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Abstract: With the increase of evaporation projected for water bodies worldwide, there is a growing
need for flexible and low data-demanding tools enabling the monitoring and management of water
resources. This study presents a simple satellite-based tool named LakeVap specifically designed
for mapping evaporation from lakes and reservoirs. LakeVap requires a small amount of potentially
available data with a global coverage. The tool follows a Dalton-type approach and produces
instantaneous (i.e., hourly) and daily evaporation maps from satellite-derived Lake Surface Water
Temperature (LSWT) maps and single-point/gridded meteorological data. The model is tested on
Lake Garda, Italy, by using a long time series of LSWT (ESA CCI-Lakes) and different sources of
meteorological forcing. The accuracy of LakeVap evaporation outputs is checked by comparison with
those from a hydro-thermodynamic model (Delft3D) specifically set up and validated for the case
study. Results are consistent and sensitive to the representativeness of the meteorological forcing. In
the test site, wind speed is found to be the most spatially variable parameter, and it is significantly
underestimated by the ERA5 meteorological dataset (up to 100%). The potential application of
LakeVap to other case studies and in operational contexts is discussed.

Keywords: remote sensing; water temperature; lake evaporation; energy balance; numerical model-
ing; Lake Garda

1. Introduction

At all latitudes and climates, evaporation from water surfaces is a key component of
the overall budget of heat and water volume in natural and artificial reservoirs. Under the
perspective of global warming, drying climate, and water scarcity, several studies have
projected a general increase in lake evaporation [1,2] due to the alteration of environmental
drivers sensitive to climate change such as air and water temperature, air vapor content,
wind speed, and solar radiation [3]. How and to what extent evaporation from lakes
increases differs worldwide [4], as the hydroclimatic variables involved in this process
depend on the climatic region [5] and the lake’s thermal behavior [6]. Many investigations
available in the literature address this issue in arid and semi-arid contexts, where lakes
suffer from water deficit when evaporation exceeds precipitation, thus implying in some
cases significant groundwater uptake to compensate for the water balance (e.g., [7]). How-
ever, lake evaporation is an issue in temperate to boreal environments as well. In these
regions, evaporation is strongly correlated with the duration of the ice-cover period, whose
climate-induced reduction is leading to a general increase of evaporation losses for many
lakes of this kind (e.g., Lake Superior [8], White Bear Lake [9]). Similarly, at high altitudes
(e.g., in the Tibetan Plateau), lake evaporation tightly interacts with increasing trends of
precipitation and glacier melting and contributes to the expansion of new lakes [10,11].

Several methods have been proposed over the years to estimate evaporation from
inland waters. A summary of the most known and used evaporation models and their

Remote Sens. 2022, 14, 2636. https://doi.org/10.3390/rs14112636 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14112636
https://doi.org/10.3390/rs14112636
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-2957-609X
https://orcid.org/0000-0001-8810-8478
https://orcid.org/0000-0002-3937-4988
https://orcid.org/0000-0002-7185-8464
https://doi.org/10.3390/rs14112636
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14112636?type=check_update&version=4


Remote Sens. 2022, 14, 2636 2 of 26

characteristics is presented in Table 1. In the table, evaporation models are grouped into five
categories following a commonly used distinction [12,13]: simplified, mass balance, energy
budget, mass transfer, and combined models. Such methods differ by the underlying
physical assumptions, complexity, and amount of input variables required and most often
have associated practical challenges and large uncertainties [14]. Countless comparative
studies exist whose only aim is to test which method is better for estimating evaporation
from specific case studies from dry to continental and humid climatic areas [12,15–18]. The
simplified methods demand less data, but they require a significant effort in the calibration
of the empirical coefficients relating evaporation to, e.g., solar radiation/daylight hours
and air temperature. However, when well-tuned, these methods can provide routine evap-
oration measures, as in the case of Mirror Lake in the USA [16]. Among the energy budget
methods, the simplified Bowen Ratio Energy Balance (BREB) is the most used in aquatic
environments and is often taken as a reference in the comparison of models [13,17,19]. The
conclusion of most comparative studies is generally that the best results are obtained with
combination models because they consider both the aerodynamic term (and thus the effect
of wind in enhancing the heat transfer from water to air) and the energy stored by the water
body, which determines a phase lag between net radiation and evaporation, especially in
deep lakes. Needless to say, these methods are also the most data-demanding and the least
used by water managers, who most often rely on evaporation pan measurements [20].

One additional complication to the estimation of evaporation from lakes and wa-
ter reservoirs, in general, is the number of monitoring points, especially in large and
medium-sized lakes. Spatial patterns of evaporation indeed exist not only among different
hydroclimatic areas [4] but also inside single lakes. Most studies dealing with evaporation
(and more generally with heat exchanges between lakes and atmosphere) rely on one-point
measurements and/or estimations, while significant spatial gradients have been found in
the surface net heat flux [21,22], leading to spatial patterns of latent heat flux and evapora-
tion rates [23,24]. Traditional field approaches cannot satisfy the need to understand the
spatial heterogeneity of these fluxes. To overcome this limitation, RS-based models [25–28]
can be used to benefit from the synoptic properties of satellite measurements. In particular,
SEBAL [25], METRIC [27], and SEBS [28] are RS-energy based models and are developed
to retrieve actual evapotranspiration from land surfaces (e.g., at watershed level). Hence,
these methods are not purposely built for water surfaces, and their use for estimating evap-
oration rates from water bodies is not always robust. For instance, the SEBAL model [25]
treats water surfaces as boundary conditions ,where the so-called “cold pixel” is set, evap-
oration is supposed to be at its maximum value, and sensible heat flux is supposed to
be zero. In addition, these models make very general assumptions on the formulation
of the heat exchanges between air and the water body: e.g., in a METRIC application
in the USA [29], the authors assume that the net heat flux between the atmosphere and
the water body is approximately 50% of net radiation at the water surface; the authors
of [30] assume that there is, instead, a linear dependence depending on the time of the
year. Such general assumptions do not hold for all lakes, whose evaporation dynamics
depend on many factors, not least the heat storage capacity and the thermal regime of
the water body. In some cases, however, promising correlations are found between such
RS-energy based models and more conventional methods, such as those listed in Table 1
(see, e.g., [31] for Lake Nasser in Egypt and [32] for Amirkabir dam in Iran). Efforts towards
the inclusion of the thermal capacity of both fresh and saline water bodies are found in,
e.g., [33,34]. The latter integrates satellite-derived data (e.g., surface water extent) and
physical modeling (based on the energy budget) for five American reservoirs and find
very good agreement between modeled and measured evaporation rates. Interestingly, the
authors do not use satellite-derived Lake Surface Water Temperature (LSWT) in their model,
but they acknowledge that including such information in the calculation can improve the
accuracy of evaporation estimates.

The advantages of an RS-based approach are not limited to the possibility of retrieving
the spatial distribution of the evaporation rates. The increasing availability of datasets inte-
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grating multiple sensor products and thousands of lakes and reservoirs around the globe
represents a valuable opportunity for investigating long-term trends of evaporation at both
local and global scales [34]. At the same time, there is a need for flexible and appropriate
tools, requiring as little data as possible, to enable the monitoring and management of the
water resources.

In this contribution, we present a satellite-based tool named LakeVap for estimating
evaporation rates from lakes. LakeVap aims at meeting the above-mentioned requisites
of long temporal and fine spatial coverage as well as flexibility, handiness, and little data
demand. The tool combines the spatially resolved information of Lake Surface Water
Temperature (LSWT) contained in satellite-derived maps with single-point or gridded
meteorological data from in-situ stations or atmospheric/land models. LakeVap estimates
the instantaneous evaporation from the water surface following a Dalton-type approach
(see Table 1) and applies an energy budget scheme for deriving daily evaporation. LakeVap
is here showcased for Lake Garda, a well-studied sub-alpine lake, where a consistent
and long-term dataset of remote sensing products, meteorological in-situ measurements,
and model data is available. Since direct measurements of evaporation are not available
at the test site, we compare the estimates of our LakeVap with the results of a coupled
atmospheric and thermo-hydrodynamic model both purposely calibrated for the test site
and validated for the period 2004–2018 (WRF, Weather Research and Forecasting model
+ Delft3D, [35]). LakeVap is here tested with LSWT maps available for Lake Garda from
the dataset created under the ESA Climate Change Initiative for Lakes (CCI-Lakes) and
with multiple meteorological datasets, ranging from in-situ observations to local and global
atmospheric/land models.

Table 1. Summary of the main characteristics of most commonly used evaporation models.

Model Name Methodology Input Variables Strengths Constrains References

Simplified

Stephens–Stewart
Makkink,

Doorenbos–Pruitt,
Jensen–Haise

Empirical relations
between evaporation
and solar radiation

Air temperature,
solar radiation

Very low data demand
If properly tuned, they

can provide
cost-effective

evaporation estimates

Site-specific, they
require some

empirical
coefficients to be

calibrated

[36–39]

Blaney–Criddle, Empirical relations
between evaporation
and daylight hours

Air temperature,
daylight hours [16,36,40]Papadakis,

Thornthwaite

Mass balance
Calculates the water
budget of the water

body

Inflows, rainfall,
runoff, outflows,

water levels

Very accurate if the
water budget is properly

closed

Extremely data
demanding

Require continuous
and accurate

measurements of
the input variables

e.g., [41]

Energy budget

BREB
RS-based (SEBAL,

METRIC, SEBS,
AquaSEBS)

Calculate all the energy
contributions entering
and exiting the water

body

Solar radiation,
water temperature,

air temperature,
wind speed, relative

humidity

Provide a
comprehensive

description of the energy
balance.

If RS-based, they
provide evaporation

maps

Data demanding [13,17,31,42]
[25,27,28,33]

Mass transfer
or bulk transfer

Dalton’s law (Dalton
1802)

Water temperature,
air temperature,

wind speed, relative
humidity

Low data demand Requires the tuning
of the wind function e.g., [43]

Combined

Priestly–Taylor,
de Bruin,

Brutsaert and
Sticker,

Penman

Combine radiative and
aerodynamic terms

All variables
required by the

energy budget and
mass transfer

models

Most accurate
Consider the energy

stored by the water body

Most data
demanding [44–48]

In the following pages, we first present a detailed description of the model behind Lake-
Vap and its equations (Section 2.1); then, we show the study site (Lake Garda, Section 2.2)
and the datasets used (Section 2.3). In the results, we show the potential of LakeVap to
produce a long time series of instantaneous evaporation maps (Section 3.1). The quality
of the results of LakeVap is tested by comparison with the evaporation outputs of the
reference Delft3D hydrodynamic model (Section 3.2). In Section 3.3, we investigate how our
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LakeVap instantaneous evaporation estimates vary when using different meteorological
sources, while considerations on the spatial variability of instantaneous evaporation maps
are provided in Section 3.4. In the Discussion (Section 4), we comment on the LakeVap
tool’s performance and give an overview of its functionalities.

2. Materials and Methods
2.1. The LakeVap Tool

LakeVap is a low data-demanding tool producing instantaneous and daily evaporation
maps from water bodies. It can be applied to any inland water surface whose surface
temperature is provided by satellite thermal sensors and can be routinely applied following
the satellite revisiting time period. Since it is based on satellite-derived thermal products,
it is constrained by clear sky conditions at the satellite overpass time and by the spatial
resolution of the sensor used to measure LSWT.

2.1.1. Formulation

The LakeVap tool computes instantaneous evaporation rates from water surfaces by
following the Dalton’s law (mass transfer theory) as proposed by [49]:

λE = f (ew − ea) (1)

where E is the hourly evaporation rate (mm/h), λ = 2444 kJ/kg is the water latent heat of
vaporization, (ew − ea) is the vapor pressure gradient between air at the air–water interface
and air at 2 m a.w.l., and f is an empirical wind function specific for the study site. In the
LakeVap tool, the wind function is defined following [49] (from [50]):

f = 4.8 + 1.98u + 0.28(Tw − Ta) (2)

where Tw is the water temperature derived from LSWT maps and Ta is air temperature from
observations or atmospheric models. Hence, in our tool, evaporation is proportional to the
vapor pressure gradient, to wind speed, and to the thermal difference between water and
air. We refer to the Supplementary Material S1 for the computation of the vapor pressure
terms. From now on, we refer to instantaneous evaporation Eh as the evaporation rate in
mm/h obtained by computing E from Equation (1) based on the atmospheric conditions
(i.e., air temperature and humidity, wind velocity) and on the surface temperature of the
water body at a specific time of the day, coinciding with the satellite overpass.

In addition to the instantaneous evaporation rate from Equation (1), LakeVap computes
the daily evaporation by implementing a simple heat balance equation, which computes
the energy stored in the water body based on all contributions of entering and exiting
thermal energy (Figure 1).

The energy stored in the water body (Qx) is the result of a balance between a radiative
term (Rn), an advective term (Qv), and three negative contributions from the fluxes of
sensible energy (H), latent energy (λE), and the energy exchanged with the bottom (G). The
net radiative term Rn represents the residual from the radiative balance at the water–air
interface in terms of short (Rs) and long (Rl) wave radiation, considering the incident
(i.e., directly coming from the sun, transmitted by the atmosphere, and diffused by the
atmosphere), the reflected, and the emitted energy from the water body (depending on
the water temperature). The advective term Qv is the net thermodynamic energy flux
accounting for the contributions from surface and underground inflows/outflows (Fin/Fout)
and from precipitation (Fp). The sensible energy H is the energy exchanged between the
water surface and the air due to temperature differences, while the latent energy λE is the
energy exchanged during the evaporation process.
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In LakeVap, we consider the advective energy Qv and the exchanges with the bottom
G to be small compared to the other terms contributing to the net energy stored in the water
body. This condition applies to many cases (e.g., [51]). Hence, the energy balance equation
in LakeVap is simplified to Equation (3):

Qx = Rn − H − λE (3)

where Rn is the net radiation at the surface of the water body, H is the sensible energy,
and λE is the latent energy computed as in Equation (1). We refer to the Supplementary
Material S1 for the full description of the heat balance terms.

The heat balance is computed at the time of the satellite overpass (10:00 a.m. UTC),
based on the instantaneous values of each term, such that the energy stored by the water
body Qx is obtained. The quantity Qx is then used to determine the changes in LSWT in
the next hour following Equation (4):

∆Tw,t

∆t
=

Qx,t

ρwcpz
(4)

where ∆Tw,t is the variation in water temperature at time t, ∆t is the variation in time (set
as 1 h), Qx,t is the energy stored by the water body at time t, ρw is the density of water
(1000 kg m−3), cp is the specific heat of water (4180 J kg−1 K−1), and z is the thickness of
the water storing the energy Qx,t. Here it is set to 1 m after some testing.

At the next time step (i.e., the subsequent hour), a new map of LSWT is produced
by summing

Tw,t+1 = Tw,t + ∆Tw,t (5)
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Based on the updated LSWT map and the meteorological data for the new time step,
all the terms of the heat balance (including evaporation) are computed again in a loop for
the subsequent 23 h.

Ed =
t = t1+23

∑
t = t1

Eh (t) (6)

In this way, the daily evaporation Ed is obtained as the cumulative sum of the hourly
evaporation over 24 h.

2.1.2. Inputs and Outputs of the Model

Following the equations reported in Section 2.1.1 and Supplementary Material S1, the
inputs of the LakeVap tool are the following:

1. Water temperature Tw, from now on referred to as Lake Surface Water Temperature
(LSWT) from EO data at the satellite overpass time (i.e., between 9:30 and 10:30 UTC
in the CCI-Lakes dataset). We took 10:00 UTC as a reference time;

2. Downward shortwave radiation Rs↓;
3. Air temperature Ta;
4. Wind speed u;
5. Relative humidity RH.

Atmospheric inputs 2–5 must be provided at an hourly resolution covering the 24 h
from the satellite overpass in case of daily evaporation computation (e.g., from 10:00 UTC to
09:00 UTC of the following day based on the CCI-Lakes dataset reference time). The sources
of these inputs can be in-situ meteorological stations or global models such as GLDAS
(Global Land Data Assimilation System dataset from National Aeronautics and Space
Administration (NASA): https://ldas.gsfc.nasa.gov/gldas, accessed on 3 February 2021)
and ERA5 (ECMWF Reanalysis v5 from the European Centre for Medium-Range Weather
Forecast: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5, ac-
cessed on 9 February 2021), as well as numerical weather models specifically set up for the
study area, e.g., WRF (Weather Research and Forecasting model by the National Center
for Atmospheric Research (NCAR): https://www.mmm.ucar.edu/weather-research-and-
forecasting-model, accessed on 28 April 2022) or COSMO (by Consortium for Small-Scale
Modeling: http://www.cosmo-model.org, accessed on 28 April 2022). Due to the poten-
tially different sources of these variables, the LakeVap tool accepts different formats: time
series of single values (e.g., when coming from a single weather station or a spatial average
of model grid points) or gridded fields (e.g., from spatially resolved model data).

We recall that the LakeVap tool is designed to provide two different outputs:

• Maps of instantaneous evaporation (Eh) at satellite overpass;
• Maps of daily evaporation (Ed) estimated during the 24 h including and after the

satellite overpass (e.g., from 10:00 UTC to 09:00 UTC of the following day based on
the CCI-Lakes dataset reference time). Daily evaporation is obtained by summing the
hourly values estimated over the 24 h from the satellite overpass time.

The procedure for the evaporation rate mapping is summarized in Figure 2.

https://ldas.gsfc.nasa.gov/gldas
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
http://www.cosmo-model.org
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2.2. Study Site

We test the LakeVap tool in Lake Garda, Italy, where an extensive dataset from in-situ
measurements, remote sensing imagery, and numerical modeling is available.

Lake Garda is one of the most important subalpine lakes in Europe and the largest
in Italy. It is located in the northern part of Italy, with a lake surface area of 368 km2, a
maximum length of 52 km along its main axis, and a maximum width of 18 km in the
southern part of the lake, with a total perimeter of 162 km. The shape of the lake (Figure 3a)
combines a large and relatively simple round-shaped geometry in the southern part with
an elongated and narrow area surrounded by a steep orography in the northern trunk
directed along a NE–SW axis.

Due to the specific shape of the lake and topography of the region, Lake Garda is
subject to local breezes with specific timing and spatial patterns. In the northern part of
the lake, winds are stronger since they are channeled by the steep lateral mountains and
blow along the lake’s longitudinal axis. Summer breezes in this area have alternating
provenance [52] based on the thermal gradients between the lake and the terrain in the
northern valleys. In the southern basin, several local breezes blow in diverse directions,
with lower intensity and duration. Thus, the spatial distribution of the wind field is
typically heterogeneous in Lake Garda, except for some strong synoptic events in which an
almost uniform strong wind moves the lake surface.

Such heterogeneity also affects the thermal behavior of the lake. The thermal regime
of Lake Garda is classified as oligomictic [53,54], which means that the lake experiences
complete overturns only in some years when cold winter air temperature and strong wind
events allow the water column to fully mix. However, additional factors influencing the
mixing regime of this lake were found to be wind-driven deep ventilation, the Earth’s
rotation [55], and the interaction between the two sub-basins [56].
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Oligomixis only applies to the northern deep sub-basin, while the southern sub-basin
is subject to complete mixing every year due to the shallower bathymetry [35]. In general,
the different behavior of the two sub-basins results from the different ways they exchange
heat through the water surface, which is a direct consequence of the different morphological
characteristics as well as different atmospheric forcing. This also causes a typical surface
temperature gradient, with the southern part of the lake being warmer than the northern
part, which is visible from either in-situ data or remote sensing imagery [35,57,58].

2.3. Data

For the computation of instantaneous and daily evaporation rate estimation, LakeVap
requires LSWT imagery from satellites and atmospheric data, as anticipated in Section 2.1.2.
In the following sections, we detail the source of the data used and the reasons behind the
choice. Table 2 summarizes the key information on the data used, including the temporal
availability of data and the data provider.
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Table 2. Summary of data used in this study from in-situ, remote sensing, and numerical modeling.

Type of Data Time Availability ID Data Provider Frequency Spatial Resolution

LSWT maps 1995–2019 CCI-Lakes ESA Daily to weekly 100 m

In-situ weather data
1990-date MET1 FEM Hourly Single point
2012-date MET2 ARPA-Lombardia Hourly Single point

Global model
weather data 1950-date ERA5 ECMWF Hourly 0.1◦ (~11 km)

Regional model
weather data 2004–2018 WRF [35,59] Hourly 2 km

Simulated
instantaneous

evaporation maps
2004–2018 Delft3D [35] Daily 100–400 m

2.3.1. Remote Sensing Imagery from CCI-Lakes Database

A comprehensive dataset of satellite imagery of Lake Garda from optical and thermal
sensors exists (e.g., [60]). To test the LakeVap tool, we used LSWT maps derived from
thermal bands of different sensors (e.g., MODIS, AVHRR) from the ESA CCI ECV Lakes
dataset (https://climate.esa.int/en/odp, accessed on 17 May 2021) (from now on, CCI-
Lakes). This dataset provided 1923 LSWT maps of Lake Garda at 1 km resolution from
1995 to 2019 with a standardized format and quality information. More than 50% of the
images are available at a 1–2 day time resolution, with the largest gaps registered in the
period preceding 2002. For this work, we selected those maps having more than 55% of
pixels with quality level 4 or 5 [61], for a total number of 1196 images.

2.3.2. Meteorological Data

Meteorological data in Lake Garda are available in either in-situ measurements or
atmospheric/land models.

As for in-situ data, regular measurements of the main atmospheric variables are taken
at several ground weather stations operated by various local environmental protection
agencies (see [35] for a complete overview of active stations). In this work, we used data
from the northernmost station of Riva del Garda and Toscolano Maderno, located at the
end of the northern trunk (respectively, MET1 and MET2 in Figure 3b). MET1 was chosen
as this station provides the longest time series (from 1990 to date) covering the entire
period of availability of CCI-Lakes LSWT maps; the station is managed by the Edmund
Mach Foundation (FEM -Data can be obtained under formal request). MET2 data were
also included as [35] showed that it was the best-represented weather station by the WRF
model in terms of wind speed over the lake; the station is managed by the Environmental
Protection Agency of the Lombardy Region (ARPA Lombardia). We used measurements
at hourly resolution of the following variables: air temperature (◦C) at 2 m a.g.l.; relative
humidity (%) 2 m a.g.l.; solar radiation (MJ/m2) (from MET1 only, converted to W/m2);
wind velocity (m/s) at 10 m a.g.l. Wind speed is measured at 5 m a.g.l. in MET1; hence,
this measurement was rescaled at 10 m a.g.l. assuming a logarithmic profile for a neutrally
stratified atmosphere and a roughness length of 0.001 m, as the station is located on a dock.

As for model data, we used ERA5-Land hourly data from ECMWF climate reanaly-
sis [62] and Weather Research and Forecasting (WRF [63]) model outputs over the Lake
Garda Region ([35,59]).

ERA5-Land is a reanalysis dataset providing land variables produced by replaying the
land component of the ECMWF ERA5 climate reanalysis at a finer resolution than ERA5
Climate reanalysis. Data can be freely downloaded for the entire globe from Copernicus
Open Access Hub (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5
-land?tab=overview, accessed on 9 February 2021) and are available from 1950 to the
present at the horizontal resolution of 0.1◦ × 0.1◦ (~11 km) and at the time resolution of 1 h.
From this dataset, we downloaded the following weather variables at the numerical grid
points covering Lake Garda: air temperature (K) at 2 m a.g.l.; dew point temperature (K) at

https://climate.esa.int/en/odp
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
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2 m a.g.l. converted to relative humidity (%) based on air temperature [64]; downward short-
wave radiation (J/m2), converted to W/m2, U-component (east–west) of wind velocity
(m/s) at 10 m a.g.l.; V-component (south–north) of wind velocity (m/s) at 10 m a.g.l. Wind
velocity was obtained from the U and V component as W =

√
U2 + V2. From now on,

we refer to ERA5-Land as ERA5 for brevity. Among the grid points lying within the Lake
Garda area, in-lake points were selected (filled magenta circles Figure 3b) and a spatial
average was performed to have one value representing the mean weather conditions over
the lake.

The Weather Research and Forecasting (WRF) model was run ad-hoc over the Lake
Garda region by [59] and extended in [35] for a long run from 2004 to 2018. The model
provides time and space-varying fields at the horizontal resolution of 2 km and time
resolution of 1 h of the following variables: air temperature (K) at 2 m a.g.l.; relative
humidity (%) at 2 m a.g.l., downward short-wave radiation flux (W/m2), U-component
(east–west) of wind velocity (m/s) at 10 m a.g.l.; V-component (south–north) of wind
velocity (m/s) at 10 m a.g.l. Wind velocity was obtained from the U and V component
as shown before for ERA5 data. From now on, we refer to data derived from the WRF
model as WRF for brevity. As for the ERA5 dataset, atmospheric variables from in-lake
WRF points were selected (see Figure 3b) and spatially averaged. Given the higher spatial
resolution of the WRF dataset, additional tests of the LakeVap tool were performed by
feeding the model with fields of atmospheric variables simulated by the WRF model. These
tests are better described in Section 2.4, while the results are discussed in Section 3.4.

2.3.3. Delft3D Hydro-Thermodynamic Model

To evaluate the performances of the LakeVap tool in estimating the evaporation rates,
we use the model results of a 3D hydro-thermodynamic model (Delft3D by Deltares [65])
specifically set up for the test site. A Delft3D-FLOW model was previously calibrated and
validated by [35] for Lake Garda and already used for several modeling and RS applications
(e.g., [35,56,66]). The availability of this model’s results coincides with that of the WRF
outputs mentioned above, as the Delft3D model is one-way coupled with the WRF long
run from 2004 to 2018. The model simulates the three-dimensional temperature, flow, and
turbulence field in Lake Garda. Each term of the heat balance equation is computed in each
horizontal grid cell and considers the weather forcing coming from the WRF model and the
water temperature of the surface layer, which in turn is affected by the three-dimensional
flow field simulated in the lake. Evaporative flux is computed as part of the heat balance
between the lake and the above atmosphere following a Dalton law of the kind

λE = $ace (qs − qa) (7)

where $a is the density of air, ce is a constant calibrated for Lake Garda, and qs, qa are the
specific humidity of saturated air (at the water level) and air, respectively, at 10 m above
water level. For more details on the numerical values of the calibration constant and on the
equations implemented in Delft3D-Flow, we refer to [35] and to the Delft3D-Flow manual.

2.4. LakeVap Tool Runs and Evaluation Metrics

In Section 3, results from different LakeVap tool runs are presented.
The first four model runs are aimed at estimating evaporation by combining spatially-

resolved information on LSWT from CCI-Lakes maps and uniform atmospheric forcing
from the available meteorological datasets. The following model runs are performed:

1. LakeVap tool fed with WRF meteorological data (spatial average of grid points over
the lake surface) from 2004 to 2018 (Sections 3.1–3.3);

2. LakeVap tool fed with MET1 meteorological data (single-point values) from 1995 to
2019 (Sections 3.2 and 3.3);

3. LakeVap tool fed with MET2 meteorological data (single-point values) from 2012 to
2018 (Sections 3.2 and 3.3);
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4. LakeVap tool fed with ERA5 meteorological data (spatial average of grid points over
the lake surface) from 1995 to 2019 (Sections 3.2 and 3.3).

The outputs of the model runs are compared with the Delft3D model in terms of
RMSE, bias, NSE, and correlation metrics.

To test the model sensitivity to spatial variations of meteorological forcing, the time
series of fields of air temperature, relative humidity, and wind are imposed. Such fields of
meteorological variables always come from the WRF dataset, available at a resolution of
2 km from 2004 to 2018, as specified in Section 2.3.2.

The ensemble (used in Section 3.4) comprises eight sets where all available LSWT
maps from 2004 to 2018 were processed with different atmospheric forcing:

5. LakeVap tool fed by WRF meteorological data spatially averaged over the lake surface
(i.e., item 1. in the previous list, taken as reference);

6. Three sets where one of the three atmospheric variables is imposed as spatially varying
at the time (e.g., air temperature), while the other two (e.g., wind speed and relative
humidity) are kept as uniform over the lake (from a spatial average of WRF fields);

7. Three sets where pairs of atmospheric variables are given as spatially varying (air
temperature and wind, relative humidity and wind, air temperature and relative
humidity), while the remaining one is kept as uniform over the lake (from a spatial
average of WRF fields);

8. LakeVap tool fed by all atmospheric fields from WRF.

In this way, each instantaneous evaporation map from the given set represents a
sample of sensitivity to a realistic rate of change of the spatially varying meteorological
variable (e.g., air temperature). We call “normalized anomaly” ∆X the quantity used to
interpret how much variation (in percentage) is registered on average from the entire
time series of a given variable. This quantity is computed (for the generic map X) as in
Equation (8).

∆X =
1
N ∑

n

Xn −< Xn >

< Xn >
· 100 (8)

where Xn is the map of a given variable on the n-th date, < Xn > is the spatial mean
associated to that date, and N is the total number of dates in the considered time series
(N = 932 for the case evaluated here from 2004 to 2018).

The sets listed as items 5 and 6 in the above list were also used for the additional
analysis of the sensitivity of evaporation estimates to variations of the different atmospheric
quantities. The results of this analysis are reported in Supplementary Material S2.

3. Results
3.1. Long Term Evaporation Estimates

By applying the LakeVap tool on the test site, two different outputs can be retrieved:
instantaneous (Eh) and daily (Ed) evaporation. Both quantities are obtained as spatially
varying maps thanks to the spatially resolved information of LSWT maps.

As anticipated in Section 2.3.1, only maps with a sufficient number of good pixels
were processed. The number of pixels for each selected map ranged from 336 to 507,
corresponding to about 228–345 km2 (from 62% to 93% of the entire lake surface). We
processed 1196 maps of LSWT, 81% of which were acquired during the 2007–2019 period.
In this section, we report the results of the LakeVap tool where WRF data were used as
meteorological input (spatially averaged).
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Figure 4 presents an example of the instantaneous evaporation maps that can be
obtained with the LakeVap tool from CCI-Lakes LSWT maps and WRF meteorological data
in one year. We chose to report the results from 2016 for which 80 images were available
with irregular frequency, depending on the availability of satellite-derived LSWT maps.
As the figure clearly shows, some maps are not complete, and white pixels cover those
areas masked by clouds and/or where the quality of the LSWT product is too low. The
time series allows the observation of the seasonal evolution of evaporation. Evaporation
in Lake Garda typically increases from the beginning of the year until July to September,
when the difference between air and water temperature is maximum, and then decreases
again in late autumn and winter. This behavior is found every year and is related to the
seasonal evolution of LSWT and to the thermal capacity of the lake, which stores heat
during days of intense solar radiation and then slowly gives it off in the following days
and months. However, exceptions to this trend can be occasionally found and are also
visible in Figure 4. Unexpected maxima in winter (January), early spring (March, April), or
late autumn (November) can be found when strong synoptic winds sweep over the lake
enhancing evaporation, often associated with exceptionally cool and dry days when air
temperature and relative humidity are much lower than the mean climatological conditions.
Apart from these exceptions, evaporation maximum most often occurs in August (~45% of
the analyzed years), while lower rates of evaporation are estimated from winter to spring,
with the minimum often registered in March (~40% of the years). The yearly maximum of
instantaneous evaporation typically ranges between 0.2 and 0.6 mm/h (spatially averaged
value), and the minimum is between 0.01 and 0.05 mm/h. Spatial gradients up to the order
of 0.05 mm/h can be observed between the northern and the southern part of the lake (see
Section 3.4 for insight into the spatial patterns of instantaneous evaporation). In terms of
daily evaporation rates (not shown), maximum values over the lake in one year range from
5.48 to 13.75 mm/day, while minimum values range from 0.15 to 1.61 mm/day.

3.2. Validation of LakeVap Products with Delft3D Outputs

To validate the evaporation rates estimated with the LakeVap tool, we compare the
instantaneous values (Eh) obtained using different spatially averaged meteorological data
against those estimated by the Delft3D model of Lake Garda by [35]. Figure 5a shows the
time series of instantaneous evaporation rates obtained using the LakeVap tool fed with
WRF meteorological data and the corresponding Delft3D evaporation estimates for the
matching dates along the 2004–2018 long run of the Delft3D model. In Figure 5b, the time
series of LSWT derived from the CCI-Lakes dataset and the one simulated by the Delft3D
hydrodynamic model are compared.



Remote Sens. 2022, 14, 2636 13 of 26

Remote Sens. 2022, 14, 2636 13 of 26 
 

 

 
Figure 4. Instantaneous evaporation (𝐸 ) maps for Lake Garda obtained from the year 2016 esti-
mated with the LakeVap tool fed by CCI-Lakes LSWT maps and WRF (spatially averaged) meteor-
ological data. 

3.2. Validation of LakeVap Products with Delft3D Outputs 
To validate the evaporation rates estimated with the LakeVap tool, we compare the 

instantaneous values (𝐸 ) obtained using different spatially averaged meteorological data 
against those estimated by the Delft3D model of Lake Garda by [35]. Figure 5a shows the 
time series of instantaneous evaporation rates obtained using the LakeVap tool fed with 
WRF meteorological data and the corresponding Delft3D evaporation estimates for the 
matching dates along the 2004–2018 long run of the Delft3D model. In Figure 5b, the time 
series of LSWT derived from the CCI-Lakes dataset and the one simulated by the Delft3D 
hydrodynamic model are compared. 

Figure 4. Instantaneous evaporation (Eh) maps for Lake Garda obtained from the year 2016 estimated
with the LakeVap tool fed by CCI-Lakes LSWT maps and WRF (spatially averaged) meteorologi-
cal data.

In Table 3, we report the metrics displaying the performances of the LakeVap tool fed
with different meteorological datasets as well as the metrics of the comparison between the
two LSWT time series (last row of the table). The reference for evaporation values is the time
series of instantaneous evaporation modeled via the previously validated Delft3D model.
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Figure 5. (a) Comparison between instantaneous evaporation (Eh) from Lake Garda, estimated with
LakeVap using CCI-Lakes dataset and WRF spatially averaged meteorological data, and hourly
evaporation simulated by Delft3D hydrodynamic model. (b) Comparison between LSWT derived
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Table 3. Performance of LakeVap tool based on CCI-Lakes LSWT and WRF, MET1, MET2, and
ERA5 meteorological data. Metrics are computed for instantaneous evaporation estimates (Eh) and
for CCI-Lakes LSWT maps. Metrics assume Delft3D model results as the “true” value. * statistics
computed on a shorter time series (2012–2018) due to the reduced availability of MET2 data.

Instantaneous Evaporation

Meteorology Source RMSD BIAS Corr NSE Mean ± Std LakeVap Mean ± Std Delft3D
(mm/h) (mm/h) (-) (-) (mm/h) (mm/h)

WRF 0.04 0.006 0.92 0.834 0.129 ± 0.081

0.128 ± 0.098
MET1 0.087 −0.02 0.517 0.218 0.101 ± 0.058

MET2 * 0.081 0.001 0.614 0.308 0.128 ± 0.0858
ERA5 0.091 −0.045 0.606 0.129 0.078 ± 0.044

Lake Surface Water Temperature

LSWT source RMSD BIAS Corr NSE Mean ± Std CCI-Lakes Mean ± Std Delft3D
(◦C) (◦C) (-) (-) (◦C) (◦C)

CCI-Lakes database 1.745 0.536 0.958 0.906 14.81 ± 5.75 14.27 ± 5.95

Figure 5a shows that the two models provide the same order of magnitude of in-
stantaneous evaporation (mean ± standard deviation of 0.129 ± 0.081 and 0.12 ± 0.098
for LakeVap and Delft3D, respectively) and have a synchronous seasonal behavior, with
minima during winter/spring and peaks in summer/early autumn. The two evaporation
time series thus have a high value of correlation (0.92) and a high value of NSE (0.834). The
RMSD (0.04) is half of the standard deviation of the entire dataset, while the bias regis-
tered is very low (0.006) compared to the mean evaporation value of the time series. The
good agreement between the Delft3D and LakeVap time series is explained by the similar
approach used for computing the evaporation—i.e., the Dalton law. Both models indeed
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compute evaporation as an indirect function of the difference between air temperature and
water temperature, whose peak occurs typically in late summer in Lake Garda. The spiky
behavior of the standard deviation of Delft3D (light blue shaded area in Figure 5a) is related
to the higher temporal frequency of the hydrodynamic model data, which are available
daily. The two LSWT time series (Figure 5b) are strongly correlated (0.906) and show a
high NSE (0.906), and the RMSE of 1.745 ◦C is relatively small compared to the range of
LSWT (standard deviation of ±5.75 ◦C from CCI-Lakes database). The latter tends to be
0.5 ◦C warmer than the simulated water temperature, which is consistent with what was
observed by the authors during the calibration and validation of the model against remotely
sensed data from multiple sensors datasets (e.g., Landsat8, AVHRR, MODIS-Aqua, see [35],
MODIS-Terra, see [57]).

Looking at Table 3, we can see that the performance of LakeVap strongly depends
on the source of the atmospheric variables. With the use of ERA5 meteorological data,
instantaneous evaporations are strongly underestimated (bias of −0.045 mm/h), while
they gradually become more similar to the Delft3D estimates if meteorological variables are
taken from the weather station MET1 and MET2. Among the two meteorological stations,
the best performances are achieved with MET2, which is more representative of the mean
lake weather conditions than MET1 and is more consistent with WRF data.

3.3. Implications of the Use of Different Meteorological Datasets

The results presented in Table 3 show that despite the seasonal behavior of the evap-
oration estimates from LakeVap being mainly driven by LSWT, the performance of the
model is sensitive to weather data. Here, we deepen the analysis by presenting the results
of the LakeVap tool combined with all available meteorological sources. In Figure 6a, the
LakeVap tool results are presented as four time series of mean instantaneous evaporation
(Eh) rates obtained by using ERA5, MET1, MET2, and WRF data.

All four curves follow a similar behavior because the same LSWT drives the seasonal
evaporation. While the minima of the time series are most often coherent, the peaks are
more sensitive to the meteorological forcing used, with ERA5 giving the lowest evaporation
values, followed by MET1, MET2 in-situ stations, and WRF (refer to Table 3 for the nu-
merical values of mean ± standard deviation of the mentioned time series). The standard
deviation associated with the different meteorological sources is on average 0.0352 mm/h
over the entire period, with minima of the order of 0.0001 mm/h and maxima of the order
of 0.1 mm/h. The order of magnitude of the latter coincides with that of the estimated
instantaneous evaporation; hence, in some cases, the use of a different meteorological
forcing leads to an over/underestimation of the evaporation rate by 100%. This is also
visible in Figure 6a, where some of the peaks of the LakeVap + WRF time series are two
times higher than those of LakeVap + ERA5. The meteorological datasets WRF, MET1,
and MET2 are compared to ERA5 in Figure 6b. Air temperature is consistent between all
datasets, with WRF, MET1, and MET2 showing a very clear correlation (R2 > 0.9) from all
linear regressions. This is also confirmed by the frequency distribution of air temperatures
from the four datasets in Figure 6c, which are all centered around the mean value between
13 ◦C and 16 ◦C with a similar standard deviation (~±8 ◦C for ERA5, MET1, MET2 and
±6.35 ◦C for WRF). WRF air temperature shows a smaller standard deviation than in-situ
and ERA5 data, which implies that the model tends to reproduce colder summer peaks
and warmer winter cooling. It is worth noting that the WRF model tends to underestimate
air temperature in MET1 and MET2, as already pointed out by [35]. However, it is also
known that WRF is usually better aligned with MET2 than MET1, as the high spatial
heterogeneity of the lake also causes discrepancies between the different in-situ weather
stations. As clearly depicted in Figure 6c, the curve of MET2 is more shifted towards warm
temperatures than MET1, which tends to register colder winter temperatures and milder
summers. Wind speed from WRF, MET1, and MET2 is largely higher than ERA5 wind
speed, with the highest values found in WRF and MET2. No correlation is visible between
the three datasets and ERA5 (R2 < 0.1). The frequency distribution curve of ERA5 wind
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speed in Figure 6c is centered on smaller values and is less spread, which shows not only
an underestimation of the wind speed but also a reduced variability of this quantity. The
mean value of ERA5 wind speed in the investigated dates is indeed 1 (±0.48) m/s, which
is two times smaller than that of MET1 and MET2 (2.17 ± 2.21 m/s and 2.66 ± 1.59 m/s,
respectively) and three times smaller than that of WRF (3.53 ± 2.18 m/s). It is worth noting
that significant differences are also visible between the three curves from WRF, MET1,
and MET2, but a good agreement is found between WRF and MET2, which is consistent
with what was already observed by [35]. Among the four datasets, relative humidity is
more consistent than wind speed but less than the air temperature, with correlation still
low (0.15 < R2 < 0.6 from the regression lines) and significant differences in either mean
values and spread of the distribution curves. ERA5’s relative humidity tends to be the
highest, which is surprising considering the amount of land included in the model grid
cells, followed by WRF, MET1, and MET2. In this case, relative humidity from WRF is more
consistent with that of MET1. Differences between MET1 and MET2 can be explained by
the position of the meteorological station, with MET1 being directly on the wharf, while
MET2 is on solid ground.

3.4. Spatial Variability of Evaporation

In the above sections, we have shown how evaporation estimates are sensitive to the
meteorological forcing considering the evaporation in spatially averaged terms. However,
the LakeVap tool produces maps of evaporation whose spatial variability can be interpreted
based on the spatial variability of both LSWT and atmospheric variables, if those are
imposed as space and time-varying fields. In this section, we interpret the relative weight
of each meteorological variable in affecting the spatial variability of evaporation.

In Figure 7, we present the results from sensitivity tests performed to investigate this
aspect, as previously detailed in Section 2.4.

The maps in the panels depict the normalized anomaly ∆X estimated as in Equation (8),
which represents the mean (in time) percentage spatial variation of a given quantity. In
Figure 7a, we report the normalized anomaly of the inputs of the model, i.e., LSWT, wind
speed, air temperature, and relative humidity, while in Figure 7b, the normalized anomaly
is calculated for Eh obtained from the different LakeVap sensitivity tests.

LSWT, wind, and air temperature normalized anomalies in Figure 7a clearly show that
longitudinal gradients are typical in Lake Garda. Air and water temperatures indeed tend
to be warmer in the southern part and colder in the northern part, where stronger winds
typically develop due to thermal breezes from north to south at the acquisition time of
CCI-Lakes dataset sensors (i.e., morning around 10:00 UTC). Air temperature variability is
double that of LSWT: the spatial gradients of LSWT reach −4/+8% (10th/90th percentiles)
while those of air temperature reach−8/+19% throughout the year. The order of magnitude
of wind spatial variability is much higher, with winds up to 30% stronger in the north and
down to 20% weaker in the south, on average, and with maximum/minimum variations
above ±50%. The spatial variability of relative humidity depends on the morphology of
the lake and does not vary in time, such that the order of magnitude of average patterns is
the same as the extremes of the distribution in time: higher/lower humidity (up to ±10%)
is registered in the central part of the lake and close to the shores, respectively.
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Figure 6. (a) Instantaneous evaporation (Eh) from Lake Garda estimated with LakeVap using CCI-
Lakes dataset and different meteorological data sources. Lines depict the spatial average of Eh maps
obtained with meteo variables from ERA5 (orange continuous line), WRF (blue continuous line), and
in-situ observations at MET1 (dashed green line) and MET2 (dotted magenta line) weather stations
(see Figure 3b for the location of MET1 and MET2). The light-yellow shaded area represents the
range of variation of Eh due to different meteorological sources. (b) Scatterplots of air temperature,
wind, and relative humidity as obtained from WRF (averaged over the lake surface), MET1, and
MET2 in-situ data against ERA5 (averaged over the lake surface); (c) probability distribution of air
temperature, wind, and relative humidity from the four datasets.
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Figure 7. (a) Mean spatial variation of LSWT and meteorological variables used to compute Eh.
The percentage of variation of each quantity is obtained as a time average of the spatial anomalies
normalized by the mean (in time) fields as in Equation (7). (b) Mean spatial variation of Eh obtained
by feeding the LakeVap tool with all meteorological variables as uniform in space (first panel), with
single variables spatialized (panels 2–4), variables spatialized pairwise (panels 5–7), and all variables
spatialized (panel 8).

Figure 7b shows that the first driver of spatial patterns of the LakeVap results is LSWT,
which is the minimum requisite for the model to produce evaporation maps. The spatial
pattern of Eh resembles that of LSWT if all meteorological variables are taken as spatially
averaged, while different patterns can be found if one or more atmospheric forcing is
spatially distributed. Since wind anomalies have opposite patterns with respect to LSWT,
the evaporation pattern resulting from applying spatially varying wind fields consists of
regions of positive anomalies induced by the dominant forcing in that area. Evaporation
is higher in the northern part, which is colder but subject to stronger winds, and in the
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southern shallow part, where winds are mild but temperatures tend to be higher. The effect
of spatially varying relative humidity and air temperature is less significant in the lake, as
both variables are inversely proportional to evaporation, such that those areas that were
associated with positive anomalies in Figure 7a are now related to smaller variations in
evaporation and vice versa. In particular, air temperature causes a general smoothing of
spatial variability: in fact, the air temperature has the same spatial pattern as LSWT; hence,
high evaporation rates tend to be prevented in the warmer areas of the lake, where the
gradient between air and water is reduced, and the same occurs in the areas of negative
anomalies. When summing up the contributions of two or more atmospheric variables, the
spatial distribution of evaporation progressively changes. Eh estimated with the LakeVap
tool using all WRF spatialized meteorological fields shows a spatial variation of the order of
+20% in the northern part of the lake and of −5% in the other regions. This variation comes
as an average over the entire time series with maximum/minimum variations exceeding
±30% (10th and 90th percentiles). The spatial pattern of the normalized evaporation
anomaly shows a clear gradient along the main axis of the lake. Higher evaporation occurs
along the central part of the northern trunk, with lower rates close to the northernmost
part and in the southern basin. This spatial pattern is due to the concurring effect of high
wind speeds, lower air temperature, and lower relative humidity in the northern basin,
which lead to high evaporation rates despite the region typically showing colder LSWT.
This pattern is the same obtained from the daily time series of instantaneous evaporation
from the Delft3D model (not shown) and cannot be obtained when a single value for
meteorological variables is used (e.g., from ERA5, MET1, MET2, or even spatially averaged
WRF data), as it is a direct consequence of the space-varying field of LSWT and all relevant
atmospheric forcings.

4. Discussion
4.1. Evaporation Estimates for Lake Garda

This study provides for the first time, to the best knowledge of the authors, instanta-
neous and daily evaporation estimates for Lake Garda. In 2008, a stable isotope analysis of
the lake hydrological balance failed to estimate the yearly evaporation rate. The order of
magnitude of instantaneous (0.1 ± 0.08 mm/h) and daily (3.1± 1.92 mm/day) evaporation
estimated from the entire LakeVap time series (with WRF spatially averaged forcing) is
consistent with the estimations/direct measurements of latent heat flux in lakes similar
to Lake Garda (e.g., Lake Constance, where [49] found the same seasonal behavior with
maxima in August and minima in March; Lake Geneva [22,67]).

The seasonal evolution of evaporation from Lake Garda is mainly driven by the
thermal gradients between air and water (as in [68]). Exceptions to the typical seasonal
values are associated with unexpected climatic conditions (e.g., synoptic-scale wind events,
exceptional cool or warm days [8,9,23]). As in [23], such exceptions are associated with
lake-wide higher/lower evaporation rates. We have seen that this also occurs in Lake
Garda in the example year 2016 reported in Figure 4.

We have shown that the LakeVap tool allows the generation of instantaneous and
daily evaporation maps of water bodies for relatively long time series, depending on the
revisiting time of sensors sensitive to thermal bands. LakeVap evaporation products are
hence first limited by the EO data availability, and in particular, (1) the operativity and
the revisiting time of passive satellites, from which LSWT products are derived, and (2)
the cloud coverage conditions during the satellite acquisitions. Thanks to the efforts of
the CCI-Lakes project, it is possible to have a homogenized and long time series of LSWT
products for 250 lakes in version 1 and 2000 lakes in version 2. This was possible thanks to
the exploitation and integration of different sensor acquisitions over the years [69]. The
integration of different sensor products increases the frequency of EO acquisitions, and the
progressive launch of newer and more technologically advanced sensors allows an increase
in both the frequency and quality of the LSWT product. The second requirement of LakeVap
is a comprehensive dataset of meteorological variables. Thanks to the availability of global
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meteorological datasets, such as ERA5 tested in this study, long-term evaporation rates can
be estimated. In the case presented here, ERA5 covers the entire period of availability of
CCI-Lakes LSWT maps for Lake Garda; hence, its use within LakeVap allows the evaluation
of the evolution of evaporation rates over 25 years, as reported in Figure 8. The figure
clearly shows the interannual and seasonal variation of evaporation rates in Lake Garda
and is consistent with what was already presented in the results on an hourly basis (e.g., in
Figures 5a and 6a).
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Figure 8. Daily evaporation from Lake Garda estimated with the LakeVap tool fed by CCI-Lakes
LSWT maps and ERA5 meteorological data (spatial average from daily evaporation maps). The gaps
in the time series highlight when LSWT maps are not available for more than 60 consecutive days.

Gaps are more frequent in the first years of the time series, when fewer sensors were
operational for the retrieval of LSWT and available maps are mainly from summer to
winter days. The average number of LSWT maps acquired annually during the period
1995–2006 is 19, while that from the period 2007–2019 is 74. Such a discrepancy is due to
the operativity of the AVHRR sensor which was launched onboard the Metop satellite at
the end of 2006 (CCI-LAKES-0029-PUG (https://climate.esa.int/media/documents/CCI-
LAKES-0029-PUG_v1.1_signed_CA.pdf, accessed on 28 April 2022)). A similar time series
can be obtained for any case study included in datasets such as CCI-Lakes without the need
for additional information, as global atmospheric/land models have worldwide coverage.

4.2. Sensitivity to Meteorological Forcing and Morphological Complexity of the Test Site

In Section 3.3, we have seen that the estimated evaporation depends on the meteoro-
logical forcing adopted, as also highlighted by [34]. Our results show that the ERA5 dataset
tends to underestimate the wind speed and overestimate the relative humidity (Figure 6),
leading to an overall underestimation of the evaporation compared to the reference esti-
mates from the Delft3D model (Table 3).

Based on a sensitivity analysis (reported in the Supplementary Material S2), we
found that a decrease of 50% of relative humidity can lead to an increase of 100% of
evaporation, but the relative humidity has been observed to vary around ±20% in our
realistic simulations covering 14 years and is generally better predicted by ERA5. As for the
wind speed, we found that an increase of 50% in wind speeds leads on average to an increase
of 25% in evaporation. Even if wind speed variations impact the evaporation estimates
relatively less than the relative humidity, in absolute terms, the effective weight of such
variations is heavier on evaporation because wind is more variable in space in our test site
(up to 100%) and is more difficult to predict by global models as ERA5. In this regard, we
recall that ERA5 is a global dataset and has a coarse resolution (0.1◦ lat/lon, corresponding
to 11 km approximately); hence, it ensures a limited description of the complex topography
of the surrounding region, while WRF and in-situ data are more representative of the
specific lake conditions. This is clear if the spatial resolution of ERA5 and WRF is compared

https://climate.esa.int/media/documents/CCI-LAKES-0029-PUG_v1.1_signed_CA.pdf
https://climate.esa.int/media/documents/CCI-LAKES-0029-PUG_v1.1_signed_CA.pdf
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in Figure 3b. The different cell resolution complicates the direct comparison between the
two models as well as between them and in-situ data from MET1 and MET2. From each
model, the points inside the lake were averaged to obtain a single value for each variable to
feed the LakeVap tool. Thus, the final value of the single atmospheric variable comes from
an average of 94 points for the WRF grid and 4 points for ERA5, while it is representative
of the exact location of the weather station for MET1 and MET2. It is also worth noting
that, in our analysis, we selected in-lake points only from ERA5 and WRF datasets. This
led to the exclusion of those ERA5 points that were potentially more representative of the
northern-basin atmospheric conditions (see Figure 3b), where wind speeds are generally
higher and air temperature and relative humidity lower (see e.g., Figure 7a). This selection
likely concurred with the general underestimation of evaporation rates obtained with the
ERA5 dataset.

The comparison between in-situ measured (MET1 and MET2) and model-derived
(ERA5 and WRF) meteorological variables for Lake Garda also demonstrates that it is
difficult to find a meteorological source that works best because even in-situ meteorological
stations (MET1 and MET2) are not perfectly consistent each other (Figure 6). This is due
to the particular morphology of Lake Garda, which is subject to the canalization of wind
currents in the northern part of the lake and thus to strong gradients of air temperature
and relative humidity between the northern and southern sub-basins. Thus, evaporation
patterns tend to follow the patterns of air masses traveling over the lake [23]. A significant
longitudinal gradient exists in LSWT patterns as well. LSWT heterogeneity drives the
evaporation pattern if uniform meteorological forcing is used (Figure 7). We have seen in
this regard that the choice of a single value representing the atmospheric conditions of the
entire lake might not be the best option if evaporation is intended to be analyzed in terms
of spatial gradients. Our results show that if all atmospheric variables are considered as
space varying, the area that evaporates the most in Lake Garda is located in the northern
part of the lake, where air temperature and relative humidity are lower, the wind is faster,
and the lake water is colder. This result reverses the LSWT-driven spatial pattern, which
instead shows that the most evaporating part is the southern basin, which is shallower
and generally warmer. A key role in this regard is played by the wind, which increases
by 10% (on a time average) the spatial variability of the predicted evaporation. This is
consistent with existing studies on lakes of the size and morphology similar to Lake Garda.
In Lake Geneva [22,24] stressed how important spatial variability is for determining the
heat budget of a lake. In particular, the authors of [24] ascribed to wind patterns most of
the spatial variability of surface heat fluxes from summer to winter.

However, the seasonal and interannual trends of evaporation can be still evaluated
by considering the spatially averaged evaporation from the lake. This quantity is well
predicted by the LakeVap tool also if uniform meteorological data are provided. The
constraint to this is that such uniform values have to be representative of the average
atmospheric conditions over the lake (Table 3 and Figure 6). In the case of the absence of
in-situ data for such verification, the combination of the LakeVap tool with global datasets
of LSWT (e.g., CCI-Lakes) and meteorological quantities (e.g., ERA5) provides at least a
quantitative estimate of the order of magnitude of instantaneous and daily evaporation
and of the daily heat balance (Figure 8).

4.3. The LakeVap Tool and Applicability to Other Lakes

In this contribution, we present an easy-to-use and fast tool for the production of
evaporation maps on an instantaneous and daily basis which can be potentially used
without the need for any in-situ data. The chosen formulation follows simple equations
of heat balance which are available in any physical limnology and oceanography manual.
For the latent heat flux from which evaporation is derived, we followed a classical Dalton
law. For the parameterization of the wind function, we followed the approach proposed
by [49], who in turn applied to Lake Constance the formulas proposed for Lake Ägeri
by [50] and for Lake Zurich by [70]. We assumed that these lakes have sufficient similarities
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to Lake Garda and alpine lakes of the same morphological and climatological features,
but further investigations should be conducted to verify such assumptions in our and
other study cases, ideally where direct measurements are available. We note in this regard
that direct measurements of evaporation are still a rarity among in-situ data and are not
available for our test site. For this reason, we validated the LakeVap estimates against a
validated hydro-thermodynamic model which was demonstrated to correctly reproduce
the heat balance in Lake Garda [35]. The agreement between LakeVap and Delft3D models
is promising since, despite the similar approach in the computation of evaporation rates, the
input data required and the costs of the two models are extremely different. While Delft3D
solves complex three-dimensional hydrodynamic equations and calculated the heat fluxes
based on atmospheric simulations, LakeVap only requires LSWT from satellite acquisitions
and meteorological data from a single source. Hence, the LakeVap tool represents a useful
alternative to expensive and time-demanding models for estimating evaporation and allows
for a quantification of water loss due to evaporation rates in those lakes and reservoirs
where in-situ measurements are still not available or impossible.

While existing RS-based methods (e.g., SEBAL, METRIC, SEBS) were formulated for
evapotranspiration and then, in some cases, eventually extended to inland water bodies,
LakeVap is specifically formulated for estimating evaporation from water surfaces. By using
LSWT, the issues related to the heat capacity of the lake are overcome. At the instantaneous
rate, the LSWT is already affected by the thermal inertia of the lake, and thus the hourly
evaporation intrinsically considers this effect. At the daily rate, the simplified heat balance
uses the net heat Qx,t to cool or warm the LSWT, while evaporation is simply computed
by following the Dalton approach and accumulated at every hourly iteration. Thus, in
contrast to other RS-based methods, the application of LakeVap to any lake or reservoir
is immediate and does not require any specific assumption. The coefficients of the wind
function must, however, be carefully checked, in order to parameterize the effect of wind
in the correct way for the study site. In this regard, the advantages and constraints of the
approach behind LakeVap are the same of existing mass transfer or bulk transfer methods
specified in Table 1.

Thanks to its flexibility and easy handling, the LakeVap tool can be integrated into
infrastructures supporting the management of water reservoirs. If applied to dammed lakes
devoted to the production of hydroelectricity, dam managers could assess water losses
due to evaporation and consequently tune the water withdrawal to have the maximum
proficiency and the minimum waste of the water resource. Furthermore, the combination
of water evaporation volumes with the plant energy production of a dam provides the
blue water footprint of the reservoir [71], and this is a way to quantify the impact of the
“consuming” capacity of a hydropower system on the production of energy. This is particu-
larly relevant in situations of water scarcity such as arid and semi-arid environments [14].
In addition, with the frequency and intensity of heatwaves set to increase, which can hit
urban areas more severely [72,73], nearby water bodies may become a vital mitigating
component. Lakes and rivers have been shown to have a significant cooling effect on the
nearby urban environment through evaporation using Landsat imagery [74]. However,
given the increase in atmospheric stilling in recent decades [2], the lower wind speeds
may reduce the potential for this. There are also likely to be applications in ecological
management as evaporation contributing to a significant decrease in the water level can
also alter the light climate in the littoral zone of lakes. This would be particularly important
in the south of Lake Garda, where a delicate ecological balance is maintained between
submerged aquatic plants, supporting an overwintering waterfowl population ranked the
most diverse and abundant in Italy [75,76]. Finally, the dependence of the LakeVap tool
on any type of satellite-derived LSWT data gives the possibility to enlarge its applicability
to even medium-small sized water bodies exploiting the relatively high spatial resolution
(30 m) of Landsat sensors.
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5. Conclusions

The main purpose of this contribution is to present and test the LakeVap tool for
the estimation of instantaneous evaporation rates in a relatively complex lacustrine en-
vironment where such information is already available from a validated and far more
complex hydro-thermodynamic model. The EO-based model LakeVap estimates evapo-
ration from water surfaces by requiring as inputs LSWT maps and a few meteorological
variables (i.e., air temperature, wind speed, air relative humidity, and solar radiation). The
model handles single (averaged) meteorological information as well as spatialized data
and produces instantaneous or daily evaporation maps of the case study. In this contri-
bution, the application to Lake Garda produced estimates comparable to the outputs of a
complex hydro-thermodynamic model specifically calibrated for the lake and consistent
with the evaporation estimates for similar lakes. We also showed that the choice of the
input meteorological variables can significantly affect the evaporation estimation, up to
doubling or halving the instantaneous evaporation rates in some cases. Furthermore, the
key meteorological variables impact the evaporation estimates in different ways. Among
them, the wind speed was found to be the variable that varies the most and has the greatest
effect on the estimation of evaporation in Lake Garda. Evaporation maps for Lake Garda
were interpreted based on the spatial variation of meteorological variables and LSWT,
which together contribute to the definition of the spatial patterns of evaporation from the
lake surface. The specific morphology of Lake Garda causes a great heterogeneity in both
atmospheric conditions and LSWT. This heterogeneity makes the choice of a single value
for representing the entire lake conditions not as straightforward as it can be in smaller or
more regularly shaped lakes, where the use of data either coming from space-averaged
model data or a single in-situ station can provide a good approximation of the meteorologi-
cal forcing involved in the evaporation process. In this regard, the LakeVap tool has the
potential to be applied to every natural or manmade water body on the Earth as long as its
shape and its extension can be mapped by thermal sensors providing LSWT maps.
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