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Abstract: Jiangsu coastal wetland has the largest area of the invasive plant, Spartina alterniflora
(S. alterniflora), in China. S. alterniflora has been present in the wetland for nearly 40 years and poses a
substantial threat to the safety of coastal wetland ecosystems. There is an urgent need to control the
distribution of S. alterniflora. The biological characteristics of the invasion process of S. alterniflora
contribute to its multi-scale distribution. However, the current classification methods do not deal
successfully with multi-scale problems, and it is also difficult to perform high-precision land cover
classification on multi-temporal remote sensing images. In this study, based on Landsat data from
1990 to 2020, a new deep learning multi-scale residual convolutional neural network (MRCNN) model
was developed to identify S. alterniflora. In this method, features at different scales are extracted
and concatenated to obtain multi-scale information, and residual connections are introduced to
ensure gradient propagation. A multi-year data unified training method was adopted to improve the
temporal scalability of the MRCNN. The MRCNN model was able to identify the annual S. alterniflora
distribution more accurately, overcame the disadvantage that traditional CNNs can only extract
feature information at a single scale, and offered significant advantages in spatial characterization.
A thematic map of S. alterniflora distribution was obtained. Since it was introduced in 1982, the
distribution of S. alterniflora has expanded to approximately 17,400 ha. In Jiangsu, the expansion
process of S. alterniflora over time was divided into three stages: the growth period (1982–1994), the
outbreak period (1995–2004), and the plateau period (2005–2020). The spatial expansion direction
was mainly parallel and perpendicular to the coastline. The hydrodynamic conditions and tidal flat
environment on the coast of Jiangsu Province are suitable for the growth of S. alterniflora. Reclamation
of tidal flats is the main factor affecting the expansion of S. alterniflora.

Keywords: Spartina alterniflora; Jiangsu; time series Landsat images; deep learning; MRCNN; tidal
flat reclamation

1. Introduction

Spartina alterniflora (S. alterniflora), which is a perennial herb, is native to the Atlantic
coast of North America and inhabits tidal environments, such as estuaries and bays [1].
With its robust adaptability and reproductive ability, it quickly takes root and spreads in a
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suitable environment and can become the dominant species in salt marsh wetlands [2,3].
S. alterniflora was introduced to the coast of Jiangsu Province in China in approximately 1982,
and it has played a substantial role in promoting the deposition of silt to form new land [4].
S. alterniflora salt marsh has become the main target of reclamation on the Jiangsu tidal flat.
However, according to recent studies [5–7], S. alterniflora poses an important ecological
threat to the coastal environment of Jiangsu, replacing native species, changing the foraging
environment for birds, blocking tidal flows and rivers, and reducing biodiversity. Tidal flat
reclamation has an important influence on the growth of S. alterniflora and the stability of
ecosystems [8]. Reclamation can change the hydrodynamic environment of tidal flats [9]
and affect the distribution of S. alterniflora [10]. At present, the scientific management of
S. alterniflora along the coast of Jiangsu requires sufficient quantitative monitoring data
to deal effectively with the ecological consequences of the invasion and expansion of
S. alterniflora. A long time series of monitoring data over a large area is essential for the
ecological protection and development of coastal wetlands.

Compared with traditional field surveys, remote sensing technology has the advan-
tages of large area monitoring and long time series data. It can obtain information about
the temporal and spatial distribution of S. alterniflora effectively and accurately [11,12].
Remote sensing has always been considered one of the most effective tools for monitoring
invasive plants [13]. Generally, satellite imagery with medium spatial resolution, such
as Landsat data, is suitable for monitoring the distribution of S. alterniflora over a large
area [11,12,14]. The Landsat program is by far the longest earth monitoring satellite project,
and its series of satellites have intensive image acquisition capabilities, which make it
easier to obtain high-quality images [15]. The availability of remote sensing data and the
development of computer information technology provide a reliable choice for large-area
continuous monitoring of S. alterniflora. However, the classification accuracy of coastal
wetland ecosystems with complex land cover patterns needs to be further improved [16].
Most of the classification methods used to date are traditional machine learning algorithms,
such as maximum likelihood, support vector machine, and random forest [17–19]. Some
researchers have also classified S. alterniflora using training decision rules [20,21]. These
methods have limited ability to deal with complex function models, and their level of au-
tomation is low, which makes it difficult to improve the classification accuracy in complex
coastal wetland scenes. Therefore, extracting information on S. alterniflora from a large
area and long time series remote sensing data is still a challenging task that requires the
development of more powerful classification methods.

Deep learning, which essentially transforms the underlying attributes of the original
data into more robust abstract features by learning multi-layer nonlinear network structures
and realizes a powerful ability to learn the essential features of data from the sample, is
a new field in machine learning [22]. Using a convolutional neural network (CNN) to
automatically extract features from remote sensing data has greatly improved the classi-
fication accuracy of ground objects in complex environments [23–25]. In deep learning,
CNN is the dominant supervised learning algorithm for classification because it has proved
to be superior to the traditional machine learning classification methods [26]. The use of
CNN has made a series of breakthroughs in many remote sensing applications, including
classification, semantic segmentation, and object detection [27–29]. In recent years, deep
learning has been widely used in wetland vegetation classification. For example, Guo et al.
used a mangrove extraction network (ME-Net) to classify mangroves on Hainan Island,
with an overall accuracy of 97.48% for mangrove extraction [30]; Hosseiny et al. used the
Sentinel dataset and the WetNet model to classify complex wetland areas in Newfoundland,
Canada. The experiments showed that WetNet was superior to other comparative models
in classification accuracy and processing time [31]; Mohammadimanesh et al. also proved
the effectiveness of residual units in the classification of coastal wetland vegetation [32].
However, relatively little research is focused on the identification of S. alterniflora distribu-
tion in long time series data using deep learning. At present, the research mainly focuses
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on identification from small-area or mono-temporal image data [33,34] and the analysis of
spectral phenological characteristics of S. alterniflora [35].

The geographical features of China’s coastal zone are complicated and diverse. S. al-
terniflora shows different invasion abilities in different areas, and the competitive relation-
ship between S. alterniflora and local vegetation also varies. The coastal zone of Jiangsu
has distinct geographical features, with a straight muddy coast from north to south, and it
has the largest tidal flat area in China. In Jiangsu Province, S. alterniflora has invaded and
expanded for nearly 40 years, and it has the largest distribution area in China. S. alterniflora
appears at various states and scales during the invasion process, such as small discrete
patches at the early stage of invasion; connected strips, large broken patches, and mixed
patches at the mid-invasion stage; and large monoculture patches at the end of the invasion
stage. These different states exist at the same time in any intrusion area. For the identifica-
tion of ground objects such as S. alterniflora with complex growth states, the classical CNN
model causes the gradient to disappear as the number of layers increases. Therefore, in the
current study, the MRCNN model and post-processing method were proposed to obtain
multi-temporal identification of S. alterniflora. An MRCNN combines the advantages of
the Inception [36,37] and ResNet [38,39] CNN models. First, the MRCNN extracts features
on different scales and obtains rich multi-scale information [40], and second, the residual
structure is used to directly connect the shallow and deep layers, and the larger gradient is
directly propagated to the deeper layer, which reduces the computational complexity. Using
long time series remote sensing data for the large coastal wetland area in Jiangsu, this study
proposed a deep learning MRCNN model suitable for the identification of S. alterniflora in
Jiangsu to expand the application potential of deep learning. A unified training method
for multi-temporal Landsat data was also adopted to improve the temporal scalability of
the deep learning model. Field survey data, Landsat data, and the classification method
proposed in this study were used to identify S. alterniflora in a complex coastal wetland en-
vironment and a thematic map of S. alterniflora distribution in Jiangsu Province from 1990 to
2020 was created. Finally, this study analyzed the influencing factors and the temporal and
spatial rules of S. alterniflora expansion to provide reliable data and technical support for
remote sensing monitoring and scientific management of S. alterniflora in Jiangsu Province.

2. Materials
2.1. Study Area

The study area is located along the coast of Jiangsu Province, China (between 119◦21′E
and 121◦55′E, 31◦33′N and 35◦07′N) (as shown in Figure 1). The coastline of Jiangsu
Province has a total length of 954 km. It stretches from the Xiuzhen estuary in the north to
the estuary of the Yangtze River in the south and faces the Yellow Sea in the east. There are
three cities in the coastal zone of Jiangsu, namely Lianyungang, Yancheng, and Nantong.
Controlled by the monsoon climate, the coastal zone of Jiangsu is located in the transition
zone between the north subtropical zone and the warm temperate zone and is influenced
by both maritime and continental climates. The average annual temperature is 14 ◦C, and
the average annual rainfall is 1000 mm [41]. The average tidal range along the coast of
Jiangsu is 1–4 m. Many rivers enter the sea in this region, and the tidal salinity is low. There
is a large muddy tidal flat, and the upper part of the intertidal zone suitable for the growth
of S. alterniflora can be up to 4 km wide [42]. Both the climate and the tidal flat sediment
provide suitable conditions for the growth and expansion of S. alterniflora [43]. More than
90% of the coastal areas in Jiangsu are muddy, and Jiangsu currently has the largest area
of tidal flats in China [44]. The Red-Crowned Crane National Nature Reserve (RCCNNR)
and the Elk National Nature Reserve (ENNR) are both located in Yancheng, central Jiangsu
Province. The wetland vegetation in the reserves mainly includes S. alterniflora at the
forefront of the tidal flat, Phragmites australis in freshwater areas, and Suaeda in the high
intertidal zone [45]. Yancheng has become the largest area of S. alterniflora in China [46].
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Figure 1. Coastline of the three major cities in Jiangsu Province: Lianyungang, Yancheng, and
Nantong. The red triangles are the site of field investigation. The green areas are the Yancheng
National Nature Reserve.

Owing to policy changes, the coastline of Jiangsu Province has been greatly disturbed
by human activities. Since 1996, a strategy of Marine Sudong, which is characterized by
large area development, has been implemented in the Yancheng coastal wetland, accel-
erating the pace of reclamation. Large areas of coastal wetlands have been used to build
artificial aquaculture ponds. In 2019, the Yancheng Nature Reserve was listed as a World
Natural Heritage Site, which restricts and regulates further human activities [45].

2.2. Data and Pre-Processing

Jiangsu Province introduced S. alterniflora in many areas in 1982 [4]. In the incubation
period of early introduction (1982–1986), S. alterniflora cannot be identified in Landsat
images with a spatial resolution of 30 m. Therefore, this study obtained a total of 21 original
Landsat images for seven time periods at 5-year intervals: 1990, 1995, 2000, 2005, 2010, 2015,
and 2020 (as shown in Table 1). The collected images were cloud-free in the study area.
The time of the image data is very important for accurately distinguishing S. alterniflora
from other salt marsh plants. On the basis of the local phenological characteristics of S.
alterniflora, the selected remote sensing images were concentrated in August–October, when
S. alterniflora was in its most vigorous growth period [47,48], and its spectral features were
well differentiated from indigenous vegetation. However, because of the large study area
and the need to avoid cloud-cover in the images, it was difficult to obtain images that
completely covered the study area and met the monthly conditions within a single year.
Therefore, missing images were taken from adjacent years to minimize the data loss caused
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by cloud cover. In this paper, a series of pre-processing of Landsat data was performed
using ENVI 5.3 software. The digital numbers were converted to radiance by radiometric
calibration. The atmospheric correction method used was Quick Atmospheric Correction
(QUAC). Finally, band combination, image mosaicking, and clipping were performed.
Because the data came from different sensors with different spatial resolutions, to unify
the data to a spatial resolution of 30 m, this study did not fuse the panchromatic and
multispectral bands in Landsat 8 OLI data. The reason was that compared with Landsat
8 OLI, Landsat 5 TM lacked a panchromatic band with a spatial resolution of 15 m. A
total of six original bands of Red, Green, Blue, NIR, SWIR-1, and SWIR-2 were selected.
The wavelength ranges of NIR, SWIR-1, and SWIR-2 of Landsat 5 TM were 0.760–0.900,
1.550–1.750, 2.080–2.350, respectively. The wavelength ranges of NIR, SWIR-1, and SWIR-2
of Landsat 8 OLI were 0.845–0.885, 1.560–1.660, and 2.100–2.300.

Table 1. Overview of Landsat data after band combination used in this study. (Date format:
month/day/year).

Period Sensor Imaging Time Resolution (m) Number of
Bands

1990 Landsat 5 TM
10/21/1989

30 610/30/1989
10/31/1990

1995 Landsat 5 TM
08/03/1995

30 608/12/1995
09/27/1995

2000 Landsat 5 TM
08/21/2000

30 609/17/2000
10/10/2000

2005 Landsat 5 TM
08/20/2004

30 610/08/2005
10/17/2005

2010 Landsat 5 TM
09/19/2009

30 610/03/2009
10/31/2010

2015 Landsat 8 OLI
08/03/2015

30 609/18/2015
10/13/2015

2020 Landsat 8 OLI
10/31/2019

30 608/16/2020
09/08/2020

2.3. Field Investigation

A field investigation of S. alterniflora in the coastal wetlands of Jiangsu Province was
conducted in October 2020, collecting data from 54 survey sites, 52 drone flights, and
hundreds of photographs (as shown in Figure 2). The survey sites were concentrated in
Yancheng because Yancheng is a typical distribution area of S. alterniflora in the coastal
wetlands of Jiangsu Province. The site distribution is shown in Figure 1. The photographs
taken by the drone reflect the distribution characteristics of S. alterniflora at various scales
in the coastal wetlands of Jiangsu Province. On the basis of the drone photographs, the
spectral characteristics, and growth characteristics of S. alterniflora, this study obtained a
ground truth map of S. alterniflora in Jiangsu Province using ArcGIS 10.2 software. This map
was used as the label image of the deep learning model. Figure 3 illustrates the spectral
characteristics of S. alterniflora and several other ground feature types. It can be seen that
the types were well distinguished in the wavelength range of the NIR band.
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photographed by drone at an altitude of 30 m; (f) drones used to acquire field data. The drone model
is DJ Mavic 2.
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3. Methods
3.1. MRCNN Structure

At present, the main multispectral pixel-level classification methods include support
vector machine (SVM), random forest (RF), and neural networks. A convolutional neural
network (CNN) is a feedforward neural network that uses convolutional operations and has
a deep structure. According to literature and experiments [27–29], CNNs are widely used
owing to their excellent performance. Thus, a CNN was employed for experimentation
and prediction, as shown below.

The performance of the visual geometry group network does not always improve as
the number of layers increases, mainly because of the vanishing gradients in classical CNNs.
To reduce the computational cost and ensure that the gradient was propagated in deeper
layers, we proposed two representative networks: Inception V1 and ResNet. Inception V1
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performs feature extraction and pooling at different scales to obtain information at multiple
scales and then superimposes the features for output. Inception V1 can greatly reduce the
number of calculations needed to ensure the propagation of gradients, which is its most
important advantage [36,37]. ResNet uses residual connections to propagate gradients, that
is, the shallower layers are directly connected with the deeper layers. Directly propagating
larger gradients into deeper layers is both understandable and efficient [38,39]. The focus
of this study was the temporal and spatial distribution of S. alterniflora in Jiangsu Province
over the past 30 years. S. alterniflora has been found at different scales, such as small discrete
patches, connected strips, large broken patches, and mixed patches from the growth period
to the outbreak period and then to the plateau period. Inspired by CD-CNN, Inception V1,
and ResNet, a multi-scale residual convolutional neural network (MRCNN) was proposed.
The structure is shown in Figure 4. It has the characteristics of deep residual network
skip-layer identity mapping and also overcomes the disadvantage that traditional CNNs
can only extract feature information at a single scale.
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Figure 4. Overall construction of proposed multi-scale residual convolutional neural network (MR-
CNN).

The MRCNN was divided into three blocks: the inception block, deep residual block,
and classification block. The main structure of the inception block used three convolutional
layers with different convolution kernels to simultaneously extract the features of the
samples. The sizes of convolution kernels set in this study were 1 × 1, 3 × 3, and 5 × 5,
respectively. Then, the extracted features of each convolution layer were concatenated.
The main role of the inception block was to extract multi-scale features and reduce com-
putational complexity. In this study, a batch normalization layer was applied between the
convolution layer and the rectified linear unit (ReLU) activation layer to reduce the drift of
the internal covariance and accelerate the convergence of the network. The batch normal-
ization layer normalizes the features to a fixed distribution. The specific operations are:

x̂i =
xi − µ√
σ2 + ε

(1)

yi = γx̂i + β (2)

where x̂i and yi are the input and output features of the ith kernel, respectively; the
parameters γ and β represent the scale displacement; ε is a constant close to 0.

The depth residual block was then used to directly connect the features of the shallow
layers to the deep layers to ensure gradient propagation. During the forward propagation
of the algorithm, a skip connection is formed between convolutional layers to realize the
identity mapping of input and output. The structure of the convolution layer + ReLU
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activation function + convolution layer was used to better extract features and suppress
gradient loss. Each convolution kernel was set to 1 × 1 to reduce computational complexity
and save time. Assuming that x represents input and F(x) represents residual mapping,
the output of the residual unit is:

H(x) = F(x) + x (3)

When the residual F(x) = 0, the function of the residual unit is identity mapping. The
output of layer L is:

H(xL) =
L−1

∑
i−1

F(xi) + xl (4)

The inverse gradient is:
∂loss
∂xl

=
∂loss

∂H(xL)
(5)

where ∂loss
∂xl

is the gradient descent of the loss function.
In the final classification block, we added a dropout layer to enhance the generalization

of the model. During the training process, the network randomly discards some neurons,
which destroys the close interaction between features so that the network does not rely on
local features too much. In this block, all three-dimensional features were flattened into
one-dimensional features for subsequent classification. The classification block used a fully
connected layer to map features to class numbers and then used the Softmax activation
function and cross-entropy loss function. The Softmax function is defined as:

f (xi) =
exi

∑N
i=1 exi

(6)

where the input and output of the Softmax function are xi and f (xi), respectively, N is the
number of categories, and f (xi) is the probability value predicted to be class i. The activa-
tion function helps with the pixel-level classification of S. alterniflora and background data.

3.2. Unified Training Method Based on MRCNN

The accuracy and applicability of the dataset directly determine the classification
effect of the model. Because the distribution area of S. alterniflora in Jiangsu Province was
relatively small in 1990, and the sample distribution was extremely unbalanced, the current
study began to create a data set from the data in 1995. To improve the temporal scalability
of the deep learning model, the method of training data adopted a unified training of the
multiphase data approach instead of training a model for the data of each phase separately.

A random sliding window clipping method was used to obtain small sample blocks
with a size of 9 × 9. The 54 field survey sites in 2020 were selected as the sample selection
areas for S. alterniflora. Samples were randomly selected in 1995, 2000, 2005, 2010, 2015,
and 2020 from locations that covered 60% of the area of S. alterniflora. The number of
background samples was 10 times that of the corresponding S. alterniflora samples every
year. Figure 5 shows the spatial distribution of training samples in 2020 as an example. To
capture the spatial characteristics of S. alterniflora better, a six-year sample was used as the
training dataset. The diversity and variability of training data sets were increased through
data standardization and data expansion [49]. Table 2 shows the training sets from 1995 to
2020. In this six-year period, we selected a total of 7131 S. alterniflora samples and 71,310
background samples, giving a total of 78,441 samples. Eighty percent of the samples in the
training set were used for model training, and 20% of the samples were used for model
validation. All the remaining data in the coastal areas of Jiangsu Province were used to test
the model, and the identification and evaluation of S. alterniflora in each year were examined.
The number of test samples from 1995 to 2020 is 312,527, 303,222, 301,792, 301,044, 300,791,
and 300,384 respectively. In this process, different spatially and geographically independent
samples were acquired for training and testing to prevent information from leaking from
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the test dataset to the model. This ensured that the classification algorithm had good
generalization ability, which was beneficial for analyzing the temporal and spatial change
in S. alterniflora. Table 3 shows the composition of test samples per year, and the ratio of the
number of model training samples to the number of test samples per year is about 1:3.8.
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Figure 5. Spatial distribution of training samples in coastal Jiangsu in 2020. The number of samples
is 15,983. The three pictures on the right are the enlarged details of the spatial distribution of the
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Table 2. Distribution of training samples of MRCNN model.

Period Number of S.
alterniflora Samples

Number of
Background

Samples
Total

1995 349 3490 3839
2000 1195 11,950 13,145
2005 1325 13,250 14,575
2010 1393 13,930 15,323
2015 1416 14,160 15,576
2020 1453 14,530 15,983
Total 7131 71,310 78,441
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Table 3. Distribution of test samples from 1995 to 2020.

Period Number of S.
alterniflora Samples

Number of
Background

Samples
Total

1995 233 312,294 312,527
2000 797 302,425 303,222
2005 884 300,908 301,792
2010 929 300,115 301,044
2015 945 299,846 300,791
2020 969 299,415 300,384

The research area of the current study was the coastal wetland on the Jiangsu coastline,
and the study aimed to explore changes in the distribution of S. alterniflora in the coastal
wetland. Considering the broad coverage of the data used in this study, there were more
than 2.5× 107 pixels per year. At the same time, in the test data, the number of S. alterniflora
samples differed greatly from the number of background samples, which might have
resulted in serious background misclassification in binary classification. To avoid this, the
output results of the MRCNN were post-processed in this paper using ArcGIS 10.2 software.
According to the complex growth characteristics and environment of S. alterniflora, the
classification results were optimized using artificial coastline information. In this study,
only the classification results on the seaward side were retained, and the classification
results on the landward side were discarded. This helped guarantee the accuracy of the
global classification results. The output of the MRCNN was a binary image representing
S. alterniflora and the background. The whole process flow is shown in Figure 6. The final
distribution map of S. alterniflora in each period was obtained by performing morphological
processing such as dilation, erosion, and noise elimination on the post-processing results
by MatlabR2020a software.
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Figure 6. Unified training method based on MRCNN. The left part shows the input multi-temporal
dataset, the middle part shows the three main blocks of MRCNN, and the right part shows the
post-processing and morphological processing of the classification results to obtain the thematic map
of S. alterniflora distribution.

In this set of experiments, accuracy, recall, precision, and F1-score were used as metrics.
S. alterniflora was regarded as the positive class, and the others, such as vegetation, tidal
flat, buildings, and water bodies, as the negative classes. The pixel value of S. alterniflora
in the global truth map was set to 1, and the other pixel values were set to 0. Accuracy
is the ratio of the number of correctly predicted samples to the total number of samples,
and precision is the ratio of the number of correctly predicted positive samples to the total
predicted positive samples. Recall is the ratio of the number of samples that are correctly
predicted to be positive to the total number of samples that are actually positive, while
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the F1-score is a quantitative indicator for data with an unbalanced sample distribution,
which measures the balance between accuracy and recall rate. Accordingly, the F1-score is
formulated as follows:

F− 1score = 2× Precision× Recall
Precision + Recall

(7)

where precision and recall are obtained from:

Precision =
True positives

True positives + False positives
(8)

Recall =
True positives

True positives + False negatives
(9)

4. Results and Analysis
4.1. Testing of the Model

To better identify the advantages of the proposed MRCNN, a set of comparative
experiments between CNNs were conducted. The selected comparison algorithms were
CascadeNet and dual-tunnel CNN. CascadeNet [50] is a simple and efficient residual
network. The dual-tunnel CNN [51] is a network specially designed for hyperspectral
images and multispectral images. It contains a branch dedicated to extracting spatial
information and a branch dedicated to extracting spectral information. These two CNNs
are proven algorithms for efficient multispectral classification and are more than sufficient
as comparison algorithms. The deep learning experiments were performed on a computer
equipped with NVIDIA RTX2070S discrete graphics, using Pycharm2021 (Python) as the
programming environment. The input patch size of the MRCNN model was 9 × 9, the
number of channels was 6, the batch size was 500, the number of iterations was 157, and
the number of epochs was 1000. The loss curve and accuracy curve of MRCNN during the
training process are shown in Figure 7. The model converged after 1000 epochs.
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Table 4 shows that the accuracy and recall reached 99% and 95%, respectively. Al-
though it is not objective to directly compare the two metrics, such high accuracy and recall
indicate that the effectiveness of all three algorithms is high. Owing to the substantial
difference between the number of samples of S. alterniflora and the number of background
samples, the precision was relatively low. Even in the period when the distribution area of
S. alterniflora was the largest in Jiangsu, the percentage of S. alterniflora pixels on the satellite
images used in this study was only 0.8%. However, the vast majority of S. alterniflora
samples were identified by the MRCNN according to the recall and accuracy indicators. To
reduce the impact of low precision caused by the large number of image pixels and the small
proportion of target pixels, this study improved the precision through post-processing.
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The results of the post-processing served for the subsequent analysis and discussion of
the invasion process of S. alterniflora. Meanwhile, the F1-score was used to scientifically
and effectively measure the indicators of the algorithms in the binary classification. This
study focused on using the F1-score to evaluate the advantages of MRCNN over other
comparative algorithms.

Table 4. The extraction results (%) of S. alterniflora each year along the coast of Jiangsu.

Period Method Accuracy Recall Precision F1-Score

1995
CascadeNet 99.94 99.45 37.57 54.54

Dual-tunnel CNN 99.95 99.61 38.94 55.99
MRCNN 99.95 99.68 41.99 59.09

2000
CascadeNet 99.63 97.43 23.58 37.97

Dual-tunnel CNN 99.75 96.95 31.54 47.59
MRCNN 99.70 98.35 27.68 43.20

2005
CascadeNet 99.78 98.45 35.31 51.98

Dual-tunnel CNN 99.69 98.74 28.05 43.69
MRCNN 99.82 95.97 40.99 57.45

2010
CascadeNet 99.61 97.79 26.84 42.12

Dual-tunnel CNN 99.60 98.38 26.42 41.65
MRCNN 99.70 98.44 31.84 48.12

2015
CascadeNet 99.62 97.60 29.11 44.84

Dual-tunnel CNN 99.42 98.75 21.33 35.08
MRCNN 99.62 97.42 28.95 44.64

2020
CascadeNet 99.76 97.62 39.83 56.58

Dual-tunnel CNN 99.64 98.82 31.23 47.46
MRCNN 99.78 97.94 42.07 58.86

Table 4 shows the classification result of the MRCNN. The F1-score of the MRCNN
was the highest in 1995, 2005, 2010, and 2020. In 2000 and 2015, there was only a small
gap between the F1-score of the MRCNN and that of the highest model. It is normal for
results to vary from year to year owing to differences in imaging conditions. However,
in general, the performance of the MRCNN was the best among the three algorithms in
most years. After post-processing, the classification precision of S. alterniflora was greatly
improved, and the annual F1-score was more than 80%, indicating that the combination of
the MRCNN and post-processing method was suitable for the identification of S. alterniflora
in Jiangsu coastal wetland from long time series data. The results of post-processing are
shown in Table 5.

Table 5. Classification precision (%) after post-processing.

Period Method Precision F1-Score

1995 MRCNN + Post Processing 70.23 82.40
2000 MRCNN + Post Processing 69.33 81.32
2005 MRCNN + Post Processing 73.67 83.35
2010 MRCNN + Post Processing 68.28 80.63
2015 MRCNN + Post Processing 76.55 85.73
2020 MRCNN + Post Processing 75.68 85.38

Taking 2020 as an example, the identification and comparison of S. alterniflora in several
typical local areas are shown in Figure 8. For each group, the left image is the combination
of the NIR-R-G bands, the middle image is the classified comparison map, and the right
image is the ground truth map. All three models can identify the S. alterniflora samples
well, and the contours of the S. alterniflora patches are also relatively consistent. However,
the MRCNN model was more accurate, especially in reducing misclassified pixels. On the
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premise of ensuring the accuracy, the MRCNN method combined with post-processing
proposed in this study greatly reduced the number of misclassified pixels, which met the
requirements for S. alterniflora identification in this study.
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4.2. Temporal and Spatial Distribution of S. alterniflora
4.2.1. Classification of S. alterniflora

The experiments showed that the MRCNN model was able to identify S. alterniflora in
long time series data. In this study, the classification results of S. alterniflora in the coastal
wetlands of Jiangsu Province were obtained through the MRCNN plus post-processing
method and Landsat data from 1990 to 2020. Before determining the area of S. alterniflora,
it was necessary to manually correct the misclassified and missed classification pixels.
After morphological processing, the thematic map of S. alterniflora distribution was finally
created (as shown in Figure 9). This allowed better analysis of changes in the temporal and
spatial distribution of S. alterniflora.

In 1990, S. alterniflora was first detected at the estuaries of the Linhong River, Guan
River, Guboshanghou River, Sheyang River, and Dongtai River. Small patches of S. alterni-
flora also appeared in the south of the RCCNNR, while there was no sign of S. alterniflora
invasion in the ENNR. In 1995, the north–south length of the S. alterniflora patch south of
the Sheyang estuary was 6.2 km, while the length of the S. alterniflora strip in Lianxinggang
reached 19.9 km. By 2000, the coastal areas of the RCCNNR and ENNR had been sur-
rounded by S. alterniflora strips, and the nature reserves protected S. alterniflora as well as
protecting indigenous species. S. alterniflora strips were distributed from the Sheyang River
estuary to the south of the Dongtai River estuary, spanning 111.5 km from north to south,
and S. alterniflora strips approximately 12.4 km long had formed near the Linghong River
estuary. In 2005, the distribution of S. alterniflora in Yancheng City tended to be saturated.
From 2010 to 2020, the strips of S. alterniflora were substantially damaged, especially in the
Dafeng port area.
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4.2.2. Temporal Changes in S. alterniflora

The distribution statistics of S. alterniflora in Jiangsu Province are shown in Figure 10.
In the current study, the expansion of S. alterniflora was divided into three stages: the
growth stage, outbreak stage, and plateau stage. S. alterniflora was in the growth stage
before 1995. From 1996 to 2005, it entered the outbreak stage, with a rapid growth rate of
1186 ha/year, mainly distributed in Yancheng. After 2005, it gradually entered the plateau
stage. By 2020, the distribution area of S. alterniflora in Jiangsu Province had reached
17657.14 ha, an increase of nearly 23.6 times compared with 1990. The changing trend
in S. alterniflora in the three coastal cities was roughly consistent with the general trend
in Jiangsu Province. S. alterniflora was first introduced in Yancheng (marked in red in
Figure 10). After several rounds of trial planting from 1982 to 1986, S. alterniflora entered
the outbreak stage earlier in Yancheng than elsewhere. From 1990 to 1995, the expansion
rate had reached 496.9 ha/year.
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Figure 10. Statistical data of S. alterniflora area (ha) in Jiangsu Province from 1990 to 2020. The red
mark is the introduction zone of S. alterniflora in Yancheng. (a–c) Statistics on the area of S. alterniflora
in three coastal cities. (d) The distribution proportion (%) of S. alterniflora in three coastal cities from
1990 to 2020. (e) Statistical table of the area of S. alterniflora in Jiangsu Province.

4.2.3. Spatial Changes in S. alterniflora

S. alterniflora patches were defined in this study with a 2-pixel gap (60 m) (Figure 11h).
There were two kinds of spatial variation of the centroid of S. alterniflora patches. The
first one was an expansion parallel to the coastline, which covered the whole range of
muddy tidal flats in Jiangsu. The second one was expansion in the direction perpendicular
to the coastline, with a relatively small expansion range; the farthest distance to the sea
is approximately 4 km. Figure 11 shows that the centroid of S. alterniflora patches in
Yancheng from 1990 to 2005 expanded from the south and the north to the middle to
saturation. During this period, S. alterniflora was in the outbreak period, with active
artificial reclamation activities and an obvious increase in the number of broken patches.
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From 2005 to 2010, the patch centroid of S. alterniflora in the RCCNNR and ENNR expanded
to the north and south sides to find new ecological niches. Owing to the strengthening
of the management of national nature reserves and the reduction of human interference
factors, the broken patches of S. alterniflora gradually connected, resulting in a decrease in
the number of patches. The number of patches of S. alterniflora in Jiangsu Province was
the largest in 2005, which also marked the end of the outbreak stage of S. alterniflora in
Jiangsu Province.
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of S. alterniflora patches in Jiangsu each year.

In Jiangsu Province, the patches of S. alterniflora were most densely distributed in
Yancheng, and the changes were most obvious. There are two national nature reserves in
the area from Dawa Port to the estuary of Dongtai River, where the patch distribution of S.
alterniflora showed the most obvious changes. The RCCNNR is located between Xinyang
Port and Doulong Port. Mudflats were widely distributed in this area, and these were
replenished by natural sedimentation. The centroid change of S. alterniflora patches from
Xinyang Port to Doulong Port from 1995 to 2000 is shown in Figure 12a. The number of
S. alterniflora patches in the outbreak stage increased significantly, and a large number
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of ecological niches were suitable for invasion by S. alterniflora. These patches expanded
significantly towards the sea, with an average width of 1.1 km. Figure 12b shows the
changes in the centroid of S. alterniflora patches from Doulong Port to Dafeng Port from
2000 to 2010. Artificial reclamation led to the seaward expansion of S. alterniflora patches
between Doulong Port and Dafeng Port. The number of S. alterniflora patches in this area
was clearly reduced, and the expansion distance was relatively small, with an average of
0.8 km to the sea.
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5. Discussion
5.1. The Relationship between Inception Block and Patch Characteristics

The depth and width of the network structure are very important when extracting
S. alterniflora patches with complex growth states from remote sensing images. The com-
parison algorithms, CascadeNet, and dual-tunnel CNN, selected in this study mainly used
a 3 × 3 single scale convolutional kernel to extract features. Research [52] showed that
using a single convolution kernel can easily lead to filter co-adaptation, resulting in the
misclassification of background pixels and target pixels and unclear patch boundaries of
S. alterniflora. Therefore, the Inception block of the MRCNN network proposed in this study
used three convolutional layers with different convolution kernel sizes to extract sample
features simultaneously.

After many experiments and comparisons, this study finally selected three convolution
kernels: 1× 1, 3× 3, and 5× 5. When the same receptive field is reached, as the convolution
kernel decreases, fewer parameters are needed in the training process. As the convolution
kernel increases, the number of parameters increases, the complexity of the model increases,
and the convergence of the model becomes more difficult. For images with a 30 m spatial
resolution, the recognition ranges of 1 × 1, 3 × 3, and 5 × 5 convolution kernels are
equivalent to 9 × 102 m2, 2.7 × 103 m2, and 2.25 × 104 m2, respectively. These scale
capacities were sufficient to accommodate the patch feature information of S. alterniflora
in various growth states (as shown in Figure 13). The function of the 1 × 1 convolution
layer was mainly to increase the depth of the network, add nonlinear information, and also
reduce the dimension and parameters in the training process. For the 3 × 3 convolution
layer, the detailed information of small patches could be better captured, and the ability
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to distinguish the boundaries of different objects was enhanced. For the boundaries and
mixed zones of S. alterniflora patches, a 5 × 5 convolution layer could obtain smoother
features than small-sized convolutional kernels. The multi-scale convolution interaction
allowed different strategies to be used to serve the feature information at different scales.
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5.2. Expansion Factors of S. alterniflora

According to literature [53,54], the seed yield of S. alterniflora and the silting environ-
ment of offshore tidal flats are the main factors that affect the expansion of S. alterniflora.
The germination rate of S. alterniflora seeds on the offshore tidal flat and sporadic patches
was significantly higher than that inside the large patches. The sedimentation rate of the
offshore tidal flat was mainly affected by natural sedimentation and artificial reclama-
tion [55–57]. Artificial reclamation of the tidal flat changed its sedimentary environment.
The decrease in tidal sediment carrying capacity led to the acceleration of the sedimentation
rate, promoting the expansion of S. alterniflora on the offshore tidal flat [58], and eventually
connecting the strips with larger spans. At the same time, excessive reclamation destroyed
the habitat for S. alterniflora, split S. alterniflora patches, and reduced seed yield, which
hindered the expansion of S. alterniflora.

The implementation of artificial reclamation had a great influence on the coastal
environment, and the construction of reclamation changed the hydrodynamic conditions
and sediment deposition rate in this area [59]. The tidal flat reclamation area located in
Haizhou Bay in the north of Jiangsu Province was substantial, resulting in the siltation of
the upper reaches of the Linhong estuary. The average velocity of the flood tide and ebb
tide in the reclamation area decreased, which led to sediment deposition [44,60,61] and
promoted the expansion of S. alterniflora patches toward the sea [62]. The width of the S.
alterniflora patch extending to the sea in the upper reaches increased from 0.13 km in 2010
to 0.59 km in 2015. Figure 14a shows that the area of S. alterniflora in the Linghong River
estuary was 67.14 ha in 2010 and increased to 281.96 ha after 5 years. After the Sheyang
estuary project was built, the sediment concentration at the flood tide was obviously greater
than that at the ebb tide. At the flood tide, more sediment was deposited on both sides of
the estuary, which facilitated the expansion of S. alterniflora patches to the sea and provided
a good niche for the growth of S. alterniflora. In 2015, the area of S. alterniflora in the Sheyang
estuary was 356.99 ha. Five years later, the area of S. alterniflora increased to 536.35 ha
(Figure 14b), with a remarkable growth rate of 35.87 ha/year.



Remote Sens. 2022, 14, 2630 19 of 24Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 24 
 

 

 
Figure 14. Landsat R-G-B images. Green is S. alterniflora. (a) The distribution area of S. alterniflora in 
the estuary of Linhong River from 2010 to 2015. (b) The distribution area of S. alterniflora in the 
estuary of Sheyang River from 2015 to 2020. 

Before 2005, S. alterniflora was not found in Ganyu Port. After the aquaculture ponds 
were dismantled in 2000, S. alterniflora patches were found in 2005 (Figure 15). The re-
moval of aquaculture ponds is an important habitat modification for the reproduction and 
growth of S. alterniflora seeds. According to research [63,64], the sediment of aquaculture 
ponds is rich in nitrogen and phosphorus. Owing to the decomposition of excreta from 
aquaculture species, a large amount of organic nitrogen and phosphorus was released and 
retained in the sediment, which led to the eutrophication of the aquaculture pond system. 
With this additional nitrogen, the biomass of S. alterniflora grassland increased signifi-
cantly. The increased nitrogen input stimulated the growth of S. alterniflora seeds and im-
proved their productivity [42]. In the past 20 years, S. alterniflora in Ganyu Port has in-
creased by nearly 384.71 ha. 

 
Figure 15. Landsat RGB images. Green is S. alterniflora. (a) The distribution area of S. alterniflora in 
Ganyu Port from 2005 to 2020. (b) The demolition process of artificial culture pond (blue rectangular 
frame) from 1990 to 2000. 

Figure 14. Landsat R-G-B images. Green is S. alterniflora. (a) The distribution area of S. alterniflora
in the estuary of Linhong River from 2010 to 2015. (b) The distribution area of S. alterniflora in the
estuary of Sheyang River from 2015 to 2020.

Before 2005, S. alterniflora was not found in Ganyu Port. After the aquaculture ponds
were dismantled in 2000, S. alterniflora patches were found in 2005 (Figure 15). The removal
of aquaculture ponds is an important habitat modification for the reproduction and growth
of S. alterniflora seeds. According to research [63,64], the sediment of aquaculture ponds is
rich in nitrogen and phosphorus. Owing to the decomposition of excreta from aquaculture
species, a large amount of organic nitrogen and phosphorus was released and retained
in the sediment, which led to the eutrophication of the aquaculture pond system. With
this additional nitrogen, the biomass of S. alterniflora grassland increased significantly. The
increased nitrogen input stimulated the growth of S. alterniflora seeds and improved their
productivity [42]. In the past 20 years, S. alterniflora in Ganyu Port has increased by nearly
384.71 ha.
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In summary, the effect of tidal flat reclamation is closely related to the expansion
process of S. alterniflora. Reclamation of the tidal flat affects the expansion of S. alterniflora,
while the growth of S. alterniflora patches also leads to a process of stagnation and silting [46].
Sporadic patches were formed by vegetative propagation of S. alterniflora in the growth
stage, and the planting density gradually increased [3,4]. Subsequently, S. alterniflora
gradually expanded to the sea through the natural sedimentation and artificial reclamation
of tidal flats. In the outbreak stage, the seed yield of S. alterniflora increased greatly and
drifted along the tidal creeks. Tidal flat reclamation led to a decrease in the hydrodynamic
force near the estuary, allowing the seeds to easily take root and grow in the muddy
environment and gradually connect into large patches. The ecological niche of S. alterniflora
was gradually saturated, and finally evolved into a strip pattern with a north–south
distribution [62]. S. alterniflora is limited by the elevation and tide during the plateau
period, and thus it is necessary for the tidal flat on the seaward side to continue silting up
before S. alterniflora patches can continue to expand seaward.

5.3. Effects of Mixed Pixels and Tidal Inundation on Classification Results

Pixel-level classification algorithms are dependent on the quality of pixels. The influ-
ence of cloud cover needs to be considered when selecting image data. In areas covered
by clouds, pixel information will be lost. In the initial growth stage of S. alterniflora, the
proportion of S. alterniflora patches in a 30 m pixel was small, and the Landsat images
with a medium resolution of 30 m were limited. In fact, the phenomenon of mixed pixels
containing other vegetation types or tidal flats is unavoidable. Classifying pixels with
mixed vegetation types has always been a challenge in land cover type mapping [65,66]. In
the future, the use of high-resolution satellite images or hyperspectral data for fine monitor-
ing can reduce classification errors and improve the accuracy of S. alterniflora distribution
mapping.

Finally, S. alterniflora grows in intertidal areas, which are easily flooded by periodic
tides. It is difficult to classify S. alterniflora if it is underwater, whether in field surveys or in
satellite images. For example, the spectral characteristics and pixel quality of S. alterniflora
are affected by flooding [67,68]. Optical data are made up of the reflection spectrum of
different ground objects and contain rich spectral information, but the quality of pixels is
easily affected by clouds, tides, and other factors. Synthetic aperture radar (SAR) reflects
the backscattering ability of different ground objects and is not affected by water bodies. It
has the ability to penetrate wetland vegetation and has the characteristics of all-day and all-
weather data collection, but it lacks spectral information [69]. The different characteristics
of optical images and SAR can be used for image fusion [70], which resolves the influence
of tides and clouds on pixel quality. These combined data will better serve to identify
S. alterniflora in coastal wetlands.

6. Conclusions

S. alterniflora has the characteristics of a complex growth environment and different
scales of growth. In this study, a multi-temporal sample dataset of S. alterniflora in Jiangsu
Province was constructed. Through multi-scale feature extraction and depth residual con-
nection, a classification method for S. alterniflora based on an MRCNN and post-processing
was designed. The classification results for S. alterniflora in Jiangsu Province for 6 years
were obtained using the unified training method for multi-temporal data. The results
showed that the test set of S. alterniflora in 1995 had the highest F1-score, which was more
than 59%. The performance of the MRCNN was the best among the three algorithms in
most years. After post-processing, the global F1-scores of S. alterniflora in Jiangsu were all
above 80% in each period. This indicates that the proposed method was effective for the
identification of S. alterniflora using long time series data over a large area. In this study,
a thematic map of the distribution of S. alterniflora in Jiangsu Province from 1990 to 2020
was created.
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After nearly 40 years of expansion, by 2020, the distribution area of S. alterniflora in
Jiangsu Province had reached 17657.14 ha, mainly in Yancheng. The expansion process
of S. alterniflora in time was divided into three stages: the growth period (1982–1994), the
outbreak period (1995–2004), and the plateau period (2005–2020). The spatial expansion
directions of S. alterniflora were mainly parallel to the coastline and perpendicular to the
coastline. The reclamation of coastal tidal flats in Jiangsu was one of the main factors
affecting the invasion of S. alterniflora. The tidal flat reclamation provided a new niche
and suitable environment for the growth of S. Alterniflora, which accelerated the invasion
of S. alterniflora. The patches of S. alterniflora gradually connected into large strips in the
north–south direction.

This research provided an effective approach to solving the application of wetland
remote sensing using deep learning algorithms. In the future, to better understand the
distribution changes of S. alterniflora in different regions, we need to construct a large,
accurate, and diverse sample library of S. alterniflora. By combining optical data with
SAR, the quality of the pixels can be improved. Using a powerful deep learning model to
accurately and dynamically monitor the distribution changes of S. alterniflora can effectively
manage and protect the coastal wetland ecosystem.
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