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Abstract

:

On-farm genotype screening is at the core of every breeding scheme, but it comes with a high cost and often high degree of uncertainty. Phenomics is a new approach by plant breeders, who use optical sensors for accurate germplasm phenotyping, selection and enhancement of the genetic gain. The objectives of this study were to: (1) develop a high-throughput phenotyping workflow to estimate the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Red Edge index (NDRE) at the plot-level through an active crop canopy sensor; (2) test the ability of spectral reflectance indices (SRIs) to distinguish between sesame genotypes throughout the crop growth period; and (3) identify specific stages in the sesame growth cycle that contribute to phenotyping accuracy and functionality and evaluate the efficiency of SRIs as a selection tool. A diversity panel of 24 sesame genotypes was grown at normal and late planting dates in 2020 and 2021. To determine the SRIs the Crop Circle ACS-430 active crop canopy sensor was used from the beginning of the sesame reproductive stage to the end of the ripening stage. NDVI and NDRE reached about the same high accuracy in genotype phenotyping, even under dense biomass conditions where “saturation” problems were expected. NDVI produced higher broad-sense heritability (max 0.928) and NDRE higher phenotypic and genotypic correlation with the yield (max 0.593 and 0.748, respectively). NDRE had the highest relative efficiency (61%) as an indirect selection index to yield direct selection. Both SRIs had optimal results when the monitoring took place at the end of the reproductive stage and the beginning of the ripening stage. Thus, an active canopy sensor as this study demonstrated can assist breeders to differentiate and classify sesame genotypes.






Keywords:


sesame; phenotyping; spectral reflectance; NDVI; NDRE; indirect selection












1. Introduction


Modern agriculture and food production systems have to withstand escalating pressure from climate change, land and water availability, and more recently, a pandemic. Sesame (Sesamumindicum L., 2n = 2x = 26), one of the oldest oil crops, was domesticated about 3500 years ago from Sesamum indicum subsp. Malabaricum in the Indian sub-continent and has been cultivated since then in subtropical and temperate regions around the world [1,2,3]. In 2019, mainly in developing countries, more than 6.5 million tons of sesame seeds were produced from nearly 13 million ha [4]. With good adaptation to drought-prone and marginal environments, it can play an active role in the development of an ecologically and societally resilient, sustainable agriculture. The seeds are being used for an array of products in the food (high-quality oil, tahini paste, cooking and backing) and pharmaceutical industries [5]. Acknowledged as an important functional food, it is progressively gaining popularity due to the high content in nutritional components with antihypertensive, anticarcinogenic, anti-inflammatory and antioxidative effects [6,7,8]. Immense progress has been made with continually advancing genomics technologies to decipher and understand crop genomes. For sesame, an orphan crop until recently, despite its long history of cultivation, breeding efforts were mostly concentrated on addressing the low yield (400–500 Kg/ha) [4] that seed shattering, indeterminate growth habit and asynchronous capsule ripening causes [9,10,11,12,13]. In the past few years, sesame came across to the “Omics” era, and as with other crops, a substantial amount of genomics data began to amass [14,15,16].



However, the impact of genomics data on crop improvement is still far from satisfactory, and our ability to accurately assess crop status in field scale is lacking compared to the current capacity to generate high-throughput genomics data. Thus, the research bottleneck in plant sciences shifts from genotyping to phenotyping. A phenotype is the composite of an observable expression of a genome for traits in a given environment. Traits could be visible to the naked eye (conventional phenotype), or visible by using technical procedures. Phenomics, the systematic genome-wide study of an organism’s phenotype is an emerging approach that aims to automate and standardize phenotyping [17,18,19]. To mitigate this ‘phenomics bottleneck’, innovations such as trait data recording through sophisticated non-invasive imaging, spectroscopy, satellite image analysis, high-performance computing facilities, phenomics databases, robotics and Artificial Intelligence (AI) have been utilized. The phenomics revolution is here, and the monitoring of thousands of plants in a single day for traits such as plant architecture, photosynthesis ability and biomass productivity made it possible for “speed breeding” to unravel [20,21,22]. Genetic gain is a fundamental concept in breeding and can be enhanced by increasing selection intensity, accuracy and genetic variation and/or reducing the cycle time. Phenotyping contributes both directly and indirectly to these variables [23], but it comes with a high cost.



Simple active radiometer sensors, on the other hand, may enable phenotyping of field experiments in a rapid and cost-effective way. Remote sensing, through a set of spectral vegetation indices, has been used in breeding trials just recently [24]. Strong associations have been demonstrated between spectral reflectance indices and attributes of crop growth, and the development of new instruments enhances their monitoring [25,26,27,28,29]. Leaf pigments (e.g., carotenoids and anthocyanins) absorb various amounts of light in the visible range of the spectrum. These leaf characteristics influence the reflectance signature of plants. Reflectance measurements made near the crop canopy integrate plant-to-plant variation throughout plant growth cycles, associated with the impacts of senescence or stress conditions (e.g., due to water or nutrient deficits) on the leaf characteristics [30]. Precise non-destructive biomass estimates in breeding programs, could be useful in selection, particularly if they are quick, cheap and easy to perform [24].



The Normalized Difference Vegetation Index (NDVI) is one of the most utilized spectral reflectance indices (SRIs) for indirect selection in breeding programs. Cabrera-Bosquet et al. [28] showed that a spectral vegetation index such as NDVI is a promising tool to screen genotypes. NDVI and other spectral reflectance indices have the potential to differentiate spring wheat genotypes from heading to grain filling stages for crop biomass and grain yield under irrigated conditions [31]. Ma et al. [32] reported that NDVI could differentiate between high and low grain yield among soybean (Glycine max, L., Merr.) genotypes. They concluded that NDVI can be a reliable and fast index. Moreover, the reflectance of red light is a good way to quantify plant chlorophyll content until the canopy approaches closure. Once the canopy closes, red light reflectance remains very low and thus is no longer responsive to changes in plant chlorophyll content. Reflectance in the red-edge region of the spectrum has been shown to be quite sensitive to canopy chlorophyll content over a wide range of biomass conditions and thus the value of the normalized difference red edge index (NDRE). Canopy biomass is best quantified by measuring near-infrared (NIR) reflectance. In a practical sense, NIR reflectance quantifies the size of the photosynthetic factory while red and red-edge reflectance collectively characterize how fast the factory can operate [33,34].



Recent advances in precision agriculture technology have led to the development of ground-based active remote sensors (or crop canopy sensors) that calculate a set of reflectance indices such as NDVI, NDRE and NIR. Active sensors have their own source of light energy and allow for the determination of those indices at specific times and locations throughout the growing season without the need for ambient illumination or flight concerns. Crop canopy sensors are relatively small in size and contain an integrated light source. They operate by directing visible (VIS) light (400–700 nm) as well as near-infrared (NIR) (700–1300 nm) light at the plant canopy of interest [35]. One of the most reliable types of sensors used mainly for scanning crops to make nitrogen (N) fertilizer recommendations, assess forage biomass, estimate yield, estimate crop leaf area and geospatially map agricultural landscapes is the Holland Scientific Crop CircleTMACS-430 plant canopy reflectance sensor [36,37,38,39,40]. The Crop Circle TM sensor is active and operates under the same principles as that of the GreenSeekerTM sensor; the principles and physics behind the operation of those sensors are described in detail in Inman et al. [40]. Τhe Crop Circle TM sensor generates light with a wavelength of 590 nm in the VIS band and 880 nm in the NIR band. The Crop Circle ACS-430 sensor showed the best results, displaying the greatest range of measured values and the highest sensitivity as a biomass predictor, when used in comparison with other devices in sugarcane [41,42,43].



In many recent studies, SRIs from proximity sensors were used for early wheat selection breeding cycles [44,45,46,47]. Selection in early breeding generation is challenging because the small-size plots and the large number of lines under evaluation do not allow for an accurate determination of the yield, and for this reason breeders typically rely on visual selection.



Moreover, the phenotyping in each crop/variety is significantly affected by the growth stage; thus, many researchers focus on investigating the optimal growth stage of scanning that could be used in the breeding trials. For wheat, a recent study showed that under dryland conditions, there is a reliable correlation between grain yield and NDVI at the early growing season, the anthesis growth stage and the mid-grain filling growth stage, as well as a poor association under irrigated conditions [48]. Relative differences in leaf senescence patterns of soybean cultivars have been studied to accurately calculate the observed maturity rate [49,50].



Using spectral reflectance indices for sesame phenotyping and yield estimation in a breeding program has only been recorded once before [51].



The objectives of this study were to: (1) develop a high-throughput phenotyping workflow to estimate the NDVI and NDRE at the plot-level through the active crop canopy sensor; (2) test the ability of SRIs to distinguish between sesame cultivars throughout the crop growth period; and (3) identify specific stages in the sesame growth cycle that contribute to phenotyping accuracy and functionality.



This article is structured as follows. In Section 2, we will describe the experimental design and the genetic material that we used, the phenotyping workflow that we established and the statistical analysis that was applied. In Section 3, we will present the results for the ability of the SRIs to differentiate sesame genotypes at different stages of their development, and we will unravel the genetics behind the SRIs in single and multi-environments sesame trials. In Section 4, we will discuss if the results of this study showed that we can integrate SRIs and high throughput phenotyping in a sesame breeding scheme. Finally, the article will end with a brief presentation of the conclusions in Section 4 (Figure 1).




2. Materials and Methods


2.1. Experimental Conditions


Field experiments were conducted in 2020 and 2021 at the Institute of Industrial and Forage Crops (IIFC) of the Hellenic Agricultural Organization—DIMITRA (ELGO-DIMITRA) in Larissa (x: 2496060, y: 4809270, Projected Coordinate Systems WGS_1984_Web_Mercator), central Greece (Figure 2). The climate in the region of Larissa is a semi-arid Mediterranean climate and is classified as Csa (temperate climate with a hot-dry summer) by the Köppen–Geiger system [52].



Soil physicochemical analyses were provided by the accredited under international quality standards (ELOT EN ISO/IEC 17025, 2017) Soil, Water and Plant Analysis lab of IIFC. Both experiments were carried out on a Vertisol [53] clayey soil (37% sand, 21% silt, 42% clay) with poor organic carbon content (0.36–0.75%) at 30 cm depth. The soil had low carbonate content (1.2%) and electrical conductivity (393 μS/cm), was slightly alkaline in pH (7.4), had high concentrations of K (508 mg/kg), and low Olsen P (18 mg P/kg).




2.2. Experimental Design and Crop Management


To examine the use of a proximity sensor as an in-field phenotyping tool for sesame (Sesamum indicum L.) breeding, four experiments occurred on two planting dates for two consecutive years.



Planting for the full-season crop system (normal planting 2020, NP20) was carried out on 11 May 2020, whereas for the double-crop system (late planting 2020, LP20) on 9 June 2020 and in 2021 on 13/5 and 11/6, respectively (NP21 and LP21). For NP, the dates were chosen in such a way to evaluate sesame’s rotational fit with other summer crops (cotton) in the region. LP could be useful for determining the utility of sesame in a double crop system with winter crops (cereals, legumes, etc.) or to serve as a rescue crop in case of crop failure.



Field preparation consisted of disking, turning the soil with a moldboard plow, and smoothing the surface with a field cultivator 20 days before sowing. Previous cultivation was sesame. Balanced pre-plant fertilization with 100 kg ha−1 in the form (11-15-15) was incorporated in the soil before sowing. Treatments of 24 sesame genotypes were randomly assigned within each of the four blocks to follow a randomized complete block design with 96 total number of plots for each planting date. Each plot consisted of 4 rows 3 m long with 25 cm row spacing and a seeding rate of 40 seeds per meter. Sprinkler irrigation was applied right after sowing. Manual thinning was performed when the plants reached a height of 10–12 cm, so as to reach a plant population density of 200,000 plants ha−1 (on-row plant spacing of 20 cm). In-season N fertilization was performed at the beginning of the sesame reproductive stage (≈50 Days after planting, DAP) by 70 kg ha−1 of nitrogen in the form of nitrate nitrogen (34.5-0-0). Sprinkler irrigation was applied throughout the growing season to sustain plant development. The plots were weeded manually once a week, and phytosanitary actions were performed to keep them free of pests. All the soil and crop management was the same for both planting days (NP and LP) and cropping years (2020, 2021).




2.3. Plant Material


The plant material used in this work included a total of 24 sesame (Sesamum indicum L.) genotypes. Seventeen of them were second generation “sister lines”, one was a commercial variety from Turkey and six were Greek parental landraces from the IIFC’s gene bank with different eco-geographical origin (Table 1). The sister lines were selected from the six landraces during IIFC’s sesame breeding project in which single plant selection with honeycomb methodology under low plant density (nil-competition) was the core idea. A field evaluation methodology that is advantageous in relation to the elimination of the masking effects of soil heterogeneity, maximization of phenotypic expression and application of high selection intensity was applied [54,55,56].




2.4. Crop Phenotyping


The canopy reflectance of each plot was measured by a single Crop Circle ACS-430 active canopy sensor interfaced to a GeoScout X data logger (Holland Scientific, Lincoln, NE, USA) from a nadir view 0.5 m above the crop canopy several times in the growing period.



Field scans were performed with the sensor mounted on a portable frame, with an average speed of 4 km h−1 e between 8:00 a.m. and 9:30 a.m. local time, spanning the monitoring period from the early reproductive stage to mid-ripening stage. For each plot, 40–50 data points of canopy reflectance were recorded as the average of more than 4000 sensor readings by plot.



For both planting dates and years, monitoring started when all genotypes were at the reproductive stage. The canopy reflectance was measured at 670 nm (RRED), 730 nm (RRED EDGE) and 780 nm (RNIR) wavelengths. The spectral reflectance data from the three bands were used to derive two vegetation indices: normalized difference vegetation index (NDVI) (1) and normalized difference red edge (NDRE) (2), which were evaluated as potential tools for genotype classification.


NDVI = (RNIR − RRED)/(RNIR + RRED)



(1)






NDRE = (RNIR − RRED EDGE)/(RNIR + RRED EDGE)



(2)







The data points obtained on each day were later processed to get one average value for each plot. The NDVI is related to crop parameters such as leaf area index, biomass and fractional vegetation cover, whereas the NDRE characterizes the chlorophyll/nitrogen status of crop canopies.



The soil plant analysis development (SPAD), an index for chlorophyll content, recorded at the beginning of the reproductive stage with the CCM-200 plus SPAD-meter from five randomly selected plants of each plot.



Seed yield (kg/ha) was assessed at the harvest maturity stage of each cultivar. The two central rows from each plot were harvested by hand, threshed with a Wintersteiger LD 350 laboratory thresher, and the seed produced was weighed.



All the trait measurements were taken from the two central rows in each plot to avoid edge effects.




2.5. Growing Degree Days and Weather Parameters


Growing degree day (GDD) values specific for sesame were calculated for each day during the growing season for both planting days. Data on air temperature, precipitation, relative humidity and solar radiation were acquired from the automatic meteorological station that the IIFC operates in collaboration with the National Observatory of Athens (IERSD) in its experimental fields. The following equation was used to calculate daily GDD values (3):


GDD = [(TMIN + TMAX)/2] − Tb = TAVC − Tb



(3)




where TMIN and TMAX are the daily minimum and maximum temperatures, TAVG is the daily average temperature, and Tb is the base temperature for sesame. Angus et al. [57] demonstrated in their study the value of a linear day-degree system for predicting crop phasic development, modeled the response of 44 species to temperature and presented their respective base temperatures. For sesame, it was 15.9 °C, and we used it as Tb [58]. On days when TAVG was below Tb, the GDDs for that day were set to 0. Daily GDDs were separately summed to calculate the accumulated GDD value from sowing to harvest.




2.6. Statistical Analysis


The R-program (www.R-project.org, accessed on 7 February 2022) with the packages Metan and Agricolae were used to perform all the statistical analysis [59,60,61].



An analysis of variance (ANOVA) including the factors sesame line and block was performed on data of separate growing conditions (NP and LP) and cropping years to verify the occurrence of genetic variation among lines for each trait. If significant differences were found, Tukey’s HSD (honestly significant difference) method was used for multiple comparisons (α = 5%). The phenotypic (rp) (5) and genotypic correlation (rg) (4) coefficients between spectral indices and the grain yield were calculated using the following formulas [62]:


    rg   xy   =     Cov   gxy        (   σ  gx  2   )   (   σ  gy  2   )       



(4)






     rp    xy   =     Cov   pxy        (   σ  px  2   )   (   σ  py  2   )       



(5)




where σ2g/σ2p and Covg/Covp refer to the components of genetic and phenotypic variance and covariance, respectively, and X and Y are the two variables.



Broad-sense heritability (H2) was calculated on a line mean basis for each environment (cropping years, NP, LP) according to Holland [63]. Broad-sense heritability is the proportion of the phenotypic variance, which is explained by the genetic variance, and was estimated as follows (6):


     H   2  =    σ g 2     σ g 2  +  σ e 2  / n    



(6)




where σ2g and σ2e are the genotypic and residual variance components, respectively, and n is the number of replicated blocks. Relative efficiency of indirect selection (Er) in SRIs vs. direct selection in yield expressed in percentage, was estimated by the following equation [64] (7):


Er = [(HSRI/HY)rgSRI Y] × 100



(7)




where HSRI and HY are the square root of the broad-sense heritability on a line mean basis (H2) for the SRIs and Yield, respectively, and rgSRI Y is the genetic correlation between the two criteria. Restricted maximum likelihood with best linear unbiased prediction (REML/BLUP) is a well-known linear mixed model for the estimation of random effects that was used to analyze the SRIs data from every environment (cropping years, NP, LP). The output was p-values from Likelihood Ratio Test (LRT) of the analyzed SRIs for genotype (GEN) and genotype-vs-environment (GE) as random effects. Broad-sense heritability    (   H x 2   )    (8) on a plot basis over the environments (cropping years, NP, LP) and broad-sense heritability    (   H y 2   )    (9) on an entry mean basis over the environments were also estimated.


   H x 2  =    σ g 2     σ g 2  +  σ  ge  2  +  σ e 2     



(8)






   H y 2  =    σ g 2     σ g 2  +    σ  ge  2   e  +    σ e 2    en        



(9)




where    σ  ge  2    refer to the variance component relative to GE interaction and e and n are the number of environments and blocks, respectively.



Hierarchical cluster analysis was performed also to compute the Euclidean distances between the genotypes based on the SRIs with the unweighted pair group with arithmetic mean agglomeration method (UPGMA). Mantel’s test was used to check the relationships between the distance matrices when the clustering was performed for separate growing conditions (NP and LP) and cropping years.





3. Results


3.1. Climate Data


Air temperature during the growing season was similar for both growing conditions (NP and LP) and cropping years (2020, 2021), with daily averages being >15.9 °C (Tb) almost for the entire season (Figure 3). The harvest for all plots was completed on 15 September (127 DAP) for normal planting and 19 October (132 DAP) for late planting in 2020 and on 22 September (132 DAP) and 19 October (130 DAP) in 2021.



Accumulated GDDs over the growing period were the same for both planting dates (8.8 and 8.6 GDD day−1 for 2020 and 2021, respectively); however, the accumulation rate in LP was lower in comparison with NP (9.2 and 9.5 GDD day−1 for 2020 and 2021) (Figure 3). Only two important rainfall events occurred (18 September 2020, 59.2 mm and 8 October 2021, 43.2 mm). The amount of solar radiation received was 2% and 11% higher in NP than LP for 2020 and 2021, respectively. As expected for the late planting, in both years lower temperature and solar radiation with higher RH% and rainfall during the ripening stage resulted in more days for plant maturity and delayed harvest especially in 2021 (Table 2).




3.2. Sesame Phenotyping


Continuous measurements from the beginning of the reproductive stage and almost once a week until the end of the ripening stage enabled genotype comparisons (Table 3, Figure 4 and Figure 5). The examined sesame genotypes (lines and parental landraces) can be divided into two large groups, the early and very early maturing (1, 8, 9, 10, 17, 18, 19, 20, 22, 23, 24) and intermediate to late maturing (2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 16, 21) with different rates of development.



NDVI values ranged from 0.424 to 0.902 with an all-genotypes average of 0.782. A common pattern of NDVI evolution was observed for almost all of the genotypes. NDVI had the lowest value at the first scan (51 DAP) in the beginning of the reproductive stage, reaching the maximum values at 2, 3, 4 scans followed by a progressive decline in accordance with the maturity of the crop. From scan 1 to 2 when also the in-season N fertilization occurred, the NDVI average values for all genotypes increased from 0.75 to 0.85 (approximately by 13%). NDVI values remained almost in variable for scans 2 to 5 until the crop entered ripening stage. For NP21, the NDVI raise from scan 1 to 2 was from 0.65 to 0.85.



Similar patterns were observed for the NDRE. Its values ranged from 0.130 to 0.360 with an all-genotypes average of 0.267. From scan 1 to 2 NDRE average values for all genotypes increased from 0.28 to 0.31 (approximately by 10%) except NP21 when as in the case of NDVI average values showed a steep raise. The decline was rapid for both indices, but for NDRE, it started earlier when the crop was still in the reproductive stage. (Figure 4). Variation between sesame lines was greater for both indices in LP20 and NP21. NDVI varied significantly between genotypes for every monitoring date in both growing conditions and cropping years and almost the same was observed for NDRE, except scans 1 and 6 on NP20 and scan 9 on LP20. Both NDVI and NDRE enabled distinction between genotypes but in most cases NDVI provided better separation, as shown at four monitoring dates during crop growth (Table 4, Table 5 and Table 6). Even in the middle of the reproductive growth stage when crop canopy is closed (NDVI3, LP21 and NDRE3, LP21) SRI values produced a clear genotype separation (Figure 6, genotypes with different letter and color are significant different). Line 2 gave the higher NDRE and NDVI values (mean values from both planting dates and years) 0.282 and 0.822, respectively, lines 1 and 9 had the lowest values (0.250 and 0.750), respectively. Early maturing lines and landraces always had low NDVI, but NDRE produced mixed results and even late maturing lines exhibited low values.




3.3. Phenotypic and Genetic Correlations, SRIs with Sesame Yield


NDRE showed strong and significant phenotypic correlations with sesame yield when phenotyping occurred at late reproductive growing stages (scans 3, 4, 5, 6) for both planting dates in 2020 (scan 3/LP for 2020 excluded) but in 2021 only at scan 3/NP, scan 5/NP and scan 4/LP. Genetic correlations between NDRE and yield were similar to phenotypic correlations; however, the coefficients of genetic correlation were generally higher than those of the phenotypic correlations. NDRE genetic correlation values ranged from −0.379 to 0.593 and from −0.564 to 0.748 for rp and rg, respectively.



NDVI at scan 5 showed strong and significant phenotypic correlations with sesame yield on every environment except LP21. On LP20 and NP21, scans 1 and 2 displayed significant phenotypic correlations despite low NDVI values. Genetic correlations between NDVI and the yield were always higher than those of the phenotypic correlations as in the case of NDRE. NDVI correlation values ranged from −0.276 to 0.538 and from −0.420 to 0.660 for rp and rg, respectively. Negative correlations observed for both SRIs at the beginning of both planting dates and years (first and last scans) (Table 6). SPAD significantly varied between genotypes only on NP20 and LP20 and exhibited negative, and in some cases significant, phenotypic and genotypic correlations with sesame yield for both planting dates and years (Table 6).




3.4. Heritability and Efficiency of Indirect Selection


A moderate to high level of broad-sense heritability was observed for most vegetation indices as values ranged from 0.292 to 0.879 and from 0.446 to 0.928 for NDRE and NDVI, respectively. The heritability of spectral reflectance indices generally increased with the growth stage for a given planting date and year and started to reduce entering the ripening stage of sesame. The highest heritability was found for NDVI at LP20, where it began at 0.446 on the first monitoring date (NDVI1), peaked at 0.928 at NDVI5 and at NDVI7 fell to 0.716. NDVI showed higher heritability than NDRE in every case except NP20 (Table 6). For SPAD, heritability ranged from 0.095 to 0.698. Sesame yield showed significant variance between genotypes across all growing conditions and cropping years and high level of heritability with a range from 0.847 to 0.963 (Table 6). The predicted efficiency (Er) of an indirect SRI-based selection relative to direct selection for sesame yield was in the range of −45 to 61% and −34 to 57% for NDRE and NDVI, respectively. The SRIs from scans 4, 5 and 6 gave the greatest possible interest for indirect selection in relation to direct selection for yield. A total of 61% of the direct selection was the maximum value for NDRE5.




3.5. Adaptive Response of SRIs


The exploitation of adaptive traits as selection criteria requires high broad-sense heritability over environments as a result of high genetic variation and low genotype with environment (GE) interaction and experiment error [65]. All the SRIs displayed significant genotypic effect and GE interaction. Possible interest in breeding for wide adaptation was given by the indices that had moderate to high heritability as indicated by at least 20% of the variation among plots due to genetic effects and at least 70% among lines (   H x 2    > 0.20,    H y 2    > 0.70, Table 4). NDRE4, NDRE6, NDVI1, NDVI3, NDVI5 and NDVI7 gave high heritability values and among them only NDRE6, NDVI1 and NDVI7 combined with relatively low GE interaction. Yield had the highest heritability values but the largest GE interaction, while SPAD also displayed low adaptive response (Table 7).




3.6. Cluster Analysis


For the agglomerative hierarchical clustering, the Euclidean distance was used as metric and the unweighted average as linkage criterion (UPGMA), to group the genotypes into clusters of increasing dissimilarity based on selected vegetation indices (NDRE5, NDVI4, NDVI5, NDVI6). The dendrogram of Figure 7 shows the 24 sesame lines and landraces split into three groups. Group 1 (displayed in the blue color) contained 7 genotypes, group 2 (displayed in the orange color) had 8 genotypes and group 3 (displayed in the grey color) included 9 genotypes. Cluster 1 includes mostly the original landraces and the very early maturing lines, clusters 2 and 3 include the mid and late maturing lines, respectively.



To check the relationships between the distance matrices when the clustering is performed separately for each growing condition and cropping year (NP20, LP20, NP21, LP21) a Mantel’s test was performed. The values of correlation between the distance matrices (0.12 to 0.41) suggest that clustering genotypes based on SRI indices, should not vary significantly among planting dates and years (Figure 7).





4. Discussion


The SRI values of 24 sesame lines and landraces were estimated in this study for the first time using active canopy sensors over the entire growing period and in two different planting dates. Previously, only Dong et al. 2020, in experiments in Texas (USA) [51], demonstrated ground-based sensing tool usefulness of vegetation indices for characterizing the dry down process of sesame.



The active canopy sensor used in this study distinguished the different genotypes in almost every reflectance monitoring date suggesting that canopy sensors can be used in sesame breeding programs. All the scans produced SRIs with significant variation among genotypes and significant GE interaction.



Both NDVI and NDRE reached about the same accuracy in genotype phenotyping, even under dense biomass conditions (2–5 scans) where “saturation” problems were expected especially for NDVI as has been reported by many researchers for other crops [65,66,67]. At those dense biomass conditions, NDVI demonstrated efficient separation between genotypes probably due to the Crop Circle canopy sensors high properties [42,68]. NDRE however acted more precisely in depicting variations among different scan days in regard to NDVI. NDRE produced values (mean from every genotype) at the closed canopy period with differences between consecutive scans up to 13% in regard to 3% differences with NDVI. Therefore, in this study the combination of both indices produced the most accurate sesame phenotyping as suggested by Boiarski et al. [69].



Generally, genotypic and phenotypic correlations among traits of crop plants are useful in planning, evaluating and setting selection criteria for the desired traits for selection in a breeding program. The genetic correlation between traits describes the intrinsic consistency of genotype response across growing conditions and contributes crucially to assess the predicted efficiency of different phenotypic selection strategies [70]. The precise estimation of this inherent association requires a genetically diverse population that accounts for sampling error bias in gene frequency [71]. In our experiment, the 5 landraces and 18 sesame lines derived by them, met the above criterion. Both SRIs significantly correlated with the yield at different monitoring dates throughout growing conditions and cropping years. The highest correlation demonstrated by scans at the end of the sesame reproductive stage and at the beginning of the ripening stage, suggesting the possibility of using these proxy measurements to understand the genetic and physiological basis of yield formation. Overall, these results agree with the findings presented by Dong et al. [51] where working with 60 sesame genotypes reported that NDVI values during the initial nine days after the end of the ripening stage had a significant relationship with the measured seed yields. However, more research is needed to understand the correlation with yield in the beginning of the ripening stage, when chlorophyll degradation occurs.



At both planting dates and years, genetic correlation coefficients were found to be higher in magnitude than that of phenotypic correlation coefficients in most of the traits, which clearly indicated the presence of inherent association among SRIs and yield. The moderate to strong genetic correlation of SRIs to sesame yield in the late planting conditions indicates the potential use of an indirect selection approach to identify high yielding and stress tolerant genotypes.



The results of this study showed that higher H2 values of vegetation indices were obtained at the end of the reproductive stage and the beginning of the ripening stage. Particularly NDRE5, NDVI5, NDVI6 in 2020 late planting (LP20) displayed values even higher than the yield’s heritability.



Broad sense heritability (H2) is a parameter that expresses the proportion of the phenotypic variance that can be attributed to variance of all genotypic effects, additivity, dominance and epistasis [72,73]. Despite continuous misunderstandings and controversies over its use and application, heritability remains a key issue to the response to selection. Recent reports of substantial heritability for gene expression and new estimation methods using marker data highlight the relevance of heritability in the genomics era [74]. High heritability and strong phenotypic and genetic correlations between indirect traits and the grain yield are desirable. For the accurate estimation of the relative efficiency (Er) of an alternative indirect selection trait versus direct selection for yield as Falconer proposed and many researchers have followed before [31,65,74,75,76], both the genetic correlation between the trait and yield and their heritability values are needed. NDVI5 in LP20 had H2 0.928, higher than the H2 value of yield that was 0.847, but the low rg (0.359) between them resulted to 60% less Er for indirect selection. A similar Er value is given by NDRE6 in NP20 with a very low heritability (0.292) and a high rg (0.748). The highest Er value for indirect SRI-based selection, reached 60% in comparison to direct selection for yield. Indirect SRI-based selection produced better results in normal planting for both years when phenotyping was applied at the end of the sesame reproductive stage.



Heritability over the test environments both on a plot basis and on a line mean basis was moderate to high almost for all the phenotyping dates (H2x > 0.20, H2y > 0.70, respectively) for both SRIs, NDVI though demonstrated higher values than NDRE. Nevertheless, SRIs adaptive response was moderate due to their significantly high effect of the genotype with environment interaction. Research in more environments is needed to identify SRIs value for wide adaptation breeding programs.



Cluster analysis highlighted the importance of identifying the monitoring dates for accurate and functional phenotyping. NDVI and NDRE values at the end of growing and the beginning of ripening stages separated the examined genotypes and produced clusters according to their crop growing cycle length. The analysis produced 3 clusters from which the first consists of the short growth cycle genotypes and furthermore it contains the four lowest yielding genotypes. Clusters 2 and 3 contain the medium and late growth cycle genotypes, respectively, clearly suggesting that the spectral reflectance indices could be a functional, economical and easy to use tool for classifying cultivars into groups.



SPAD showed a non-significant distinguishing ability between sesame genotypes in some environments, negative weak or significant correlations with yield and low to moderate heritability. SPAD was the only trait with non-significant GE interaction. The findings of the present study confirmed the superiority of SRIs compared to SPAD measurements as predictors of yield, which is in accordance with similar studies in wheat [77], but more measures in different stages of the growing period are needed to clarify its contribution to a sesame breeding program.




5. Conclusions


Designing an efficient breeding strategy for improving traits of interest, requires knowledge of quantitative genetic parameters (i.e., variances, heritability, correlated response of traits) and the stability of these parameters across target environments and different genetic backgrounds.



This field study demonstrated the significance of using a ground-based remote sensing tool, such as the simple backpack sensing frame equipped with a Crop Circle sensor, for sesame phenotyping. Both NDVI and NDRE can be used to depict sesame development accurately over the growing season. It was elucidated that in order to use them for accurate genotype differentiation, it is required firstly to identify the monitoring dates with the best phenotyping precision.



Integrating the easily and economically measured spectral reflectance indices in a sesame breeding program can alleviate the costs entailed by a direct selection for yield, a multi-environment selection and the difficulty of applying both of them to early selection stages.



For future research, spectral reflectance in sesame breeding should be studied, not just as a standalone indirect selection criterion, but also as a component in an integrated selection approach. More frequent monitoring of the vegetation indices during the important time window that encompasses the late flowering and the beginning of the ripening stage is recommended to capture detailed changes in sesame canopy features. In addition, combining data from different monitoring days to create a complex SRI index could improve genotype classification and genetic correlation with yield.
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Figure 1. Graphical abstract of the workflow of our study. 
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Figure 2. Location map of the research area (left). Plots of sesame, late planting at the front and normal at the back (Right, above). Sesame phenotyping with proximity sensor (Right, below). 
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Figure 3. Climate data across growing conditions and years (NP20, LP20, NP21, LP21). Daily Precipitation (RAIN), daily average air temperature (T-AVG), base temperature for sesame (Tb). 
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Figure 4. Pattern of GDD accumulation rates for both growing conditions and cropping years. Shown is the fitted linear regression line for the GDD parameters, along with the equations and R2. Scanning dates in dependence with GDD and sesame phenology phases (VS = vegetative stage, RES = reproductive stage, RIS = ripening stage). 
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Figure 5. Line graphs from field phenotyping. NDVI and NDRE values of sesame lines and landraces (GEN) for both growing conditions and cropping years monitored by Crop Circle ACS-430 active canopy sensor. (x axis = number of scans, y axis = SRI values for each genotype). 
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Figure 6. Tukey’s HSD separation procedure for NDVI and NDRE of the third monitoring date for the LP in 2021. Groups and range (genotypes with the same letter are not significant different). 
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Figure 7. Dendrogram of the agglomerative hierarchical clustering for the 24 sesame genotypes based on selected vegetation indices (NDRE5, NDVI4, NDVI5, NDVI6) (left). Mantel’s test correlation values among planting dates and years (right). * = p < 0.05, ** = p < 0.01. 
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Table 1. List of the 24 sesame genotypes used in the present study. NP: sister line derived from normal planting. LP: sister line derived from late planting. Com: commercial variety. PL: parental landrace. The parental landraces are named after their region of origin. So, our materials are high-rate homozygous lines derived from 5 parental landraces.






Table 1. List of the 24 sesame genotypes used in the present study. NP: sister line derived from normal planting. LP: sister line derived from late planting. Com: commercial variety. PL: parental landrace. The parental landraces are named after their region of origin. So, our materials are high-rate homozygous lines derived from 5 parental landraces.





	GEN
	Parental Landrace
	GEN
	Parental Landrace
	GEN
	Parental Landrace
	GEN
	Parental Landrace





	1 (NP)
	Kilkis
	7 (NP)
	Kokkina
	13 (LP)
	Sidirochori
	19 (PL)
	Ormenio



	2 (NP)
	Kilkis
	8 (NP)
	Serres
	14 (LP)
	Sidirochori
	20 (PL)
	Kokkina



	3 (NP)
	Kilkis
	9 (NP)
	Serres
	15 (LP)
	Sidirochori
	21 (PL)
	Sidirochori



	4 (NP)
	Sidirochori
	10 (NP)
	Ormenio
	16 (LP)
	Kokkina
	22 (PL)
	Serres



	5 (NP)
	Sidirochori
	11 (LP)
	Kilkis
	17 (LP)
	Evros
	23 (PL)
	Kilkis



	6 (NP)
	Sidirochori
	12 (LP)
	Kilkis
	18 (Com)
	Turkey
	24 (PL)
	Evros
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Table 2. Accumulated growing degree days (GDDs) over the sesame growing season (from planting to harvest), accumulated rainfall and irrigation (mm) and accumulated solar radiation (W m−2) for both planting dates and years.
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	Cummulative Total
	NP 2020
	NP 2021
	LP 2020
	LP 2021





	GDD
	1196
	1265
	1191
	1133



	Rainfall (mm)
	89.6
	63.2
	147.6
	168.4



	Irrigation (mm)
	275
	295
	200
	240



	Solar radiation (Wm−2)
	65,158
	67,332
	63,634
	60,109
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Table 3. Temporal distribution of the proximal sensing data during the sesame growing period.
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Scan Date

	
DAP

	
GDD

	
GS

	

	
Scan Date

	
DAP

	
GDD

	
GS






	
SCAN 1

	
NP 2020

	
1 July 2020

	
51

	
359

	
RES

	
LP 2020

	
3 August 2020

	
55

	
591

	
RES




	
SCAN 2

	
13 July 2020

	
63

	
488

	
RES

	
10 August 2020

	
62

	
661

	
RES




	
SCAN 3

	
24 July 2020

	
74

	
601

	
RES

	
25 August 2020

	
77

	
829

	
RES




	
SCAN 4

	
3 August 2020

	
84

	
727

	
RES

	
2 September 2020

	
85

	
917

	
RES




	
SCAN 5

	
10 August 2020

	
91

	
797

	
RES

	
11 September 2020

	
94

	
1007

	
RES




	
SCAN 6

	
25 August 2020

	
106

	
965

	
RIS

	
22 September 2020

	
105

	
1083

	
RES




	
SCAN 7

	
2 September 2020

	
114

	
1053

	
RIS

	
9 October 2020

	
122

	
1169

	
RIS




	
SCAN 1

	
NP 2021

	
2 July 202

	
50

	
373

	
RES

	
LP 2021

	
28 July 2021

	
47

	
514

	
RES




	
SCAN 2

	
13 July 202

	
61

	
508

	
RES

	
9 August 2021

	
59

	
698

	
RES




	
SCAN 3

	
21 July 2021

	
69

	
607

	
RES

	
20 August 202

	
70

	
825

	
RES




	
SCAN 4

	
28 July 202

	
76

	
684

	
RES

	
27 August 2021

	
77

	
904

	
RES




	
SCAN 5

	
9 August 2021

	
88

	
868

	
RES

	
3 September 2021

	
84

	
962

	
RES




	
SCAN 6

	
20 August 2021

	
99

	
995

	
RES

	
10 September 2021

	
91

	
997

	
RES




	
SCAN 7

	
27 August 2021

	
106

	
1063

	
RIS

	
17 September 2021

	
98

	
1047

	
RES




	
SCAN 8

	
3 September 2021

	
113

	
1132

	
RIS

	
27 September 2021

	
108

	
1113

	
RIS




	
SCAN 9

	

	

	

	

	
5 October 202

	
116

	
1128

	
RIS








DAP = days after planting, GDD = growth degree days, GS = growth stage, RES = reproductive stage, RIS = ripening stage.
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Table 4. Average NDVI index value by genotype at four monitoring dates. The specific monitoring covers the period from the middle of the reproductive stage till the beginning of the ripening stage. Means and ANOVA F values to verify the occurrence of genetic variation among lines for each SRI.
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NP20

	
NP21

	
LP20

	
LP21




	
GEN

	
NDVI3

	
NDVI4

	
NDVI5

	
NDVI6

	
NDVI3

	
NDVI4

	
NDVI5

	
NDVI6

	
NDVI3

	
NDVI4

	
NDVI5

	
NDVI6

	
NDVI3

	
NDVI4

	
NDVI5

	
NDVI6






	
1

	
0.833

	
cd

	
0.825

	
ab

	
0.847

	
ab

	
0.748

	
abc

	
0.859

	
ab

	
0.840

	
e

	
0.834

	
de

	
0.743

	
bc

	
0.875

	
a

	
0.842

	
abc

	
0.780

	
defg

	
0.712

	
efghij

	
0.813

	
bcdef

	
0.822

	
bcde

	
0.805

	
a

	
0.824

	
c




	
2

	
0.886

	
a

	
0.849

	
ab

	
0.868

	
a

	
0.819

	
ab

	
0.881

	
a

	
0.873

	
abcde

	
0.875

	
abc

	
0.836

	
a

	
0.883

	
a

	
0.859

	
a

	
0.848

	
ab

	
0.824

	
a

	
0.864

	
abc

	
0.842

	
abcd

	
0.844

	
a

	
0.867

	
a




	
3

	
0.821

	
d

	
0.839

	
ab

	
0.855

	
a

	
0.784

	
abc

	
0.875

	
a

	
0.866

	
abcde

	
0.866

	
abcd

	
0.798

	
abc

	
0.836

	
b

	
0.826

	
abc

	
0.808

	
abcdef

	
0.723

	
defghi

	
0.823

	
abcdef

	
0.836

	
abcd

	
0.832

	
a

	
0.862

	
ab




	
4

	
0.861

	
abcd

	
0.837

	
ab

	
0.854

	
a

	
0.769

	
abc

	
0.876

	
a

	
0.869

	
abcde

	
0.863

	
abcd

	
0.770

	
abc

	
0.869

	
ab

	
0.845

	
abc

	
0.836

	
abcd

	
0.762

	
abcdefg

	
0.837

	
abcde

	
0.820

	
bcde

	
0.819

	
a

	
0.865

	
ab




	
5

	
0.886

	
ab

	
0.850

	
ab

	
0.854

	
a

	
0.747

	
abc

	
0.888

	
a

	
0.886

	
ab

	
0.878

	
abc

	
0.825

	
abc

	
0.878

	
a

	
0.847

	
ab

	
0.856

	
a

	
0.795

	
abcd

	
0.855

	
abcd

	
0.846

	
abc

	
0.833

	
a

	
0.868

	
a




	
6

	
0.868

	
abcd

	
0.825

	
ab

	
0.865

	
a

	
0.788

	
abc

	
0.883

	
a

	
0.885

	
ab

	
0.878

	
abc

	
0.794

	
abc

	
0.878

	
a

	
0.858

	
a

	
0.834

	
abcd

	
0.782

	
abcde

	
0.852

	
abcd

	
0.866

	
a

	
0.850

	
a

	
0.868

	
a




	
7

	
0.844

	
abcd

	
0.829

	
ab

	
0.844

	
ab

	
0.792

	
abc

	
0.879

	
a

	
0.860

	
abcde

	
0.862

	
abcd

	
0.777

	
abc

	
0.865

	
ab

	
0.847

	
ab

	
0.801

	
abcdef

	
0.731

	
cdefghi

	
0.812

	
cdef

	
0.834

	
abcd

	
0.811

	
a

	
0.846

	
abc




	
8

	
0.841

	
abcd

	
0.807

	
ab

	
0.863

	
a

	
0.769

	
abc

	
0.877

	
a

	
0.857

	
abcde

	
0.860

	
abcd

	
0.798

	
abc

	
0.856

	
ab

	
0.822

	
abc

	
0.826

	
abcd

	
0.755

	
abcdefgh

	
0.811

	
cdef

	
0.854

	
ab

	
0.809

	
a

	
0.854

	
abc




	
9

	
0.830

	
cd

	
0.802

	
ab

	
0.849

	
a

	
0.746

	
abc

	
0.871

	
ab

	
0.844

	
e

	
0.846

	
bcde

	
0.745

	
abc

	
0.837

	
b

	
0.805

	
c

	
0.749

	
fgh

	
0.641

	
j

	
0.809

	
cdef

	
0.857

	
ab

	
0.815

	
a

	
0.850

	
abc




	
10

	
0.851

	
abcd

	
0.821

	
ab

	
0.847

	
ab

	
0.776

	
abc

	
0.874

	
a

	
0.858

	
abcde

	
0.862

	
abcd

	
0.798

	
abc

	
0.856

	
ab

	
0.809

	
bc

	
0.821

	
abcde

	
0.741

	
bcdefghi

	
0.772

	
f

	
0.841

	
abcd

	
0.787

	
a

	
0.844

	
abc




	
11

	
0.841

	
abcd

	
0.834

	
ab

	
0.857

	
a

	
0.815

	
ab

	
0.879

	
a

	
0.864

	
abcde

	
0.864

	
abcd

	
0.793

	
abc

	
0.867

	
ab

	
0.853

	
a

	
0.844

	
abc

	
0.792

	
abcde

	
0.821

	
abcdef

	
0.857

	
ab

	
0.820

	
a

	
0.873

	
a




	
12

	
0.856

	
abcd

	
0.841

	
ab

	
0.856

	
a

	
0.825

	
a

	
0.873

	
a

	
0.865

	
abcde

	
0.852

	
abcde

	
0.814

	
abc

	
0.873

	
a

	
0.855

	
a

	
0.832

	
abcd

	
0.774

	
abcdef

	
0.820

	
abcdef

	
0.845

	
abc

	
0.806

	
a

	
0.847

	
abc




	
13

	
0.863

	
abcd

	
0.840

	
ab

	
0.866

	
a

	
0.752

	
abc

	
0.889

	
a

	
0.884

	
abc

	
0.875

	
abc

	
0.835

	
ab

	
0.881

	
a

	
0.855

	
a

	
0.848

	
ab

	
0.794

	
abcd

	
0.867

	
abc

	
0.836

	
abcd

	
0.860

	
a

	
0.864

	
ab




	
14

	
0.864

	
abcd

	
0.840

	
ab

	
0.852

	
a

	
0.826

	
a

	
0.885

	
a

	
0.891

	
a

	
0.883

	
a

	
0.817

	
abc

	
0.877

	
a

	
0.845

	
abc

	
0.853

	
a

	
0.808

	
abc

	
0.879

	
a

	
0.825

	
abcde

	
0.844

	
a

	
0.863

	
ab




	
15

	
0.877

	
abc

	
0.844

	
ab

	
0.852

	
a

	
0.756

	
abc

	
0.889

	
a

	
0.889

	
a

	
0.873

	
abc

	
0.812

	
abc

	
0.868

	
ab

	
0.844

	
abc

	
0.849

	
ab

	
0.812

	
ab

	
0.837

	
abcde

	
0.857

	
ab

	
0.823

	
a

	
0.861

	
ab




	
16

	
0.862

	
abcd

	
0.818

	
ab

	
0.848

	
a

	
0.799

	
abc

	
0.884

	
a

	
0.880

	
abcd

	
0.870

	
abc

	
0.797

	
abc

	
0.860

	
ab

	
0.841

	
abc

	
0.808

	
abcdef

	
0.755

	
abcdefg

	
0.837

	
abcde

	
0.789

	
e

	
0.812

	
a

	
0.834

	
bc




	
17

	
0.854

	
abcd

	
0.828

	
ab

	
0.831

	
ab

	
0.708

	
bc

	
0.871

	
ab

	
0.861

	
abcde

	
0.850

	
abcde

	
0.741

	
c

	
0.864

	
ab

	
0.808

	
bc

	
0.721

	
gh

	
0.642

	
j

	
0.841

	
abcde

	
0.812

	
cde

	
0.816

	
a

	
0.840

	
abc




	
18

	
0.837

	
bcd

	
0.800

	
b

	
0.835

	
ab

	
0.781

	
abc

	
0.862

	
ab

	
0.846

	
de

	
0.852

	
abcde

	
0.785

	
abc

	
0.867

	
ab

	
0.842

	
abc

	
0.784

	
cdef

	
0.718

	
defghij

	
0.823

	
abcdef

	
0.821

	
bcde

	
0.812

	
a

	
0.853

	
abc




	
19

	
0.846

	
abcd

	
0.824

	
ab

	
0.858

	
a

	
0.771

	
abc

	
0.858

	
ab

	
0.852

	
bcde

	
0.857

	
abcd

	
0.783

	
abc

	
0.858

	
ab

	
0.829

	
abc

	
0.790

	
bcdef

	
0.696

	
fghij

	
0.816

	
bcdef

	
0.843

	
abc

	
0.825

	
a

	
0.852

	
abc




	
20

	
0.842

	
abcd

	
0.831

	
ab

	
0.855

	
a

	
0.729

	
abc

	
0.865

	
ab

	
0.861

	
abcde

	
0.860

	
abcd

	
0.767

	
abc

	
0.860

	
ab

	
0.827

	
abc

	
0.714

	
h

	
0.692

	
ghij

	
0.816

	
bcdef

	
0.800

	
de

	
0.806

	
a

	
0.841

	
abc




	
21

	
0.862

	
abcd

	
0.860

	
a

	
0.862

	
a

	
0.781

	
abc

	
0.889

	
a

	
0.891

	
a

	
0.880

	
ab

	
0.824

	
abc

	
0.870

	
ab

	
0.849

	
ab

	
0.836

	
abcd

	
0.772

	
abcdefg

	
0.874

	
ab

	
0.833

	
abcd

	
0.843

	
a

	
0.870

	
a




	
22

	
0.848

	
abcd

	
0.821

	
ab

	
0.853

	
a

	
0.765

	
abc

	
0.871

	
ab

	
0.849

	
de

	
0.851

	
abcde

	
0.778

	
abc

	
0.858

	
ab

	
0.829

	
abc

	
0.778

	
defg

	
0.670

	
ij

	
0.800

	
def

	
0.846

	
abc

	
0.796

	
a

	
0.849

	
abc




	
23

	
0.848

	
abcd

	
0.792

	
b

	
0.833

	
ab

	
0.781

	
abc

	
0.839

	
b

	
0.850

	
cde

	
0.844

	
cde

	
0.758

	
abc

	
0.869

	
ab

	
0.834

	
abc

	
0.763

	
efgh

	
0.674

	
hij

	
0.811

	
cdef

	
0.806

	
cde

	
0.787

	
a

	
0.823

	
c




	
24

	
0.847

	
abcd

	
0.804

	
ab

	
0.801

	
b

	
0.703

	
c

	
0.857

	
ab

	
0.847

	
de

	
0.817

	
e

	
0.767

	
abc

	
0.875

	
a

	
0.836

	
abc

	
0.786

	
cdef

	
0.729

	
cdefghi

	
0.789

	
ef

	
0.834

	
abcd

	
0.785

	
a

	
0.823

	
c




	
MEAN

	
0.853

	

	
0.828

	

	
0.850

	

	
0.772

	

	
0.874

	

	
0.865

	

	
0.861

	

	
0.790

	

	
0.866

	

	
0.838

	

	
0.807

	

	
0.741

	

	
0.828

	

	
0.834

	

	
0.818

	

	
0.852

	




	
Fvalue

	
3.42

	
***

	
2.93

	
***

	
3.33

	
***

	
2.45

	
NS

	
4.74

	
***

	
6.48

	
***

	
6.19

	
***

	
2.99

	
***

	
3.71

	
***

	
4.46

	
***

	
14

	
***

	
12.4

	
***

	
5.02

	
***

	
3.94

	
***

	
3.05

	
***

	
1.95

	
**








Within column and year, means followed by the same letter are not significantly different using Tukey HSD separation procedure. ** = p < 0.05, *** = p < 0.01.
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Table 5. Average NDRE index value by genotype at four monitoring dates. The specific monitoring covers the period from the middle of the reproductive stage till the beginning of the ripening stage. Means and ANOVA F values to verify the occurrence of genetic variation among lines for each SRI.
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NP20

	
NP21

	
LP20

	
LP21




	
GEN

	
NDRE3

	
NDRE4

	
NDRE5

	
NDRE6

	
NDRE3

	
NDRE4

	
NDRE5

	
NDRE6

	
NDRE3

	
NDRE4

	
NDRE5

	
NDRE6

	
NDRE3

	
NDRE4

	
NDRE5

	
NDRE6






	
1

	
0.315

	
abc

	
0.315

	
abc

	
0.310

	
abc

	
0.266

	
a

	
0.302

	
ab

	
0.318

	
bcd

	
0.284

	
bcd

	
0.248

	
abc

	
0.324

	
abc

	
0.293

	
ab

	
0.251

	
bcd

	
0.188

	
abcde

	
0.313

	
abcdef

	
0.303

	
abcd

	
0.294

	
abc

	
0.275

	
ab




	
2

	
0.327

	
ab

	
0.327

	
ab

	
0.319

	
abc

	
0.307

	
a

	
0.308

	
ab

	
0.335

	
abc

	
0.317

	
ab

	
0.291

	
ab

	
0.330

	
abc

	
0.307

	
a

	
0.289

	
ab

	
0.251

	
a

	
0.325

	
abcde

	
0.293

	
bcd

	
0.309

	
abc

	
0.281

	
ab




	
3

	
0.317

	
abc

	
0.317

	
abc

	
0.323

	
ab

	
0.272

	
a

	
0.300

	
ab

	
0.330

	
abc

	
0.306

	
abcd

	
0.269

	
abc

	
0.316

	
abc

	
0.291

	
ab

	
0.262

	
abcd

	
0.186

	
bcde

	
0.320

	
abcdef

	
0.311

	
abc

	
0.306

	
abc

	
0.293

	
ab




	
4

	
0.316

	
abc

	
0.316

	
abc

	
0.311

	
abc

	
0.264

	
a

	
0.299

	
ab

	
0.320

	
abcd

	
0.309

	
abc

	
0.245

	
abc

	
0.308

	
bc

	
0.285

	
ab

	
0.263

	
abcd

	
0.222

	
abcde

	
0.310

	
abcdef

	
0.277

	
d

	
0.301

	
abc

	
0.281

	
ab




	
5

	
0.325

	
ab

	
0.325

	
ab

	
0.313

	
abc

	
0.257

	
a

	
0.316

	
a

	
0.338

	
ab

	
0.323

	
a

	
0.286

	
ab

	
0.318

	
abc

	
0.286

	
ab

	
0.289

	
ab

	
0.228

	
abcd

	
0.328

	
abcd

	
0.301

	
abcd

	
0.306

	
abc

	
0.282

	
ab




	
6

	
0.330

	
a

	
0.330

	
a

	
0.313

	
abc

	
0.269

	
a

	
0.314

	
ab

	
0.348

	
a

	
0.318

	
ab

	
0.272

	
abc

	
0.326

	
abc

	
0.300

	
ab

	
0.285

	
ab

	
0.220

	
abcde

	
0.334

	
abc

	
0.318

	
ab

	
0.327

	
a

	
0.296

	
ab




	
7

	
0.319

	
abc

	
0.319

	
abc

	
0.302

	
abc

	
0.266

	
a

	
0.309

	
ab

	
0.325

	
abcd

	
0.302

	
abcd

	
0.257

	
abc

	
0.330

	
abc

	
0.295

	
ab

	
0.265

	
abc

	
0.211

	
abcde

	
0.303

	
cdef

	
0.292

	
bcd

	
0.282

	
c

	
0.260

	
b




	
8

	
0.328

	
a

	
0.328

	
a

	
0.330

	
a

	
0.273

	
a

	
0.313

	
ab

	
0.339

	
ab

	
0.310

	
abc

	
0.264

	
abc

	
0.337

	
ab

	
0.304

	
a

	
0.275

	
abc

	
0.216

	
abcde

	
0.311

	
abcdef

	
0.313

	
ab

	
0.299

	
abc

	
0.280

	
ab




	
9

	
0.298

	
c

	
0.298

	
c

	
0.308

	
abc

	
0.247

	
a

	
0.290

	
b

	
0.298

	
d

	
0.274

	
cd

	
0.223

	
c

	
0.315

	
abc

	
0.266

	
b

	
0.229

	
cd

	
0.173

	
de

	
0.298

	
def

	
0.298

	
abcd

	
0.280

	
c

	
0.268

	
ab




	
10

	
0.323

	
ab

	
0.323

	
ab

	
0.306

	
abc

	
0.265

	
a

	
0.304

	
ab

	
0.324

	
abcd

	
0.313

	
ab

	
0.261

	
abc

	
0.324

	
abc

	
0.289

	
ab

	
0.274

	
abc

	
0.230

	
abcd

	
0.287

	
f

	
0.302

	
abcd

	
0.289

	
abc

	
0.283

	
ab




	
11

	
0.326

	
ab

	
0.326

	
ab

	
0.329

	
a

	
0.301

	
a

	
0.314

	
ab

	
0.333

	
abc

	
0.314

	
ab

	
0.264

	
abc

	
0.338

	
a

	
0.311

	
a

	
0.291

	
ab

	
0.231

	
abcd

	
0.338

	
ab

	
0.325

	
a

	
0.313

	
abc

	
0.304

	
a




	
12

	
0.326

	
ab

	
0.326

	
ab

	
0.320

	
abc

	
0.283

	
a

	
0.305

	
ab

	
0.328

	
abcd

	
0.305

	
abcd

	
0.279

	
abc

	
0.325

	
abc

	
0.300

	
ab

	
0.263

	
abcd

	
0.196

	
abcde

	
0.308

	
bcdef

	
0.295

	
abcd

	
0.286

	
bc

	
0.272

	
ab




	
13

	
0.325

	
ab

	
0.325

	
ab

	
0.335

	
a

	
0.253

	
a

	
0.316

	
a

	
0.339

	
ab

	
0.328

	
a

	
0.303

	
a

	
0.337

	
ab

	
0.309

	
a

	
0.300

	
a

	
0.248

	
ab

	
0.334

	
abc

	
0.303

	
abcd

	
0.322

	
ab

	
0.290

	
ab




	
14

	
0.306

	
abc

	
0.306

	
abc

	
0.322

	
ab

	
0.282

	
a

	
0.300

	
ab

	
0.338

	
abc

	
0.331

	
a

	
0.291

	
ab

	
0.326

	
abc

	
0.288

	
ab

	
0.293

	
ab

	
0.236

	
abcd

	
0.342

	
a

	
0.279

	
cd

	
0.313

	
abc

	
0.284

	
ab




	
15

	
0.321

	
abc

	
0.321

	
abc

	
0.322

	
ab

	
0.264

	
a

	
0.301

	
ab

	
0.338

	
abc

	
0.304

	
abcd

	
0.261

	
abc

	
0.327

	
abc

	
0.299

	
ab

	
0.287

	
ab

	
0.241

	
abc

	
0.315

	
abcdef

	
0.298

	
abcd

	
0.298

	
abc

	
0.276

	
ab




	
16

	
0.310

	
abc

	
0.310

	
abc

	
0.303

	
abc

	
0.290

	
a

	
0.307

	
ab

	
0.335

	
abc

	
0.314

	
ab

	
0.266

	
abc

	
0.328

	
abc

	
0.290

	
ab

	
0.259

	
abcd

	
0.193

	
abcde

	
0.329

	
abcd

	
0.276

	
d

	
0.288

	
abc

	
0.274

	
ab




	
17

	
0.320

	
abc

	
0.320

	
abc

	
0.277

	
bc

	
0.233

	
a

	
0.310

	
ab

	
0.330

	
abc

	
0.304

	
abcd

	
0.242

	
bc

	
0.330

	
abc

	
0.265

	
b

	
0.227

	
cd

	
0.161

	
e

	
0.327

	
abcde

	
0.287

	
bcd

	
0.297

	
abc

	
0.281

	
ab




	
18

	
0.303

	
bc

	
0.303

	
bc

	
0.291

	
abc

	
0.276

	
a

	
0.297

	
ab

	
0.320

	
abcd

	
0.304

	
abcd

	
0.254

	
abc

	
0.323

	
abc

	
0.288

	
ab

	
0.246

	
bcd

	
0.182

	
cde

	
0.319

	
abcdef

	
0.297

	
abcd

	
0.306

	
abc

	
0.302

	
a




	
19

	
0.325

	
ab

	
0.325

	
ab

	
0.325

	
a

	
0.264

	
a

	
0.308

	
ab

	
0.326

	
abcd

	
0.294

	
abcd

	
0.261

	
abc

	
0.333

	
abc

	
0.291

	
ab

	
0.250

	
bcd

	
0.194

	
abcde

	
0.293

	
ef

	
0.296

	
abcd

	
0.285

	
bc

	
0.272

	
ab




	
20

	
0.318

	
abc

	
0.318

	
abc

	
0.292

	
abc

	
0.267

	
a

	
0.301

	
ab

	
0.333

	
abc

	
0.313

	
ab

	
0.266

	
abc

	
0.328

	
abc

	
0.278

	
ab

	
0.216

	
d

	
0.185

	
bcde

	
0.322

	
abcde

	
0.290

	
bcd

	
0.299

	
abc

	
0.295

	
ab




	
21

	
0.326

	
ab

	
0.326

	
ab

	
0.318

	
abc

	
0.282

	
a

	
0.313

	
ab

	
0.345

	
ab

	
0.322

	
ab

	
0.297

	
ab

	
0.307

	
c

	
0.300

	
ab

	
0.281

	
ab

	
0.226

	
abcd

	
0.330

	
abcd

	
0.291

	
bcd

	
0.315

	
abc

	
0.294

	
ab




	
22

	
0.315

	
abc

	
0.315

	
abc

	
0.308

	
abc

	
0.265

	
a

	
0.297

	
ab

	
0.308

	
cd

	
0.284

	
bcd

	
0.242

	
bc

	
0.323

	
abc

	
0.279

	
ab

	
0.231

	
cd

	
0.184

	
cde

	
0.307

	
bcdef

	
0.304

	
abcd

	
0.289

	
abc

	
0.281

	
ab




	
23

	
0.309

	
abc

	
0.309

	
abc

	
0.289

	
abc

	
0.249

	
a

	
0.290

	
b

	
0.324

	
abcd

	
0.293

	
abcd

	
0.244

	
abc

	
0.325

	
abc

	
0.286

	
ab

	
0.230

	
cd

	
0.188

	
abcde

	
0.314

	
abcdef

	
0.288

	
bcd

	
0.289

	
abc

	
0.279

	
ab




	
24

	
0.310

	
abc

	
0.310

	
abc

	
0.274

	
c

	
0.251

	
a

	
0.303

	
ab

	
0.318

	
abcd

	
0.269

	
d

	
0.238

	
bc

	
0.330

	
abc

	
0.301

	
ab

	
0.260

	
abcd

	
0.209

	
abcde

	
0.305

	
bcdef

	
0.300

	
abcd

	
0.290

	
abc

	
0.276

	
ab




	
MEAN

	
0.318

	

	
0.318

	

	
0.310

	

	
0.269

	

	
0.305

	

	
0.329

	

	
0.306

	

	
0.263

	

	
0.325

	

	
0.292

	

	
0.263

	

	
0.208

	

	
0.317

	

	
0.297

	

	
0.299

	

	
0.282

	




	
Fvalue

	
3.76

	
***

	
3.24

	
***

	
3.78

	
***

	
1.41

	
NS

	
2.55

	
***

	
4.48

	
***

	
5.03

	
***

	
3.5

	
***

	
2.68

	
***

	
3.21

	
***

	
8.29

	
***

	
4.48

	
***

	
5.02

	
***

	
3.94

	
***

	
3.05

	
***

	
1.95

	
**








Within column and year, means followed by the same letter are not significantly different using Tukey HSD separation procedure. ** = p < 0.05, *** = p < 0.01.
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Table 6. ANOVA F values to verify genetic variation among lines for each SRI, phenotypic correlation(rp) and genotypic correlation(rg) between sesame yield and SRIs, broad-sense heritability on a line mean basis (H2) all on different monitoring dates across growing conditions and cropping years (NP20, NP21, LP20, LP21). Relative efficiency of indirect selection (Er) in SRIs vs. direct selection in yield expressed in percentage.
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NP 2020

	

	
NP2021

	

	
LP2020

	

	
LP2021

	




	
SRI

	
Fvalue

	
rp

	

	
rg

	

	
H2

	
Er (%)

	
Fvalue

	
rp

	

	
rg

	

	
H2

	
Er (%)

	
Fvalue

	
rp

	

	
rg

	

	
H2

	
Er (%)

	
Fvalue

	
rp

	

	
rg

	

	
H2

	
Er (%)






	

	
1.47

	
NS

	
−0.063

	
NS

	
−0.038

	
NS

	
0.322

	
−2

	
2.16

	
**

	
−0.363

	
NS

	
−0.564

	
**

	
0.538

	
−45

	
2.59

	
**

	
0.291

	
*

	
0.369

	
NS

	
0.614

	
31

	
2.69

	
**

	
−0.067

	
NS

	
−0.084

	
NS

	
0.628

	
−7




	
NDRE2

	
2.43

	
**

	
0.214

	
NS

	
0.312

	
NS

	
0.589

	
25

	
2.59

	
**

	
0.076

	
NS

	
0.108

	
NS

	
0.613

	
9

	
2.42

	
**

	
−0.105

	
NS

	
−0.175

	
NS

	
0.586

	
−15

	
2.30

	
**

	
−0.053

	
NS

	
−0.088

	
NS

	
0.565

	
−7




	
NDRE3

	
3.76

	
**

	
0.354

	
*

	
0.442

	
*

	
0.734

	
39

	
2.55

	
**

	
0.285

	
*

	
0.322

	
NS

	
0.608

	
27

	
2.68

	
**

	
0.134

	
NS

	
0.196

	
NS

	
0.627

	
17

	
5.02

	
**

	
−0.015

	
NS

	
−0.027

	
NS

	
0.801

	
−3




	
NDRE4

	
3.25

	
**

	
0.593

	
**

	
0.703

	
**

	
0.692

	
60

	
4.48

	
**

	
0.116

	
NS

	
0.111

	
NS

	
0.777

	
11

	
3.21

	
**

	
0.235

	
**

	
0.218

	
NS

	
0.689

	
20

	
3.94

	
**

	
0.379

	
**

	
0.450

	
*

	
0.746

	
40




	
NDRE5

	
3.78

	
**

	
0.591

	
**

	
0.686

	
**

	
0.735

	
61

	
5.03

	
**

	
0.240

	
*

	
0.264

	
NS

	
0.801

	
26

	
8.29

	
**

	
0.368

	
**

	
0.381

	
NS

	
0.879

	
39

	
3.05

	
**

	
0.002

	
NS

	
−0.011

	
NS

	
0.672

	
−1




	
NDRE6

	
1.41

	
NS

	
0.398

	
*

	
0.748

	
**

	
0.292

	
42

	
3.50

	
**

	
0.195

	
NS

	
0.276

	
NS

	
0.715

	
25

	
4.48

	
**

	
0.353

	
*

	
0.415

	
*

	
0.777

	
40

	
1.95

	
*

	
−0.051

	
NS

	
−0.112

	
NS

	
0.487

	
−8




	
NDRE7

	
2.22

	
**

	
0.197

	
NS

	
0.274

	
NS

	
0.550

	
21

	
2.19

	
**

	
0.175

	
NS

	
0.335

	
NS

	
0.544

	
27

	
1.81

	
*

	
−0.046

	
NS

	
−0.037

	
NS

	
0.447

	
−3

	
2.55

	
**

	
−0.069

	
NS

	
−0.084

	
NS

	
0.607

	
−7




	
NDRE8

	

	

	

	

	

	

	

	

	
2.86

	
**

	
−0.058

	
NS

	
0.028

	
NS

	
0.651

	
2

	

	

	

	

	

	

	

	

	
3.56

	
**

	
−0.379

	
**

	
−0.448

	
*

	
0.719

	
−39




	
NDRE9

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
1.68

	
NS

	
−0.354

	
NS

	
−0.569

	
**

	
0.405

	
−37




	
NDVI1

	
3.34

	
**

	
0.104

	
NS

	
0.158

	
NS

	
0.701

	
14

	
2.28

	
**

	
−0.276

	
NS

	
−0.420

	
*

	
0.562

	
−34

	
1.80

	
*

	
0.444

	
**

	
0.660

	
**

	
0.446

	
48

	
2.04

	
*

	
0.084

	
NS

	
0.124

	
NS

	
0.509

	
9




	
NDVI2

	
4.98

	
**

	
0.193

	
NS

	
0.227

	
NS

	
0.799

	
21

	
4.46

	
**

	
0.359

	
**

	
0.389

	
NS

	
0.776

	
37

	
2.14

	
**

	
0.456

	
**

	
0.591

	
**

	
0.533

	
47

	
3.44

	
**

	
0.067

	
NS

	
0.053

	
NS

	
0.709

	
5




	
NDVI3

	
3.42

	
**

	
0.115

	
NS

	
0.165

	
NS

	
0.708

	
14

	
4.74

	
**

	
0.434

	
**

	
0.470

	
*

	
0.789

	
45

	
3.71

	
**

	
0.090

	
NS

	
0.074

	
NS

	
0.731

	
7

	
5.60

	
**

	
−0.033

	
NS

	
−0.045

	
NS

	
0.821

	
−4




	
NDVI4

	
2.93

	
**

	
0.186

	
NS

	
0.195

	
NS

	
0.658

	
16

	
6.48

	
**

	
0.181

	
NS

	
0.172

	
NS

	
0.846

	
17

	
4.46

	
**

	
0.225

	
*

	
0.209

	
NS

	
0.776

	
20

	
6.15

	
**

	
0.428

	
**

	
0.468

	
*

	
0.837

	
44




	
NDVI5

	
3.33

	
**

	
0.538

	
**

	
0.654

	
**

	
0.700

	
57

	
6.19

	
**

	
0.391

	
**

	
0.415

	
*

	
0.838

	
41

	
14.00

	
**

	
0.334

	
**

	
0.359

	
NS

	
0.928

	
38

	
2.56

	
**

	
0.092

	
NS

	
0.092

	
NS

	
0.609

	
7




	
NDVI6

	
2.45

	
**

	
0.273

	
NS

	
0.386

	
NS

	
0.593

	
31

	
2.99

	
**

	
0.291

	
NS

	
0.379

	
NS

	
0.666

	
33

	
12.40

	
**

	
0.343

	
*

	
0.392

	
NS

	
0.919

	
41

	
5.83

	
**

	
0.208

	
*

	
0.202

	
NS

	
0.829

	
19




	
NDVI7

	
2.81

	
**

	
0.258

	
NS

	
0.320

	
NS

	
0.645

	
27

	
3.01

	
**

	
0.290

	
NS

	
0.399

	
NS

	
0.668

	
35

	
3.52

	
**

	
0.429

	
*

	
0.561

	
**

	
0.716

	
52

	
4.61

	
**

	
0.165

	
NS

	
0.157

	
NS

	
0.783

	
14




	
NDVI8

	

	

	

	

	

	

	

	

	
3.26

	
**

	
0.025

	
NS

	
0.080

	
NS

	
0.694

	
7

	

	

	

	

	

	

	

	

	
4.24

	
**

	
−0.127

	
NS

	
−0.168

	
NS

	
0.764

	
−15




	
NDVI9

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
3.27

	
**

	
−0.089

	
NS

	
−0.137

	
NS

	
0.694

	
−12




	
SPAD

	
3.31

	
**

	
−0.500

	
**

	
−0.623

	
**

	
0.698

	
−54

	
1.68

	
NS

	
−0.324

	
NS

	
−0.508

	
*

	
0.405

	
−35

	
3.31

	
**

	
−0.261

	
NS

	
−0.323

	
NS

	
0.698

	
−29

	
1.10

	
NS

	
−0.277

	
NS

	
−0.914

	
**

	
0.095

	
−29




	
YIELD

	
15.80

	
**

	
1

	
**

	
1

	
**

	
0.937

	

	
6.98

	
**

	
1

	
**

	
1

	
**

	
0.857

	

	
6.55

	
**

	
1

	
**

	
1

	
**

	
0.847

	

	
13.60

	
**

	
1

	
**

	
1

	
**

	
0.963

	








NS = non-significant * = p < 0.05, ** = p < 0.01.
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Table 7. p-Values for Likelihood Ratio Test of the analyzed SRIs for genotype and genotype-vs-environment random effects, broad-sense heritability on a plot basis over environments (H2x), and broad-sense heritability on an entry mean basis over the test environments (H2y).
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	SRI
	GEN
	
	GEN:ENV
	
	H2x
	H2y
	SRI
	GEN
	
	GEN:ENV
	
	H2x
	H2y





	NDRE1
	0.00335
	***
	0.00947
	***
	0.119
	0.608
	NDVI1
	0.02254
	**
	0.00116
	***
	0.093
	0.521



	NDRE2
	0.015
	**
	0.00039
	***
	0.103
	0.543
	NDVI2
	1.31 × 10−9
	**
	1.31 × 10−2
	**
	0.323
	0.847



	NDRE3
	2.80 × 10−3
	***
	1.83 × 10−8
	***
	0.158
	0.614
	NDVI3
	1.17 × 10−6
	***
	3.50 × 10−7
	***
	0.285
	0.780



	NDRE4
	8.16 × 10−5
	***
	6.31 × 10−6
	***
	0.207
	0.711
	NDVI4
	4.72 × 10−4
	***
	1.44 × 10−10
	***
	0.203
	0.669



	NDRE5
	1.29 × 10−8
	***
	1.35 × 10−6
	***
	0.347
	0.829
	NDVI5
	2.71 × 10−6
	***
	4.13 × 10−14
	***
	0.313
	0.769



	NDRE6
	3.32 × 10−5
	***
	5.13 × 10−3
	***
	0.193
	0.728
	NDVI6
	3.48 × 10−7
	***
	6.31 × 10−8
	***
	0.310
	0.795



	NDRE7
	0.29578
	***
	0.00012
	***
	0.040
	0.293
	NDVI7
	2.93 × 10−6
	***
	2.30 × 10−3
	***
	0.233
	0.768



	NDRE8
	1.64 × 10−5
	***
	5.96 × 10−4
	***
	0.215
	0.741
	NDVI8
	2.87 × 10−10
	***
	3.12 × 10−2
	**
	0.333
	0.858



	SPAD
	1.16 × 10−6
	***
	1.00
	NS
	0.168
	0.764
	YIELD
	6.16 × 10−8
	***
	4.38 × 10−22
	***
	0.407
	0.814







GEN—Effect of the genotype to the SRIs, SPAD and Yield variance over the test environments. GEN:ENV—Effect of the genotype with environment interaction to the SRIs, SPAD and Yield variance over the test environments. ** = p < 0.05, *** = p < 0.01.
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