Light <5 50–70
Quicksand is speckled and appears on the windward
slope of sand dunes. Vegetation begins to decline, but
most of the area still resembles the original landscape.

Moderate 5–25 30–50 There are degenerate plants and low shrub sand piles.

Severe 25–50 10–30 Sand dunes are in a half-shifting state; a large number
of sandy pioneers’ plants appear.

Extremely severe >50 <10 Sand dunes are in a shifting state; vegetation
disappears regionally.

Table A2. Interpretation signs and characteristics of desertification land.

Levels of
Desertification Land

Tone and Texture of Landsat
Image Photo of Landscape Landsat Image (Combination of

NIR, RED, and GREEN Bands)

Light

Vegetation is light red and
discontinuously distributed.

Sparse sand covers the
vegetation in spots with milky

or yellow patches.
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Table A2. Cont.

Levels of
Desertification Land

Tone and Texture of Landsat
Image Photo of Landscape Landsat Image (Combination of

NIR, RED, and GREEN Bands)

Severe

Semi-fixed and semi-mobile
sand dunes are patchy, with
light yellow or yellow-white

base colors and a few red spots.
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