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Abstract: This study investigates the detection problem of multiple moving targets using a multisite
radar system with widely separated stations. Spatial mapping is presented to integrate the obser-
vation data of a moving target from different angles into a spatial resolution cell (SRC). However,
data association errors occur in some SRCs in this way, which causes extra false alarm, called the
“ghost target”. Therefore, an interference discriminator-based detector is developed. In this way, the
background interference is discriminated between “ghost target” and pure noise, and then the final
decision is made based on the generalized likelihood ratio test. Statistical analyses are provided
to discuss the achievable performance. Simulation results show that the proposed algorithm can
accurately detect multiple moving targets while suppressing the “ghost target”.

Keywords: multisite radar system; multitarget detection; generalized likelihood ratio testing

1. Introduction

A multisite radar system (MSRS) is a comprehensive system wherein signals from all
separated stations are fused and jointly processed [1]. In an MSRS, information is extracted
from several spatially separated regions of scattered (or radiated by signal sources) fields,
which allows improved target detection [2–4], target localization [5–7], and interference
proofing [8–10]. The MSRS with widely separated stations captures diversity gain and
geometry gain because of observations from different angles. This attribute enhances the
target detection performance [11].

The detection problem has been the focus of continuous research for several decades.
Researchers have proposed many adaptive detectors, such as the subspace-based detec-
tor [12], the Rao-base detector [13], and the information geometry-based detector [14]. The
MSRS detection methods can be regarded as the extensions of these adaptive detectors.
Depending on the fusion level, the detection methods can be divided into two categories:
distributed and centralized [15]. In the distributed method, each radar station uses its
observation data to build a local statistic or make a local decision and then fuses the statistic
or decision in the fusion center for decision-making. The fusion rule can be counting
rule [16], weighted decision fusion [17], or generalized likelihood ratio test (GLRT) [18].
This approach is usually accompanied by performance loss because the local statistic lacks
global information. However, MSRS complexity is reduced dramatically when distributed
processing is adopted in the system [15,19]. The second category is centralized target detec-
tion. These methods make decisions about the presence of a target by comparing the global
test statistic and a predetermined threshold in the signal fusion center. The noncoherent
integration detector is first provided for the fluctuating signals [20,21]. Considering that the
statistical characteristics of noise are unknown, several detection algorithms are proposed
based on GLRT algorithm for different background noise [1,22–24]. The above algorithms
focus on testing the measurement for a single target and assume that the time of arrival is a
priori known.
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Actually, the location of the target is unknown, so it is difficult to implement the
registration that is the prerequisite for signal fusion [25]. Because of this situation, the
signals received by different radars are integrated in a single spatial field [26]. Observation
data of a target can be gathered in the spatial resolution cells (SRCs), which are defined as
the intersection of the overlapping range bins (RBs). Thus, the detection problem is formu-
lated as the statistical decision of each SRC within the common surveillance region [27,28].
Actually, integrating signals from different radars based on SRCs may cause an error in
data association. The pure noise data may be associated with the observation data of the
target in some SRCs that contain no targets. These SRCs can be detected with a certain
probability, which leads to extra false alarms called the “ghost target” problem [27,29,30].
To detect an individual target, the peak search is used to find the SRC containing the target
in [31]. However, the “ghost target” problem will be more severe in the presence of multiple
targets. To solve this problem, a CLEAN-based multitarget detection method is proposed
when the radar system observes motionless targets with only one pulse signal [32]. Radar
systems are always exposed to complicated electromagnetic environments where clutter
degrades the detection performance. Under this situation, moving target detection (MTD)
methods using several pulses are required for clutter suppression [33]. In these methods,
the differences in Doppler frequency have been exploited in the radar system to separate
targets from clutter because clutter carries only small frequency shifts, whereas the target’s
movement causes larger frequency shifts. These existing MTD algorithms just focus on the
detection of a single target and ignore the existence of “ghost targets” [34,35].

To the best of our knowledge, no work is conducted on moving multitarget detection
for MSRS. In this study, we investigate the problem of MTD using MSRS with widely
separated stations when multiple targets exist in the common surveillance region. We work
on the MTD to detect the physical targets and reject the “ghost targets”. Contributions in
this paper are summarized as follows.

1. A scheme of space mapping is presented to integrate the observation data of a moving
target from different views. The observation data are gathered in the corresponding
SRC, so the multitarget detection problem is split into several statistical decision
problems in each SRC. The relationships between physical targets and “ghost targets”
are analyzed.

2. The interference discrimination (ID)-based detector is developed to overcome the
“ghost target” problem. The detection problem is formulated based on ternary hy-
pothesis testing and can be solved in two steps. The background interference is
discriminated between “ghost target” and pure noise, and then the presence of target
is decided based on GLRT.

3. Experiments performed on simulation database verify the advantages of the proposed
ID-based detector compared with the traditional GLRT detector.

The framework of this paper is designed as follows. In Section 2, the signal model of
an MSRS is introduced. The detection method of multiple moving targets is developed
in Section 3. The numerical simulation results are provided in Section 4. Section 5 shows
the conclusion.

2. Signal Model
2.1. Received Signal

Consider an MSRS in a two-dimensional (range and azimuth) coordinate system. The
MSRS consists of I (I > 1) monostatic radars that are stationarily located at pR,i ∈ R2×1,
where i = 0, 1, . . . , I − 1. Their antennas are separated widely enough to provide space
diversity gain and geometry gain. A radar can only receive the signal transmitted itself,
which can be achieved by designing orthogonal waveforms [36], or by simply using
different frequency bands [37]. All radar sites already have time synchronization with
a range cell level [38]. Each radar has only one signal channel and does not have angle-
of-arrival detection capability [39]. The radar system cooperatively and synchronously
observes a common surveillance region in which J (J > 0) moving targets are located at
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pT,j ∈ R2×1 and move with the velocities vT,j ∈ R2×1, where j = 0, 1, . . . , J − 1. Actually, J,
pT,j, and vT,j are unknown variables beforehand.

The Doppler frequency caused by the movement between the jth target and ith radar
can be expressed as

fd,i,j =
2
(
pR,i − pT,j

)TvT,j

λi
∥∥pR,i − pT,j

∥∥ , (1)

where ‖·‖ is the operator of 2-norm. λi represents the wave length of the ith radar. Given
that every radar transmits M pulse signals with the pulse repetition interval (PRI) Tp, the
Doppler vector is obtained as

di
(

fd,i,j
)
=
[
1, ej2π fd,i,jTp , . . . , ej2π fd,i,j((M−1)Tp)

]T
. (2)

Assuming that all transmitted signals are observed irrespective of range migration,
the baseband echo received by the ith radar is expressed as

Ri =
J−1

∑
j=0

αi,jd†
i
(

fd,i,j
)
⊗si(τi,j) + Wi, (3)

si(τi,j) ,


si(0− τi,j)
si(Ts − τi,j)

...
si((N − 1)Ts − τi,j)

, (4)

where Ri ∈ CM×N represents the matrix form of the receiving signal, and the pulse
number dimension is the slow time axis. ⊗ is the Kronecker product. (·)† denotes the
conjugate transpose operation. αi,j denotes the complex amplitude, which is a function of
the transmitting power, propagation loss, radar cross section, and position of the target.
si(t) denotes the baseband transmitted waveforms of the ith radar, which is designed
to facilitate the acquisition of channel separation. N is the length of the signal, where
0 < N ≤

⌊
Tp/Ts

⌋
. Ts denotes the sample interval. The time delay from the ith radar

reflected by the jth target is given as

τi,j =
2
c

√(
pR,i − pT,j

)T(pR,i − pT,j
)
. (5)

Obviously, τi,j is a function of pT,j, so the term si(τi,j) can be expressed as si(pT,j).
Wi , [wi,0, wi,1, . . . , wi,M−1] is the background interference that consists of the noise and
clutter. wi,m denotes the interference during the mth pulse. The distinct elements of the
vector wi,m are modeled as Gaussian random variables. Because of the widespread antennas
and different carrier frequencies, the background noise is assumed to be independent
between different radar sites

E
{

wi,mwi′ ,m′
†
}
=

{
σ2

i IN i = i′ and m = m′

0N others
, (6)

where IN represents the N × N identity matrix. σ2
i denotes the noise level of the ith radar.

The sumption holds in the case that the surveillance region contains no highly correlated
clutter,which is suitable for homogeneous environment such as air-search mode [32].

2.2. Spatial Mapping

The signals reflected by the same target are difficult to synthesize because observation
data are collected in the local coordinate system and the location and velocity of all the
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targets are uncertainties. To solve this problem, an SRC-based method is presented to
integrate the signals from different angles.

Usually, the data from every radar are organized into an N ×M matrix, where the
column of samples denotes the slow-time signal, and the row of samples represents the fast-
time signal. The slow-time signal can represent a series of measurements for an RB. Note
that the range resolution is related to the bandwidth of the transmitted waveform, and the
Nyquist rate in fast time is simply the bandwidth for a complex signal [33]. Thus, the width
of RB can be expressed as ∆R = cTs/2 with the speed of light c. Figure 1 illustrates the
relationship between the slow-time signals of the targets and the corresponding RBs. When
the MSRS observes two targets for a coherent processing interval, the received sampling
signals are stored in digital memory, where each cube denotes a single sample. The shaded
row is the slow-time signal for the RB with the same color. The range bin corresponding to
the slow-time signal of a target will intersect in a region where the observation data of a
target can be integrated. Thus, target detection can be implemented in the spatial domain
instead of the time domain by testing each SRC within the common surveillance region.

Radar1

Radar2

Radar3

Target1

Target2

Target1

Target2 R
RB of radar1RB of radar1

RB of radar2RB of radar2

RB of radar3RB of radar3

RB of radar1

RB of radar2

RB of radar3

M − 1
0

0

ΔR

R

Figure 1. Relationship between range bins and the received signals.

To integrate signals received from multiple radars into a single air picture, each signal
of the local radar must be expressed in a common coordinate system. Assume that G SRCs,
which are denoted as c(pC,g) with the center pC,g = [xC,g, yC,g]

T, can cover the common
surveillance area. Thus, the signal from different angle can be integrated into these SRCs
in the common surveillance region. The range bin matched filter samples of c(pC,g) in ith
radar are given as

zi(pC,g) =


R†

i si,g

∣∣∣θ(pC,g)− θ0

∣∣∣ ≤ ∆θ/2

0
∣∣∣θ(pC,g)− θ0

∣∣∣ > ∆θ/2
, (7)

where si,g = si(pC,g) is the reference signal of the gth SRC, and θ(pC,g) represents the
angle of the gth SRC. θ0 denotes the beam direction. ∆θ is the beamwidth. zi,g is the slow
time signal of c(pC,g) received by the ith radar. Zg , [z0,g, z1,g, . . . , zI−1,g] is defined as
the observation matrix of the gth SRC, which consists of slow-time signals from different
radars. Because the signals are transfered in the surveillance space, (7) can be regarded as
the space mapping from the local coordinate reference system of the common Cartesian
coordinate system.

In this SRC-based method, the SRC is considered the minimum cell for signal fusion.
These SRCs have a symbiotic relationship, which can cause a certain number of false
alarms [31]. Some definitions are introduced to discuss the relationship. If a given SRC
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c(pC,g) is covered by the beams of the MSRS, the SRC set corresponding to the same RB is
expressed as

Qi(pC,g) =
{

c(p)
∣∣∣∣∣τi(pC,g)− τi(p)

∣∣ < cTs/2, p ∈ R2×1
}

. (8)

The slow signal zi(pC,g) the SRCs belonging to Qi(pC,g). In addition, the family of
c(pC,g) is defined as

F(pC,g)=
I−1⋃

i
Qi(pC,g). (9)

The SRCs in F(pC,g) shares the same RB with pC,g. An arbitrary SRC can belong to I
families simultaneously. The dominant SRC (DSRC) of the family is defined as

Y(pC,g)=
I−1⋂

i
Qi(pC,g). (10)

The relative SRC (RSRC) subject to the DSRC is defined as

O(pC,g)=F(pC,g)−Y(pC,g). (11)

If there is a target in the DSRC, the RSRCs usually share more than one RB correspond-
ing to the target [40]. So the RSRC have an extra false alarm rate, which is defined as the
“ghost target”.

3. Detection of Multiple Moving Targets

After spatial mapping, the detection problem of multiple moving targets can be
divided into several decisions about the presence of each potential target. As shown in
Figure 2, if an SRC contains a target, all members in the family are affected by the target.
Total observation data can be gathered in the DSRC when only incomplete observation
data of the target can be integrated in the RSRC.

0 10 20 30 40 50 60
X(km)

−30

−20

−10

0

10

20

30

Y
(k

m
)

48 49 50 51 52 53 54

X(km)

−2

−1

0

1

2

3

Y
(k

m
)

Figure 2. Energy accumulation in space.

We have to decide among more than two possible hypotheses under this situation.
Actually, binary hypothesis testing is widely used in radar detection, noise only versus
signal plus noise [18,41,42]. However, the RSRC of a target can be detected with a certain
probability if the traditional binary hypothesis is taken to design the detector. Therefore,
given an SRC pC,g, we formulate the detection problem as ternary hypothesis testing:
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H0:Zg = Ng

H1:Zg = YT + Ng

H2:Zg = YR + Ng

, (12)

where YT , [y0,g, y1,g, . . . , yI−1,g], YR , [0, . . . , yl,g, . . . , 0], Ng ,
[
n0,g, n1,g, . . . , nI−1,g

]
,

yi,g = αi,gs†
i,gsi,gdi

(
fd,i,g

)
, and ni,g ∼ CN (0, σ2

i s†
i,gsi,gIN). H0 is the hypothesis of pure

noise. The noise level σ2
i is assumed to be known. H1 is the present hypothesis, i.e.,

c(pC,g) ∈ Y(pT,j). Under H2, c(pC,g) ∈ F(pT,j), the observation data include a partial
target component, because the SRC is influenced by the DSRC containing a target but
contains no targets. We assume that the SRC shares the lth RB with an unknown target.
Then, the conditional probability distribution functions (PDF) underH0,H1, andH2 can
be expressed respectively as

f (Zg|H0) =
I−1

∏
i=0

1
πs†

i,gsi,gσi
exp

{
− 1

s†
i,gsi,gσi

z†
i,gzi,g

}
, (13)

f (Zg|ag, fd,g,H1)

=
I−1

∏
i=0

1
πs†

i,gsi,gσi
exp

{
− 1

s†
i,gsi,gσi

(
zi,g − αi,gs†

i,gsi,gdi
(

fd,i,g
))†

×
(

zi,g − αi,gs†
i,gsi,gdi

(
fd,i,g

))}
,

(14)

f (Zg|αl,g, fd,l,g,H2) =
1

πs†
l,gsl,gσl

exp

{
− 1

s†
l,gsl,gσl

(
zl,g − αl,gs†

l,gsl,gdl

(
fd,l,g

))†(
zl,g − αl,gs†

l,gsl,gdl

(
fd,l,g

))}

×
I−1

∏
i=0,i 6=l

1
πs†

i,gsi,gσi
exp

{
− 1

s†
i,gsi,gσi

z†
i,gzi,g

}
,

(15)

where ag = [α0,g, α2,g, . . . , αI−1,g]
T denotes the amplitue vector of gth potential target.

fd,g = [ fd,0,g, fd,1,g, . . . , fd,I−1,g]
T is the unknown Doppler frequency.

3.1. Interference Discrimination-Based Detection Method

The goal of radar detection is to determine whether a target is present in an SRC.
There are no requirements to decide if H2 is true. Under H2, the target component in
the observation data can be considered interference from the DSRC. Consequently, the
detection problem can be distinguishingH1 fromH0 andH2:

L(Zg)
H1
≷

H0+H2

ξ, (16)

where L(Zg) is a statistic. ξ is the threshold that is a function of the false alarm. A two-step
method is proposed to solve the detection problem. First a discriminator is designed to
decide the type of background interference, and then the final decision rules are derived
according to the discrimination result.

3.1.1. Interference Discrimination

For choice of decision rule, the discrimination of background interference is required.
UnderH2, the observation data consists of partial target data and pure noise. UnderH2,
the observation data from the target is quite different from other components. In fact the
“ghost target” can exceed the threshold because it contains the target components, by which
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we can distinguish the background interference. Thus the discrimination problem can be
built as {

Case I: αl,g = 0

Case II: αl,g 6= 0
(17)

when αl,g = 0, the observation data contains no target components. Otherwise, it may be a
“ghost target”. For testing the the parameter αl,g, we build the likelihood ratio

D̃(Zg) =
f (Zg|αl,g, fd,l,g,H2)

f (Zg|H0)
(18)

By simplifying (18), the discrimination statistic can be obtained

ln D̃
(
Zg
)

∝ −
(

zl,g − αl,gs†
l,gsl,gd

(
fd,l,g

))†(
zl,g − αl,gs†

l,gsl,gd
(

fd,l,g

))
+ z†

l,gzl,g

= −2<
{

α∗i,gs†
l,gsl,gd†

(
fd,l,g

)
zl,g

}
+
∣∣∣αl,gs†

l,gsl,gd†
(

fd,l,g

)∣∣∣2.
(19)

where <{·} is the real part of a complex value. αl,g, fd,l,g, and l are unknown parameters
that need to be etsimated. Maximizing (19) with respect to αl,g yields

α̂l,g = max
l, fd,l,g

d†
l

(
fd,l,g

)
zl,g

s†
l,gsl,gd†

l ( fd,l,g)dl( fd,i,g)
. (20)

The estimated amplitude of interference is equivalent to the largest elements in the
observation matrix. Substituting (20) into (18), we have

D(Zg) = max
l, fd,l,g

∣∣∣d†
l

(
fd,l,g

)
zi,g

∣∣∣2
σ2

l s†
l,gsl,gd†

l ( fd,l,g)dl( fd,l,g)
, (21)

where σl
2 can be estimated in practice:

σ̂2
l,g =

1
(I − 1)

I−1

∑
i=0,i 6=l

∣∣d†
i
(

fd,i,g
)
zi,g
∣∣2

s†
l,gsl,gd†

l ( fd,l,g)dl( fd,l,g)
. (22)

By substituting (22), the discrimination rule can be obtained: decide case II if

D(Zg, κ) = max
l, fd,l,g


(I − 1)

∣∣∣d†
l

(
fd,l,g

)
zl,g

∣∣∣2
I−1
∑

i=0,i 6=l

∣∣d†
i
(

fd,i,g
)
zi,g
∣∣2
 > η, (23)

where η is the threshold of the discriminator. The threshold is designed according to
the principle of constant Pe = P{case I|case I}. Because H1 is ignored in (21), a decision
between the absent or present hypothesis is required. The decision rules will be developed
according to the intereference type.

3.1.2. Target Detection Method

As shown in Figure 3, the decision rule is selected according to the interference type.
Depending on the type of background interference, we have two cases to solve the above
detection problem. Case I: if the interference background is pure noise, the decision
between H1 and H0 is considered. Case II: if the interference background is the partial
target echo embedded in noise, we have to make a decision betweenH1 andH2.
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1

2

22 ( )L 
1

0

11( )L 

Case ?Case ?

Start

Spatial 

mapping

End

Case Ⅰ Case Ⅱ

Figure 3. Procedure of ID-based detection method.

Case I (Decision between H1 and H0): in this case, only the decision between pure
noise and a physical target is considered. For a given SRC c(pC,g), the statistic can be
written as

L1
(
Zg
)
= ln

 max
ag ,fd,g

f (Zg|ag, fd,g,H1)

f (Zg|H0)


=

I−1

∑
i=0

maxαi,g , fd,i,g
− 2

σi
2<
{

αi,gd†
i
(

fd,i,g
)
zi,g

}
+

1
σi

2 s†
i,gsi,g

∣∣∣d†
i ( fd,i,g)di( fd,i,g)αi,g

∣∣∣2,

(24)

where L1
(
Zg
)

is the global statistic. The Doppler frequency is estimated autonomously by
using the local signals, which dramatically reduces the complexity of the radar system. The
maximum likelihood estimation (MLE) of αi,g is given as

α̂i,g = max
fd,i,g

d†
i
(

fd,i,g
)
zi,g

s†
i,gsi,gd†

i ( fd,i,g)di( fd,i,g)
. (25)

Substituting (25) into (24) and simplifying, the statistic is given as

L1(Zg) =
I−1

∑
i=0

max
fd,i,g

∣∣d†
i
(

fd,i,g
)
zi,g
∣∣2

σ2
i s†

i,gsi,gd†
i ( fd,i,g)di( fd,i,g)

H1
≷
H0

ξ1, (26)

where ξ1 represents the threshold related to the false alarm rate. (26) can be considered as
the original GLRT detector. However, the GLRT statistic can exceed the detection threshold
underH2, which is defined as the additional false alarm.

Case II (Decision betweenH1 andH2): when c(pC,g) ∈ F(pT,j), the target components
from the DSRC are assumed to be the interference that makes the SRC have a high false
alarm rate. The target component from the other SRC is regarded as the interference. Then,
the statistic can be written as
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L2
(
Zg
)
= ln

 max
ag ,fd,g

f (Zg|ag, fd,g,H1)

max
αl,g , fd,l,g

f (Zg|αl,g, fd,l,g,H2)


=

I−1

∑
i=0,i 6=l

maxαi,g , fd,i,g
− 2

σi
2<
{

αi,gd†
i
(

fd,i,g
)
zi,g

}
+

1
σi

2 s†
i,gsi,g

∣∣∣d†
i ( fd,i,g)di( fd,i,g)αi,g

∣∣∣2.

(27)

Using (20) and (25), the decision (27) rule can be rewritten as

L2
(
Zg
)
= min

l

 I−1

∑
i=0,i 6=l

max
fd,i,g

∣∣d†
i
(

fd,i,g
)
zi,g
∣∣2

σ2
i s†

i,gsi,gd†
i ( fd,i,g)di( fd,i,g)

H1
≷
H2

ξ2, (28)

where ξ2 is the threshold in the case. For the same false alarm rate, the value of ξ2 is
smaller than ξ1. For convinience, the decision rule (28) is defined as interference cancella-
tion (IC)-based detector, because its statistic can be regarded as the orignal GLRT statistic
minus the interferece components. Using the decision rule, we can also distinguish H1
from H0 and H2, because P

{
L2
(
Zg
)
< ξ2|H0

}
is larger than P

{
L2
(
Zg
)
< ξ2|H2

}
. How-

ever, The IC-based detector has a worse target detection performance than (26), because
of P

{
L1(Zg) > ξ1|H1

}
> P

{
L2(Zg) > ξ2|H1

}
. Thus, the final decision rule should be

adjusted according to the type of background interference in order to balance the perfor-
mances of target detection and addition false alarm suppression.

Given that (23), (26), and (28) all contain the term

max
fd,i,g

∣∣d†
i
(

fd,i,g
)
zi,g
∣∣2

d†
i ( fd,i,g)di( fd,i,g)

. (29)

The solution of (29) is the indispensable. However, no analytical solutions are found
for this optimization problem. Considering d†

i ( fd,i,g)di( fd,i,g) = M, the optimization
problem that can be rewritten as

max
k

1
M
|Xi(k, κ)|2, (30)

where Xi(k, κ) =
M−1
∑

m=0
zi.g[m]ej 2πmk

κM denotes the discrete spectrum of the slow-time signal,

which is obtained by discrete Fourier transform (DFT). κ denotes the oversampling factor.
Because Xi(k, κ) is a sampled version of the frequency spectrum, the peak value decreases
when the Doppler frequency of the target is between DFT samples, which is called a
Doppler straddle loss [33]. One obvious way to reduce straddle loss is to sample the
Doppler frequency axis more densely, i.e., to choose the number of spectrum samples
K > M. The worst-case straddle loss is a function of the oversampling factor. Based on
the “oversampling in Doppler frequency” method, the statistics of (23), (26), and (28) are
rewritten as

D(Zg, κ) = max
l,k


(I − 1)|Xl(k, κ)|2

I−1
∑

i=0,i 6=l
|Xi(k, κ)|2

, (31)

L1(Zg, κ) =
I−1

∑
i=0

max
k
|Xi(k, κ)|2

Mσ2
i s†

i,gsi,g
, (32)
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L2
(
Zg, κ

)
= min

l

 I−1

∑
i=0,i 6=l

max
k
|Xi(k, κ)|2

Mσ2
i s†

i,gsi,g


= L1(Zg, κ)−max

i,k

|Xi(k, κ)|2

Mσ2
i s†

i,gsi,g
.

(33)

The statistic (32) should be used if case I is decided and (33) is selected if case II is
decided, then the detection statistic of the interference discrimination (ID)-based method is
obtained as

L
(
Zg, κ

)
=

{
L2
(
Zg, κ

)
D
(
Zg, κ

)
> η

L1
(
Zg, κ

)
D
(
Zg, κ

)
< η

. (34)

Finally, ID-based detector can be viewed as a modified form of the original
GLRT detector:

L(Zg, κ) = L1(Zg, κ)−M(Zg, κ)
H1
≷

H0+H2

ξ, (35)

where M(Zg, κ) is the modified term that makes the statistic lower than the detection
threshold underH2. The modified term can be considered an estimate of the interference
component, which can be written as

M
(
Zg, κ

)
=


max

i,k

|Xi(k, κ)|2

Mσ2
i s†

i,gsi,g
D
(
Zg, κ

)
> η

0 D
(
Zg, κ

)
< η

. (36)

The term ξ denotes the detection threshold. The test statistics might change after
discrimination, and the stationary threshold cannot be applied to the modified statistics.
Therefore, the detection threshold should be adjusted according to the discrimination result.

3.2. Performance Analysis

In this section, we provide a statistical analysis of the ID-based detector and the original
GLRT detector in condition of αi,j ∼ CN (0, σT,j

2) and κ = 1. The parameter settings are
standard in the analysis of radar detection when the spatial diversity is exploited and
the straddle loss is negligible. The value of κ dominates computational complexity, so
the balance between the detection performance and the computational cost should be
considered in practice. Actually, we need the PDF of K correlated Gaussian random
variables to analyze the detection performance, because the PDF is difficult to determine for
different values of κ [43]. The analysis can provide a benchmark of a achievable detection
performance.

3.2.1. Performance of Original Detector

The statistic of the original GLRT detector is given by (32) where only the null hypothe-
sis and non-null hypothesis are considered. Our main results are included by the following
theorem. Given the signal model in (12), the PDFs of the statistic under all hypotheses are
given respectively by

fL1(x|H0) =
∫ +∞

−∞

[
M−1

∑
m=0

(
m

M− 1

)
M

m + 1 + jw

]I

ejwxdw, (37)
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fL1(x|H1) =
∫ +∞

−∞

I−1

∏
i=0

M−1

∑
m=0

(
m

M− 1

)
M

m + 1 + jw(1 + ρi,j)
ejwxdw, (38)

fL1(x|H2) =
∫ +∞

−∞

[
M−1

∑
m=0

(
m

M− 1

)
M

m + 1 + jw

]I−1

×
M−1

∑
m=0

(
m

M− 1

)
M

m + 1 + jw(1 + ρi,l)
ejwxdw,

(39)

with several derivations (also see in Appendix A). j =
√
−1. ρi,j = σT,j

2/σi
2 represents the

signal to noise ratio (SNR).
The right-tail probability can be obtained by Q0(ξ, I) = 1 −

∫ ξ
0 fL1(x|H0)dx,

Q1(ξ, I) = 1−
∫ ξ

0 fL1(x|H1)dx, and Q2(ξ, I) = 1−
∫ ξ

0 fL1(x|H0)dx . Q0(ξ, I) and Q1(ξ, I)
are also referred to the probability of false alarm and target detection, respectively. Q2(ξ, I)
represents the probability of additional false alarm, i.e., the probability of mistaking “ghost
target” for a physical target.

3.2.2. Performance of ID-Based Detector

The statistic of the proposed method is given in (35). We provide the analysis about
the probability of false alarm, target detection and the additional false alarm.

The proposed method discriminates the type of background interference before a final
decision. As a result, the performance is related to the performance of the background
discrimination. The performance of the discriminator is provided by Monte Carlo (MC)
simulations in Section 4. First, the target detection probability is provided:

Pd = P{H1|H1}
= P{H1|case I,H1}P{case I|case I}
+ P{H1|case II,H1}P{case II|case I}
= (1− Pe)Q1(ξ, I) + PeQ′1(ξ, I),

(40)

where Q′1(ξ, I) represents the right-tail probability of (27) under H1. If the Pe is negligi-
ble, we have PeQ′1(ξ, I) << (1− Pe)Q1(ξ, I). The probability of target detection can be
simplified approximately:

Pd ≈ (1− Pe)Q1(ξ, I). (41)

From (41), we note that the ID based-detector has a slight performance of target
detection. Larger Pe will bring in more severe target detection performance loss. Similarly,
the probability of false alarm can be obtained by

Pfa = P{H1|case I,H0}P{case I|case I}
+ P{H1|case II,H0}P{case II|case I}
≈ (1− Pe)Q0(ξ, I).

(42)

The false alarm rate reduces slightly compared with the original GLRT detector. In
practice, the false alarm keeps a very low level, so we have PeQ0(ξ, I) << Q0(ξ, I). The
false alarm rate of the two detectors are approximately equal, i.e., Pfa ≈ Q1(ξ, I).

Finally, the probability of additional false alarm is given by

Pafa = P{H1|case I,H2}P{case I|case II}
+ P{H1|case II,H2}P{case II|case II}
= (1− Pc)Q2(ξ, I) + PcQ′2(ξ, I),

(43)
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where Pc = P{case II|case II} denotes the probability of correct discrimination, which is
the function of SNR. Q′2(ξ) represents the complementary cumulative distribution function
of (27) under H2. We only consider the statistical analysis of extreme case in this sub-
section, and the details of performance analysis are provided based on the numerical in
Section 4. When the SNR is high enough to estimate the interference amplitude, we have
Pafa ≈ Q0(ξ, I − 1). When the SNR is low enough, the additional false alarm rate can be
obtained by Pafa ≈ Q2(ξ, I − 1).

4. Numerical Experiment

In this section, numerical simulation results are presented to verify the above analysis.
First, we simulate power superposition based on the space mapping scheme and analyze
the “ghost target” problem. Then, the performance analysis of background discrimination
is provided. Finally, the detection results of ID-based detector are presented compared with
the original GLRT detector.

The scenario where three targets and an MSRS exist is considered to simulate spatial
power accumulation. The deployment of the MSRS, which involves seven radars, is illus-
trated in Figure 4. These radar sites are located at (4.4,−30), (1.8,−20), (0.8,−10), (0, 0),
(0.8, 10), (1.8, 20), and (4.4, 30) km. The three targets are placed at (49, 1.2), (50, 2.0), and
(52, 1.6) km and move with velocities of (−122,−111), (−110,−92), and (−100,−106) m/s,
respectively. All radar work with the same parameters.The beam direction is specially
allocated so that all targets can be observed. The signal bandwidth is 5 MHz, and the
duration is 51 µs. The transmitted signals are satisfy s†

i si = 1. The pulse number is 16, the
PRI is 1 ms, and the beamwidth is 4 deg. The amplitudes of target follows the complex
Gaussian distribution with zero mean and σ2

T,j variance.

0 10 20 30 40 50 60
X(km)

−30

−20

−10

0

10

20

30

Y
(k

m
)

radar
target 1
target 2
target 3

Figure 4. Placement of the MSRS and targets.

4.1. Power Superposition and “Ghost Target”

The peak values of the power superposition are located at the SRCs containing targets,
while partial power of the targets is gathered in the RSRCs subject to the DSRCs. The
incomplete power accumulation is caused by the data associate error and makes the
statistic exceed the detection threshold with high probability. That is why the “ghost target”
problem occurs unexpectedly.

Figure 5 illustrates the spatial power superposition when the SNR value is set to 2 dB.
The statistic (24) can be considered power superposition method. Taking the target at
(50, 2.0) km as an example, the spatial power superposition is approximately 22.8 dB. To
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analyze the symbiosis effect, we typically take the SRC at (50.93, 1.95) km as an example.
The SRC at (50.93, 1.95) km is the RSRC corresponding to target 3. The power accumulation
is 15.1 dB, which is higher than the noise level. If we decide based on orignal GLRT detector,
the RSRC may be treated as a physical target, which is a “ghost target”.

−

−

−

Figure 5. Energy accumulation within common surveillance region and κ = 4 and SNR = 2 dB.

The false alarm rate is given for different oversampling factors κ in Figure 6. The
threshold can be obtained by the MC results. In fact, a smaller search step is taken when κ
becomes larger. Thus, the false alarms of the detector increase with the reduction of the
search step.

34 36 38 40 42 44 46 48

Threshold
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ty
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f 
fa
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e 

al
ar
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Theorical, =1
MC,  =1
MC,  =2
MC,  =4

Figure 6. Pfa versus the test threshold.

Figure 7 depicts the detection performance of the original GLRT detector under the
condition of Pfa = 10−5. We can provide the best benchmark of target detection through
analyzing the result. Although the threshold will be enhanced in the condition of oversam-
pling, the detector has better detection performance. Consequently, “oversampling” could
improve the detection performances of the detector with a limit.

Figure 8 depicts the detection probability of the SRC at (50.93, 1.95) km for different
oversampling factors κ. The detection probability of the RSRC describes the possibility of
a “ghost target”, i.e., the probability of additional false alarm. Similarly, the probability
rises as κ increases. Although DSRC can be detected more easily than its RSRCs, the RSRCs
can also be detected with a certain probability that should not be ignored. The higher the
probability of RSRC detection is, the more “ghost targets” can be detected. Because of the
“ghost target”, the number and physical position of targets can hardly be obtained after all
observation data are tested.
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Figure 7. Detection probability when Pfa = 10−5.
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Figure 8. Detection probability of the SRC at (50.93, 1.95) km when Pfa = 10−5.

4.2. Background Interference Discrimination

As previously mentioned, the discrimination of background interference is the pre-
requisite of the proposed algorithm. The discrimination performance is crucial to the
final decision of the ID-based detector. Therefore, we analyze the performance of the
discriminator before performing the final detection.

The threshold of the discriminator is designed on the basis of the principle of constant
misjudgment probability, i.e., constant Pe. Figure 9 shows that the thresholds obtained
using MC approach. The probability of a correct decision Pc = P{case II|case II} is used
to evaluate the performance of the discriminator. Figure 10 depicts the probability of the
correct discrimination under different misjudgment probabilities and oversampling factor.
The performance of the discriminator deteriorates as the SNR decreases. In addition, a
smaller misjudgment probability signifies a larger discrimination threshold. Therefore, the
probability of achieving a correct decision is high if the misjudgment probability is large.
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Figure 9. Pe versus discrimination threshold.
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Figure 10. Pe Probability of correct decision in the interference discrimination.

4.3. Comparison of Original GLRT and ID-Based Detector

The total processes of ID-based detection method are simulated under the condition of
SNR = 2 dB and Pfa = 10−5. The ID-based detection method is compared with the original
GLRT detector and IC-based detector. Figures 11 and 12 depict the detection results with
three targets and five targets respectively. The experiment in Figure 12 employs two extra
targets which are located at (51, 1.3) and (48.5, 0.8) km with the velocities (−120, 100) and
(−95, −95) m/s. The bright spot represents the plot detected by the radar system. The
centers of the red cycles are the physical targets, whereas the other spots represent false
alarms. Figures 11a and 12a show that the original GLRT detector generates “ghost targets”
because the statistics of the RSRCs can also exceed the detection threshold with a certain
probability. The “ghost target” problem inhibits estimating the number and positions of
targets after detection. In comparison, the ID-based and IC-based detectors detect all targets
correctly with few “ghost targets”, as shown in Figures 11b,c, and 12b,c.

For the multitarget detection problem, we should analyze not only target detection
but also suppression of the “ghost target”. Therefore, the probability of target detec-
tion and additional false alarm are taken to describe the performance of the detection
method. Figure 13 illustrates the probability of target detection of the original GLRT detec-
tor IC-based detector,and ID-based detector. All targets are detected dependently. The IC
algorithm has a big performance in target detection because of partial target components
may be cancelled. The detection performance of ID slightly declines as Pe increases. A
larger Pe means that targets are considered RSRCs more easily, which leads to energy loss.
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As shown in Figure 14, the probability of additional false alarm for the original and
ID-based detector are simulated at different Pe when the false alarm rate is set to 10−6,
10−5, and 10−4. Compared with the IC-based method, the ID-based detector is performed
better at target detection and worse at supressing “ghost targets”. The higher the SNR
is, the more “ghost targets” are generated in the original GLRT detector. In contrast, the
proposed method maintains a low probability when the SNR is low enough to be treated
as noise and high enough to discriminate the RSRC corresponding to a target. Figure 14a
shows the probability of additional false alarm. The highest probability occurs at SNR = 4
dB, where the physical target is probably treated as the “ghost target”. This performance
degradation becomes severe in Figure 14b,c. As Pfa increases, the signal gathered in the
RSRC with a low SNR can be detected. If the SNR is not sufficiently large to distinguish
the “ghost target” from the noise background, the RSRC will be detected with a high
probability. Therefore, the “ghost target” suppression performance is influenced by Pe and
Pfa in the ID-based detection method. The Pe that matches Pfa should be selected to obtain
satisfactory additional false alarm and target performance in the real world.

48 49 50 51 52 53 54
X(km)

−2

−1

0

1

2

3

4

Y
(k

m
)

(a)

48 49 50 51 52 53 54
X(km)

−2

−1

0

1

2

3

4

Y
(k

m
)

(b)

48 49 50 51 52 53 54
X(km)

−2

−1

0

1

2

3

4

Y
(k

m
)

(c)

Figure 11. Detection result with three targets when SNR = 2dB. (a) The original GLRT detector.
(b) ID-based detector. (c) IC-based detector.
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Figure 12. Detection result with five targets when SNR = 2dB. (a) The original GLRT detector.
(b) ID-based detector. (c) IC-based detector.
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Figure 13. Probability of target detection for different Pe when κ = 1. (a) Pfa = 10−6. (b) Pfa = 10−5.
(c) Pfa = 10−4.
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Figure 14. Probability of additional false alarm κ = 1. (a) Pfa = 10−6. (b) Pfa = 10−5. (c) Pfa = 10−4.

5. Conclusions

In this study, we investigate moving target detection of multistatic radar for multiple
targets in the common surveillance region. To combat the additional false alarm caused by
spatial mapping, the detection problem is built as the ternary hypothesis testing where the
physical target is distinguished from “ghost target” and pure noise. An ID-based detection
method is proposed, where background interference is first discriminated and final decision
rule is adjusted accordingly. Theoretical analysis has shown that the ID-based detector and
the GLRT detector have approximate performances of target detection and false alarm, but
the ID-based detector can suppress the additional false alarm. Simulation results verify
our analysis and show that proposed method can detect multiple moving targets while
suppressing the “ghost target” when Pe that matches Pfa is selected. Because an SRC is
assumed to contain an individual target in our work. The performances of our proposed
method may decline, when targets exist in the same SRC and are unresolved by MSRS. In
the future, the problem will be solved and a real-life experiment will be performed.
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Appendix A

In the appendix, we list the derivation of (37)–(39). UnderH0, the random variables
Xi(k, 1) for k = 0, 1, . . . , K− 1 are dependent and Gaussian [43]. They have the mean zero
and the variance Mσ2

i s†
i,gsi,g. Thus,

li
(

zi,g, 1
)
=
|Xi(k, 1)|2

Mσ2
i s†

i,gsi,g
∼ χ2

2, (A1)

where χ2
2 denotes the chi-squared distribution. The PDF of li

(
zi,g, 1

)
can be obtained as

fli (x|H0) =
dQK−1

χ2
2

(x)

dx
= M exp(−x)[1− exp(−x)]M−1,

(A2)

with x > 0. Note that the global statistic of DML-GLRT is the sum of the local statistics.
Using the convolution theorem, the PDF of L1(Zg, 1) can be given as

fL1(x|H0) =
I−1
⊗

i=0
fli (x|H0)

= F−1

{
F
{

I−1

∏
i=0

fli (x|H0)

}}

=
∫ +∞

−∞

[
M−1

∑
m=0

(
m

M− 1

)
M

m + 1 + jw

]I

ejwxdw.

(A3)

Assume that αi,j is a dependent Gaussian variable with zero mean and variance
σT,j

2. F{·} and F−1{·} denotes the Fourier transform and the inverse Fourier transform,

respectively. Similarly, the conditional PDF of li
(

zi,g, 1
)

underH1 is expressed as

fli (x|H1) = M exp

(
− x

ρi,j

)[
1− exp

(
− x

ρi,j

)]M−1

, (A4)

where ρi,j = 1 + σT,j
2/σi

2.
Therefore, the global statistic underH1 is obtained as

fL1(x|H1) =
I−1
⊗

i=0
fli (x|H1)

=
∫ +∞

−∞

I−1

∏
i=0

M−1

∑
m=0

(
m

M− 1

)
M

m + 1 + jw(1 + ρi,j)
ejwxdw.

(A5)

UnderH2, the PDF of li
(
zi,g, 1

)
is

fli (x|H2) =


M exp

(
− x

ρi,j

)[
1− exp

(
− x

ρi,j

)]M−1

i = l

M exp(−x)[1− exp(−x)]M−1 i 6= l,

(A6)
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The PDF of the global statistic is

fL1(x|H2) =
I−1
⊗

i=0
fli (x|H2)

=
∫ +∞

−∞

[
M−1

∑
m=0

(
m

M− 1

)
M

m + 1 + jw

]I−1

×
M−1

∑
m=0

(
m

M− 1

)
M

m + 1 + jw(1 + ρi,l)
ejwxdw.

(A7)
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