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Abstract: Hyperspectral image (HSI) classification is one of the main research contents of hyperspec-
tral technology. Existing HSI classification algorithms that are based on deep learning use a large
number of labeled samples to train models to ensure excellent classification effects, but when the
labeled samples are insufficient, the deep learning model is prone to overfitting. In practice, there are
a large number of unlabeled samples that have not been effectively utilized, so it is meaningful to
study a semi-supervised method. In this paper, an adversarial representation learning that is based
on a generative adversarial networks (ARL-GAN) method is proposed to solve the small samples
problem in hyperspectral image classification by applying GAN to the representation learning domain
in a semi-supervised manner. The proposed method has the following distinctive advantages. First,
we build a hyperspectral image block generator whose input is the feature vector that is extracted
from the encoder and use the encoder as a feature extractor to extract more discriminant information.
Second, the distance of the class probability output by the discriminator is used to measure the error
between the generated image block and the real image instead of the root mean square error (MSE),
so that the encoder can extract more useful information for classification. Third, GAN and conditional
entropy are used to improve the utilization of unlabeled data and solve the small sample problem
in hyperspectral image classification. Experiments on three public datasets show that the method
achieved better classification accuracy with a small number of labeled samples compared to other
state-of-the-art methods.

Keywords: adversarial representation learning (ARL); generative adversarial networks; hyperspectral
image

1. Introduction

Hyperspectral remote sensing technology uses a large number of spectral bands
to image surface objects, these spectral bands are composed of ten to hundreds non-
overlapping narrow bands and it combines spatial information with its own unique spectral
information to acquire hyperspectral images on a pixel-by-pixel basis. An important
research branch of hyperspectral remote sensing technology is HSI classification technology
and it is the task of assigning categories to each pixel in a hyperspectral image. At present,
this technology is widely used in many fields [1] such as modern agriculture [2], aviation [3],
mineral exploration [4], astronomy [5], biomedicine [6], national defense, and homeland
security monitoring [7].

For hyperspectral image classification techniques, the early studies only used the
spectral information in hyperspectral datasets but ignored the spatial information that was
contained in hyperspectral datasets, such as k-nearest neighbor (KNN) classifier [8], sup-
port vector machine (SVM) [9], distance classifiers [10], and extreme learning machines [11],
etc. As the spectrum of pixel is affected by the surrounding pixel and noise, the algorithm
using spectral information alone cannot obtain good classification performance. In sub-
sequent studies, many researchers have introduced spatial information and formed the
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classification method of HSI that is based on spatial-spectral combination. For example,
the spatial-spectral composite kernel function method that is based on SVM [12]. This
method combines hidden Markov random field segmentation with SVM [13]. The non-local
weighted joint sparse representation classification method [14], and the joint sparse repre-
sentation classification method that is based on shape adaptation [15]. Although the above
methods have achieved some improvement in classification performance, their features are
designed manually.

Deep learning is able to extract features from data automatically compared to ordinary
machine learning that requires manual feature design, so many researchers have proposed
HSI classification algorithms that are based on deep learning. For example, a stacked
autoencoder [16] is used to extract hyperspectral spatial-spectral joint features [17]. Deep
belief network (DBN) [18] is used to extract both spectral and spatial features of hyperspec-
tral images and then cascade them to form spatial-spectral features for classification [19].
Convolutional neural network (CNN) [20] has features such as local perception, weight
sharing, and multiple convolutional kernels, and thus has received attention from many
researchers and many algorithms have been proposed [21]. For example, 1D-CNN [22] and
2D-CNN [23] are used to extract both spectral and spatial features, respectively. 1D-CNN
and 2D-CNN are also combined to extract joint spatial-spectral features [24]. 3D-CNN is
used to extract features directly from image blocks [25]. Pixel-pair convolutional neural
network approach (PPF-CNN) [26] extends the training dataset by reorganizing and rescal-
ing the training samples. However, the labeled samples of HSI are difficult to obtain and
the training of deep learning requires a huge number of labeled samples data.

For solving the small sample problem, some scholars have proposed the use of transfer
learning (TL) to classify hyperspectral images. For example, Lin et al. proposed an
unsupervised classification method that was based on sample migration by transforming
the source domain samples and target domain samples into the feature subspace [27],
finding the transformation matrix between them and obtaining the initial classification
results. Persello et al. used a feature migration strategy to reduce the difference between the
source and target domain data by projecting the source domain data into the regenerative
Hilbert space and calculate the distance between the conditional distributions of the source
and target domains [28]. Some scholars have proposed some semi-supervised approaches,
for example, Sun Z. proposed a semi-supervised support vector machine algorithm [29],
which uses both labeled and unlabeled data to find a classification surface with maximum
class spacing. Aydemir M. S. et al. proposed a graph-based HSI classification algorithm [30],
which assumes that similar input data should share similar output labels, the vertices of
the graph are labeled or unlabeled training samples, and the weights of the edges are the
similarity between examples, followed by specifying the objective function to be optimized
and using the smoothness as a regular term to find the optimal parameters. However,
the distribution of unlabeled data that is used by the TL methods does not match the
distribution of real samples and manual domain adaptation operations cannot completely
solve this problem.

For the above problems, scholars have applied generative adversarial network (GAN) [31]
to hyperspectral image classification. The method, that is based on GAN, does not need to
provide the sample distribution in advance and the samples distribution can be learned
automatically by the neural network. At the same time, the methods that are based on
GAN are also able to use a huge number of unlabeled samples. 1DGAN and 3DGAN are
used as spectral classification and spatial image block classification [32], respectively, by
combining a conditional generative adversarial network (CGAN) [33] with an auxiliary
classifier generative adversarial network (AC-GAN) [34], with category information as a
conditional input. AC-GAN modifies its discriminator to a multi-category discriminator by
viewing the generated samples as a new class and training the discriminator simultaneously
with the real labeled samples. HSGAN [35] uses GAN to extract spectral features with
discriminators in an unsupervised manner and train classifiers in a supervised manner,
and finally the test samples labels are generated by voting on their neighboring image
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element classes. Zhang M and Sun Q et al. used Wasserstein GANs (WGANs) [36] to extract
features of hyperspectral image blocks by discriminators in an unsupervised manner, and
then trained the classifier with a small number of samples. The above GAN-based methods
utilize only spectral information or spatial information. Jie Feng [37] et al. combined the two
and proposed a novel multi-class null-spectrum GAN method, which has two conditional
generators to generate spectral samples and spatial image block samples of corresponding
classes, and the discriminator takes both spectral and spatial image block samples as
inputs, extracts their respective features, and then cascades them, and finally classifies
them, and the generated samples are discriminated in the discriminator as not belonging
to any class. These common GAN-based semi-supervised classification algorithms use
discriminators to extract features for classification. Although the adversarial training of
discriminators can enhance the ability of discriminators to extract features to a certain
extent, the discriminators still need to force the distribution of the generated samples and
real samples to be separated when the distributions are close to each other in the later stages
of training, which deteriorates the classification ability of the discriminators. In general,
the existing hyperspectral image classification algorithms that are based on GAN are not
conducive to extracting discriminant information in the later training period because it uses
discriminator as the feature extractor for classification. Although some methods expand the
data by generating pseudo samples, they do not effectively use a large number of unlabeled
samples to solve the problem of small samples.

In this paper, an adversarial representation learning that is based on generative adver-
sarial networks (ARL-GAN) is proposed to extend GAN to the domain of representation
learning. We used PCA to compress the raw data and added an encoder in front of the
generator to combine it with the generator as a stack autoencoder. The discriminator is
modified to be a multi-category discriminator and it is used instead of MSE to measure the
difference between the generated image and the real image, so as to guide feature extraction
and image generation through the high-level semantic information. In addition, conditional
entropy is added to the objective function to increase the use of unlabeled samples in the
network. This algorithm uses GAN to improve the representation capability of the encoder,
and finally uses the features that are extracted by the encoder for classification, which is not
affected by the above factors in the later stages of training, while training the GAN with a
huge number of unlabeled samples. This makes the output features of the feature extractor
are more conducive to classification, and also takes full advantage of the large amount of
unlabeled data, which greatly improves the hyperspectral image classification performance
under the small sample problem. The main contributions of this article are as follows.

1. We construct a hyperspectral image block generator that is based on PCA, whose
input is the feature vector that is extracted by the encoder rather than the noise, and
the encoder is used as the feature extractor of classification.

2. The distance of the class vector output by the discriminator replaces MSE in stacked
autoencoder (SAE) to measure the error between the generated image block and the
real image block, so that the features that are extracted by the encoder have more
useful information for classification.

3. GAN and conditional entropy are used to improve the utilization of unlabeled data
when training discriminators, solving the problem of small samples in HSI classification.

The rest of this paper is organized as following. Section 2 describes the methodology
of this paper in detail. Section 3 verifies the advancement of the proposed model by
comparing it with other excellent HSI classification models. Finally, Section 4 summarizes
this article.

2. Proposed Method

This section is structured as follows. First, we introduce the structure of the ARL-GAN
algorithm that is proposed in this paper and its corresponding parameter settings. Second,
we investigate the use of spectral regularization for ARL-GAN to stabilize the training
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process. Third, we present the use of conditional entropy in detail. Finally, we describe the
encoder E, the classifier C, the generator G, and the discriminator D of ARL-GAN.

2.1. ARL-GAN

The structure diagram of the ARL-GAN algorithm that is proposed in this paper
is shown in Figure 1. ARL-GAN includes five parts. In the first part, PCA is used to
extract the principal components in the spectral dimension of hyperspectral images so as
to reduce redundancy and reduce the difficulty of image generation. In the second part,
we extract the features of real hyperspectral image blocks using the encoder E based on a
two-dimensional convolution neural network. In the third part, we generate (reconstruct)
hyperspectral image blocks of the same class using the feature that is extracted by E as
input using the generator G based on two-dimensional transposed convolution neural
network. In the fourth part, we measure the generation errors of real hyperspectral image
blocks and the generated hyperspectral image blocks by using a discriminator D, which is
designed as a two-dimensional convolution neural network. The errors are calculated by
the class similarity of the two image blocks. In the fifth part, we add a fully connected layer
and the Softmax activation function after encoder E for classification.
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In this paper, x is used to represent the samples of HSI blocks with M× N × H size,
M and N are used to represent the length and width of the blocks, H is used to indicate the
number of channels of the HSI after PCA operation, and y is used to represent one_hot label
corresponding to the real sample x. The real labeled samples are represented as (xL, yL),
and the real unlabeled samples are represented as xU . In the encoding phase, x is used as
input to the encoder E, and the encoded output is characterized by f . In the generation
phase, the feature f that is extracted by the encoder is used as input to the generator G,
and the hyperspectral image blocks that are generated by the generator are represented as
xG( f ). The discriminator takes the resulting sample xG( f ), the real labeled sample (xL, yL),
and the real untagged sample xU as input. The real labeled samples (xL, yL) are used
to learn the correct image block–category mapping function based on the discriminator.
The unlabeled sample xU uses conditional entropy (CE) [38] to enhance discriminator
classification, that is, to force the discriminator to output a class probability vector with an
advantage class for the unlabeled sample. Conversely, the discriminator needs to output
the class probability vectors with no dominant classes for xG( f ) to distinguish between
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the real samples and the generated samples. For generators, the dominant classes output
by the discriminator are required to be consistent between the generated samples and the
corresponding real samples. Finally, the feature that is extracted by the encoder is classified
by a fully connected layer and Softmax score.

2.2. Spectral Regularization for Stabilizing ARL-GAN Training Process

GAN is prone to pattern collapse, gradient disappearance, and gradient explosion
during the training process, leading to an extremely unstable training process. Therefore,
many studies have been conducted to solve this problem. For example, WGAN and WGAN-
GP solve this problem by modifying the loss function by replacing the Jensen-Shannon
(JS) Divergence JS in the classical GAN loss function with the Wasserstein distance and
implement the required Lipschitz continuity condition at that distance in two different
ways. In addition to solving this problem by modifying the loss function, some researchers
have proposed to solve this problem by modifying the network structure of generative
adversarial networks. For example, the deep convolution generative adversarial network
(DCGAN) [39], which mitigates the problem of network training instability through a well-
designed network structure. In this paper, spectral normalization (SN) [40] is used to make
the discriminator satisfy the Lipschitz continuity condition to solve the above problem.

SN applies regularization in the form of spectral norms over layer parameters, so that
the discriminator D has Lipschitz continuity conditions. Compared with the stable GAN
approach of WGAN-GP, SN has a better effect in GAN [41]. The method that is presented in
this paper requires the generation of HSI blocks, which is more difficult than the generation
of hyperspectral vectors. Therefore, a spectral regularization method is used to stabilize
the GAN.

In GAN, if the discriminator D is K-Lipschitz continuous, any x1 and x2 in image
space can be represented as Equation (1), where ‖·‖2 represents the L2 norm, K is called
the Lipschitz constant of D(x), and the minimum of K is called ‖D‖Lip. The spectral norm
definition of the matrix is shown in the Formula (2), and sup represents the upper bound.

‖D(x1)− D(x2)‖
‖x1 − x2‖2

≤ K, ∀x1, x2 (1)

‖A‖2 = sup
‖Ax‖2
‖x‖2

= σ(A) (2)

To analyze whether the discriminator D satisfies the Lipschitz continuity condition
after SN is used, the discriminator function can be expressed as xl = al(W l xl−1 + bl), if D
is a fully connected network with a non-linear activation function, each layer is recorded

as θ =
{

W l , bl
}L

l=1
, and the parameter of D is recorded as Dθ(x0) = xL. Within a

small neighborhood of the value, the discriminator can be considered as a linear function,
Dθ(x) = Wθ,xx + bθ,x. Formula (3) can be derived from the property of matrix norm
σ(AB) ≤ σ(A)σ(B).

The activation function uses ReLU, and al(xl−1) can be thought of as Diagl
θ,xxl−1. Diagl

θ,x
represents a diagonal matrix, with 1 at the non-negative corresponding position of xl−1 and 0
at the rest, so that there is σ(Diagl

θ,x) = ‖Diagl
θ,x‖2

≤ 1, from which the Formulas (4) and (5)
can be derived.

‖Dθ(x + δ)− Dθ(x)‖2
‖δ‖2

=
‖Wθ,xδ‖2
‖δ‖2

≤ σ(Wθ,x) = sup
δ 6=0

‖Wθ,xδ‖2
‖δ‖2

(3)

Wθ,x =
L

∏
l=1

Diagl
θ,xW l

θ,x (4)

σ(Wθ,x) ≤
L

∏
l=1

σ(Diagl
θ,x)σ(W

l
θ,x) ≤

L

∏
l=1

σ(W l) (5)
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If SN is used for each network layer of discriminator D, the Formulas (6)–(8) can be
derived, and then discriminator D satisfies the 1-Lipschitz continuous condition.

Ŵ l
SN =

W l

σ(W l)
(6)

σ(Ŵ l
SN) =

σ(W l)

σ(W l)
= 1 (7)

‖Dθ(x + δ)− Dθ(x)‖2
‖δ‖2

≤ σ(Wθ,x) ≤ 1 (8)

SN is essentially a layer-by-layer singular value decomposition (SVD) process by
dividing the parameter matrix of each layer by the spectral norm of the parameter matrix,
but the process of solving SVD is time-consuming, so it is approximated by power iteration.
The entire algorithm flow is shown in Algorithm 1.

Algorithm 1. Spectral Normalization (SN)

Step1:
For l = 1, · · · , L network layers, the random initialization vector ũl with Gaussian
distribution is used; The number of power iterations is N.

Step2:
Calculate the values of ṽl and ũl :

For l = 1, · · · , L
For n1 = 1, · · ·, N1

ṽl = (W l)
T

ũl/‖(W l)
T

ũ‖2
ũl = W l ṽl/‖W l ṽl‖2

Step3:
Calculate spectral norm normalization parameters according to ṽl

and ũl : W l
SN(W l) = W l/σ(W l), where σ(W l) = ũT

l W l ṽl .

Step4:
On the training dataset DM =

{
(xi1 , yi1 ) , · · ·, (xik

, yik
)
}

of mini-batch, update the
parameter W l with the learning rate α:

W l = W l − α∇W l `(W
l
SN(W l), DM)

2.3. Conditional Entropy

The cost of labeled samples in HSI datasets is high and the available labeled samples
are limited, so the introduction of unlabeled samples into the deep learning algorithm
needs to be considered to enhance the classification ability of the model. Classical GAN is
an unsupervised training method, but the generated samples have a poor enhancement
effect on the classifier, so both CGAN and ACGAN introduce category information as
additional information to constrain GAN. The algorithm in this paper also introduces
category information by changing the discriminator to a multi-classification discriminator.
For unlabeled samples without category information, the algorithm in this paper exploits it
by adding conditional entropy to the objective function.

To enhance the ability of the generator to generate samples, the discriminator needs to
have a strong ability to discriminate between true and false for unlabeled data. However,
the binary classification objective function of the classical GAN does not force a dominant
class, and only needs to satisfy Equation (9) to obtain the decision boundary of the correct
data source, while the class probability PD(yc|x) of the real unlabeled samples may be
evenly distributed. In order to ensure the discriminator has strong ability to distinguish
true from false, a conditional entropy is added to the algorithm in this paper. At the same
time, in practice, the real labeled samples do not know the specific label, but they should
belong to a class, so conditional entropy is added as an a priori condition in the classifier
to enhance the performance of the classifier. The mathematical expression of conditional
entropy is shown in Equation (10). When the probability of one class is 1 and the predicted
probability of other classes is 0, the conditional entropy obtains the maximum value and
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when the predicted probability of each class is equal, the conditional entropy obtains the
minimum value.

C

∑
c=1

PD(yc
∣∣x) > PD(yC+1

∣∣x) (9)

CE = ExU

C

∑
c=1

pC(yc|x) log pC(yc|x) (10)

2.4. Encoder E and Classifier C of ARL-GAN

The role of the encoder E is to map the input hyperspectral image block xL∪U from
the input space to the feature space f . The encoder maps the hyperspectral image block
with original size of M × N × H to a feature vector with size of 1× 1× F by four-step
convolution. ReLU is used as the nonlinear activation function for each layer. The process
of extracting the features by the encoder can be represented as Equation (11).

f = E(xL∪U) (11)

The general semi-supervised classification algorithm that is based on GAN uses a
discriminator to extract features for classification. Although the adversarial training of the
discriminator can enhance the ability of the discriminator to extract features to a certain
extent, the discriminator still needs to force the distribution of the generated samples and
the real samples to be separated when the distribution is close to each other in the later
stage of training, which affects the classification ability of the discriminator. In contrast, the
algorithm in this paper uses GAN to improve the representation capability of the encoder,
and ultimately uses the features that are extracted by the encoder for classification, which
is not affected by the above factors in the later stages of training. Compared with the semi-
supervised SAE algorithm without the antagonistic training, the feature that is extracted by
the encoder in this paper is more suitable for classification tasks. The classifier adds a full
connection layer with weight normalization (WN) [42] to the encoder E. The input image
block’s class probability distribution pC(yc|x) is obtained by passing the output of the full
connection layer through the Softmax, as shown in Formula (12). The objective function of
classifier C can be expressed as Formula (13).

pC(yc|x) = softmax (Wn_Fc( f )) (12)

maxLC = E(xL ,yL)
log pC(yc|x, y) + λExU

C

∑
c=1

pC(yc|x) log pC(yc|x) (13)

In (13) the first term represents the cross-entropy that is calculated from the labeled
samples, the second term represents the conditional entropy that is calculated from the
unlabeled samples, and λ is the weight of the conditional entropy. As whether the predicted
result of the classifier is correct or not, the conditional entropy will promote the network to
further enhance the current prediction. If the classifier is immature and has poor recognition
ability, it will lead to the degradation of classification. Therefore, when the number of
iterations is low in the early stages of training, λ is small. When the classifier is fully trained
with the increase of training steps, the accuracy of the prediction results increases, and the
weight λ should also increase with the increase of steps.

2.5. Generator G and Discriminator D of ARL-GAN

The generator consists of four transposed convolution layers, which take the feature
that is extracted by the encoder with a size of 1× 1× F as input to generate (rebuild) an
image block with a size of M× N × H, using ReLU as the activation function and Tanh as
the activation function in the output layer to match the range of the true hyperspectral data.
The discriminator is designed by ten layers of convolution layers that are normalized by
spectral norms and full connection layer normalized by weights. Because the discriminator
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is not only used to correctly classify the real labeled samples, but also to determine which
is the generated sample and which is the real sample, the task is heavier than the classifier,
so more network layers and more network parameters are used. The discriminator uses
LeakyReLU as the activation function except for the final fully connected layer, which uses
the Softmax function. The arrows represent the direction of data flow.

Generator G is used to generate hyperspectral image blocks using the features that
are extracted by the encoder E as input. The stacked autoencoder uses the root mean
square error to calculate the reconstruction error so that the input image block and the
reconstructed image block are identical at the pixel level. The encoder of SAE can be
considered as a non-linear dimension reduction algorithm. Although the redundancy
of data is reduced, the ability of the encoder to extract features is improved to a certain
extent by. However, the features that are extracted by this encoder are not completely
suitable for classification tasks. In this algorithm, MSE is replaced by a discriminator, which
takes the generated image block and the real image block as input, and then constrains
of the generator according to the advanced semantic information of category, making
the generated image block consistent with the corresponding real image block category,
thus making the features and categories extracted by the encoder highly relevant. The
extracted features contain the main information of the class and remove the remaining
noise information. The encoder and generator are trained with a discriminator to further
enhance the ability of encoder and generator.

The generator’s target function is shown in Equation (14), where pD(yc|x) repre-
sents the predictive probability of the discriminator, G( f ) represents the generated data,
pD(yc|xL∪U) denotes the class probability of the discriminator for the sample output, and
pD(yc

∣∣∣xG( f )) denotes the class probability of the discriminator for the generated sample
output. This objective function can constrain the generation process so that the generated
image block and the real image block belongs to the same class, rather than making them
identical at the pixel level. The generators and encoders are a complete generation network
when updating parameters, so the parameters of encoders E and G are updated during
reverse propagation.

minLG,E = Ex(
1
C

C

∑
c=1

(pD(yc

∣∣∣xL∪U)− pD(yc

∣∣∣xG( f )))
2
) (14)

The function of the discriminator is mainly to distinguish the generated image blocks
from the real data blocks. However, unlike the classical GAN which uses binary clas-
sification to discriminate, the discriminator D in the proposed method is a multi-class
discriminator. The objective function of D is shown in Equation (15). The objective function
of the discriminator contains three terms, the first term is the cross-entropy for the true
labeled samples; the second term is the conditional entropy for the real labeled samples,
which gives the discriminator an advantage class for the class probability of the output
of the real labeled samples; and the third term is the objective function for generating
image blocks. Unlike other semi-supervised GAN algorithms, the generated samples are
considered as a new class [43,44]. The label of the sample that is generated by this algorithm
is yG = [1/C, · · ·1/C] where C is the number of classes, which is also contrary to the true
unlabeled sample, which does not have any dominant classes and outputs a uniform class
probability distribution.

maxLD = E(xL ,yL)
log pD(yc|x, y) + λExU

C

∑
c=1

pD(yc|x) log pD(yc|x)+ExG( f )

C

∑
c=1

yG(c) log(pD(yc|x)) (15)

The optimization process of encoder E, classifier C, generator G, and discriminator
D in the whole network uses an alternating optimization strategy. When updating the
parameters, G and E are considered as a whole generation network. When C and G(E)
network parameters are fixed, D’s network parameters are optimized. Conversely, when
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D is frozen, the parameters of the remaining networks are updated. All the networks are
optimized using the Adam optimization algorithm. Through this end-to-end network
structure and alternate optimization, the test samples are finally classified by classifier C.

3. Experiments and Result Analysis

In this section, three well-known HSI datasets are described, then we introduce the
implementation details of the algorithm in this paper and compare it with other excel-
lent methods. The effectiveness of adversarial learning and conditional entropy are an-
alyzed experimentally and a sensitivity analysis with the number of labeled samples is
performed. Finally, a comparison with existing GAN-based hyperspectral image classifica-
tion algorithms is performed to evaluate the HSI image classification performance of the
proposed algorithm.

3.1. Hyperspectral Datasets

In this experiment, three widely-used datasets were used and they are Indian Pines
dataset, Pavia University dataset (PaviaU), and Salinas. Figure 2a–c shows the false-color
image and ground truth of Indian Pines, Pavia University, and Salinas dataset, respectively.
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Figure 2. False-color composites (first row) and ground truths (second row) of experimental HSI
datasets. Each color represents one kind of object. (a) Indian Pines; (b) PaviaU; (c) Salinas.

The Indian Pines dataset was gathered by the AVIRIS sensor in the northeast of
Indiana. It is 145 × 145 in size and has a spatial resolution of 20 m per pixel. A total of
20 bands were removed due to water absorption, leaving 200 bands for our experimental
analysis, with a spectral range of 400 to 2500 nm. This dataset contains 16 categories and
background information.
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The PaviaU dataset was gathered in northern Italy by the Reflective Optics System
Imaging Spectrometer. Its spatial size is 610 × 340 and the resolution is 1.3 m per pixel. It
has 103 bands, which range from 430 to 860 nm.

The Salinas dataset was gathered by the AVIRIS sensor over the Salinas Valley. The
dataset is of size 512 × 217 × 224, and it has a spatial resolution of 3.7 m per pixel with
16 land-cover classes.

Real samples were divided into a training set and a test set by random sampling. A
total of 5% samples were selected in Indian Pines, 1% samples were selected from the Salina
dataset, and 3% samples were selected from the PaviaU dataset. The values of all HSIs
datasets are normalized between −1 and 1, and then the spectral dimension is reduced to
10 dimensions by the PCA algorithm. The size of the input image block is 32 × 32 × 10
in Indian Pines and Salinas, and the size of the input image block is 8 × 8 × 10 in PaviaU,
because PaviaU is a collection of hyperspectral image data for urban areas, while Indian
Pines and Salinas are a hyperspectral dataset for agricultural areas, where the distribution
of land objects is more complex and homogeneous. Therefore, the size of the input image
block that was selected by this algorithm on the PaviaU dataset is small. In the training, the
number of training samples per small batch is set to 32; the learning rate is set by simulated
annealing algorithm, the learning rate range is 0.0 to 0.002; the conditional entropy weight λ
uses step parameters, the range is 0.5 to 1, and the λ increases by 0.05; and the total number
of training steps is 1000 for each 100 step increase in training steps. The experiments in this
paper were run 10 times independently, and each time the training set and test set were
randomly divided, and the average and standard deviation of the experimental results
were calculated. All the experiments in this paper are run on an Nvidia 1080ti graphics
card. Moreover, Tables 1–3 listed the land cover type and the total number of samples in
the three HSI datasets.

Table 1. Land cover types and total number of samples in the Indian Pines dataset.

No. Color Name Number No. Color Name Number

1
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(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 

==


1OA

C

ii
i

h

N
 

(16) 

where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 

Grass-pasture 483 13
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 

1

1AA
C

ii

i i

h
NC =

=   (17) 

where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 

Woods 1265

7

Remote Sens. 2022, 14, 2612 11 of 23 
 

 

Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 

Stone-Steel-Towers 93
Total Numbers 10,249

Table 2. Land cover types and total number of samples in the PaviaU dataset.

No. Color Name Number No. Color Name Number
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 

1

1AA
C

ii

i i

h
NC =

=   (17) 

where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 

==


1OA

C

ii
i

h

N
 

(16) 

where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 

1

1AA
C

ii

i i

h
NC =

=   (17) 

where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 

==


1OA

C

ii
i

h

N
 

(16) 

where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 

Table 3. Land cover types and total number of samples in the Salinas dataset. 

No. Color Name Number No. Color Name Number 
1 Brocoli_green_weeds_1 1977 9 Soil_vinyard_develop 6197 
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3249 
3  Fallow 1976 11  Lettuce_romaine_4wk 1058 
4  Fallow_rough_pow 1394 12  Lettuce_romaine_5wk 1908 
5  Fallow_ smooth 2678 13  Lettuce_romaine_6wk 909 
6  Stubble 3959 14  Lettuce_romaine_7wk 1061 
7  Celery 3579 15  Vinyard_untrained 7164 
8  Grapes_untrained 11,213 16  Vinyard_vertical_trellis 1737 

Total Numbers 53,785 

In order to quantitatively evaluate the experimental results, three common evalua-
tion criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation 
criteria are shown as follows: 

(1) OA: OA assesses the proportion of correctly identified samples to all the samples. 
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where N is the total number of labeled samples, iih  represents the number of class i sam-

ples divided into class i, and C  is the total number of categories. 
(2) AA: AA represents the mean of the percentage of the correctly identified samples. 
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where C  is the total number of categories, iih  represents the number of samples of cat-
egory i divided into category i, and iN  represents the number of samples of category i. 

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables. 
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Table 1. Land cover types and total number of samples in the Indian Pines dataset. 

No. Color Name Number No. Color Name Number 
1  Alfalfa 46 9  Oats 20 
2  Corn-notill 1428 10  Soybean-notill 972 
3  Corn-mintill 830 11  Soybean-mintill 2455 
4  Corn 237 12  Soybean-clean 593 
5  Grass-pasture 483 13  Wheat 205 
6  Grass-trees 730 14  Woods 1265 
7  Grass-pasture-mowed 28 15  Buildings-Grass-Trees 386 
8  Hay-windrowed 478 16  Stone- Steel-Towers 93 

Total Numbers 10,249 

Table 2. Land cover types and total number of samples in the PaviaU dataset. 

No. Color Name Number No. Color Name Number 
1  Asphalt 6631 6  Bare Soil 5029 
2  Meadows 18,649 7  Bitumen 1330 
3  Gravel 2099 8  Self-Blocking Bricks 3682 
4  Trees 3064 9  Shadows 947 
5  Painted metal sheets 1345 Total Numbers 42,776 
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In order to quantitatively evaluate the experimental results, three common evaluation
criteria are used: OA, AA, and Kappa coefficients. The definitions of all evaluation criteria
are shown as follows:

(1) OA: OA assesses the proportion of correctly identified samples to all the samples.

OA =

C
∑

i=1
hii

N
(16)

where N is the total number of labeled samples, hii represents the number of class i samples
divided into class i, and C is the total number of categories.

(2) AA: AA represents the mean of the percentage of the correctly identified samples.

AA =
1
C

C

∑
i=1

hii
Ni

(17)

where C is the total number of categories, hii represents the number of samples of category
i divided into category i, and Ni represents the number of samples of category i.

(3) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables.

Kappa =

N
C
∑
i

hii −
C
∑
i
(hi+·h+i)

N2 −
C
∑
i
(hi+·h+i)

(18)

where hi+ and h+i, respectively, represent the total number of samples of category i true
category and the number of samples predicted to be category i.

3.2. Visual Analysis of Generated Image Blocks

In order to display the generated image blocks conveniently, the original dataset is first
reduced to 3-dimensional using PCA, and the last output channel of the generated network
is changed from 10 to 3 to generate three-channel image blocks as shown in Figure 3.

The real image blocks that are drawn with pseudo color images and the corresponding
generated image blocks are also provided. By comparing the real image block and the
generated image block, we can see that they are not exactly the same. The generated image
block and the real image block are very similar in the central pixel part, but the surrounding
pixels are not exactly the same because the generation model of the algorithm in this paper
only makes the two categories consistent, not on the pixels, so this phenomenon meets the
theoretical requirements of the algorithm.
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3.3. Numerical Results and Visualization of HSI Classification

To evaluate the performance of this classification algorithm, this section compares
it with other algorithms. In this paper, six representative hyperspectral image classifi-
cation algorithms are selected, which are RBF-SVM [9], SAE [17], DBN [45], CNN [46],
PPFCNN [26], and 3DCNN [47]. RBF-SVM is a classical SVM method that is based on
radial basis function and the other methods are based on deep learning algorithm. The
SVM in the RBF-SVM algorithm extends it from a two-class model to a multi-class model
through a one-to-many strategy. The window size and other parameter settings in SAE,
DBN, CNN, PPFCNN, and 3DCNN are the optimal experimental settings that are directly
used in the original papers. The spatial dimensions of PPFCNN sample pairs are also set
according to the original paper. The window size in a 3DCNN is determined by searching
for the optimal size within a range of 5 to 33.

The classification results mainly include two parts, one are the numerical classification
results, the other is the visual classification results. These two classification results on the
Indian Pines, PaviaU, and Salinas datasets are shown, respectively.

Indian Pines: The numerical classification results for the Indian Pines dataset are
shown in Table 4. The first three lines show AA, OA, and Kappa coefficients that were
calculated from all samples. The last 16 rows record the classification accuracy of the
each classes. Under the three evaluation criteria of AA, OA, and Kappa coefficients, the
proposed algorithm performs better than the other six algorithms. Compared with RBF-
SVM, the classification accuracy of the other five classification algorithms based deep
learning has been greatly improved, which shows that the deep learning algorithm can
extract distinguished features more effectively. PPF-CNN is more effective than CNN in this
dataset because the number of training samples is increased and the classification accuracy
of the model is improved by using pairs of samples. Compared with SAE, this algorithm
increases the OA, AA, and Kappa coefficients by 16.4%, 25.6%, and 18.7%, respectively.
This shows that the features that are extracted by the encoder in this algorithm are more
suitable for classification. Three-dimensional convolution can effectively use the spatial-
spectral information to extract the combined features of spatial spectrum and improve
the classification accuracy. Compared with three-dimensional CNN, the algorithm in this
paper improves the OA, AA, and Kappa coefficients by 5.5%, 5.6%, and 6.1%, respectively.
The optimal classification results for each class are represented by bold numbers in the
table. There are 13 classes (16 classes in total) of the algorithm that have obtained the
optimal classification results. At the same time, it can be found that RBF-SVM and PF-CNN
have zero classification accuracy for the seventh and ninth classes because the number of
samples is much less than other classes. The accuracy of the algorithms in this paper is
82.9 ± 16.2 and 92.0 ± 16.0, respectively. At the same time, the proposed method achieves
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the optimal value on AA. Therefore, the algorithm in this paper can effectively handle the
extreme sample imbalance problem on the Indian Pines dataset and achieve good results.

Table 4. Classification comparison result of ARL-GAN with different algorithms on Indian
Pines dataset.

Method RBF-SVM DBN SAE CNN 3DCNN PPF-CNN ARL-GAN

OA (%) 77.8 ± 0.8 80.6 ± 0.1 81.9 ± 0.1 85.4 ± 0.8 92.8 ± 0.8 87.9 ± 0.8 98.3 ± 0.4
AA (%) 61.3 ± 1.4 68.3 ± 1.7 69.4 ± 1.9 79.4 ± 1.6 89.4 ± 1.4 76.5 ± 0.6 95.0 ± 2.1
Kappa 74.5 ± 1.0 77.8 ± 1.3 79.3 ± 1.1 84.3 ± 2.9 91.9 ± 0.9 86.3 ± 0.9 98.0 ± 0.4

1 6.1 ± 11.2 13.6 ± 5.6 10.0 ± 6.4 78.4 ± 10.2 50.4 ± 8.4 50.4 ± 8.4 80.4 ± 26.2
2 72.9 ± 3.6 79.8 ± 2.9 79.7 ± 2.3 75.4 ± 2.4 92.7 ± 3.5 89.2 ± 2.1 99.0 ± 1.0
3 58.0 ± 3.6 70.5 ± 2.2 74.9 ± 4.8 82.8 ± 3.3 87.2 ± 10.4 77.1 ± 2.7 96.7 ± 1.8
4 39.0 ± 15.0 71.3 ± 6.6 62.8 ± 8.3 89.2 ± 3.5 83.4 ± 8.3 87.7 ± 3.7 97.5 ± 4.9
5 87.0 ± 4.5 80.1 ± 4.1 84.2 ± 3.3 69.0 ± 4.6 84.0 ± 5.7 92.7 ± 1.0 96.3 ± 1.1
6 92.4 ± 2.0 94.2 ± 2.4 94.3 ± 1.7 92.8 ± 2.5 93.4 ± 2.5 93.1 ± 1.9 99.2 ± 1.0
7 0 ± 0 28.1 ± 22.6 24.4 ± 18.8 51.1 ± 12.3 97.2 ± 4.8 0 ± 0 82.9 ± 16.2
8 98.1 ± 1.4 98.5 ± 1.5 98.8 ± 0.4 97.1 ± 1.6 97.4 ± 2.8 99.6 ± 0.3 100.0 ± 0.0
9 0 ± 0 9.5 ± 2.4 11.1 ± 10.1 41.6 ± 9.9 77.0 ± 11.1 0 ± 0 92.0 ± 16.0
10 65.8 ± 3.7 73.2 ± 4.7 73.6 ± 3.8 81.0 ± 2.6 93.3 ± 5.0 85.6 ± 2.8 96.2 ± 3.1
11 85.3 ± 2.9 82.7 ± 2.2 83.4 ± 2.0 87.2 ± 1.5 94.9 ± 2.7 83.8 ± 1.6 99.3 ± 0.7
12 69.6 ± 6.5 62.0 ± 5.8 70.4 ± 8.0 84.4 ± 2.3 89.8 ± 4.3 90.4 ± 3.1 97.3 ± 3.2
13 92.3 ± 4.1 89.7 ± 10.6 94.2 ± 4.3 83.1 ± 4.2 92.8 ± 5.9 97.8 ± 0.9 96.9 ± 3.8
14 96.6 ± 1.0 94.4 ± 1.6 94.2 ± 1.5 98.2 ± 0.8 98.3 ± 1.3 95.5 ± 1.1 100.0 ± 0.0
15 41.7 ± 7.0 64.2 ± 6.5 66.1 ± 5.6 84.7 ± 4.5 77.8 ± 13.4 78.0 ± 2.4 99.1 ± 1.7
16 75.2 ± 9.0 80.5 ± 13.2 87.6 ± 8.1 76.0 ± 8.1 88.4 ± 5.3 97.3 ± 1.3 88.0 ± 3.0

The bold value indicates the optimal value.

Figure 4 shows the visual classification results of the different algorithms on the Indian
Pines dataset. First, we can see that the RBF-SVM, DBN, and other spectral classification
algorithms only use spectrum to classify. There are a lot of noise points in the classification
results, while the 3DCNN and the proposed method both use spatial information and have
relatively few noise points. The classification map of the 3DCNN contains a large number
of error points at the boundary. The algorithm in this paper has fewer error points than that
of 3DCNN for those pixels that are close to the boundary. It is concluded that the algorithm
that is presented in this paper can reduce the noise points and maintain the classification
boundary better than other algorithms.

PaviaU: The classification results of the PaviaU dataset are shown in Table 5. Under
the three evaluation criteria of AA, OA, and Kappa coefficient, the classification effect
of the algorithm that is proposed in this paper is better than the other six algorithms.
Consistent with the conclusion for the Indian dataset, the classification effect of the six
classification algorithms that are based on deep learning are better than the traditional
algorithm that is based on SVM. The classification effect of 3DCNN on PaviaU is lower
than that of PPF-CNN, which is different from the conclusion on Indian Pines dataset. It
can be seen that these two algorithms are more sensitive to datasets. The algorithm in
this paper has achieved the best classification effect on these two datasets as it shows it is
less sensitive to datasets than other algorithms and is easy to be transplanted to different
datasets for classification. Compared with the SAE algorithm on this dataset, the OA, AA,
and Kappa coefficients of the proposed ARL-GAN have increased by 7.4%, 10.3%, and 9.8%,
respectively. Since the classification accuracy of all algorithms on PaviaU is higher than
that for the Indian Pines dataset, the growth rate on this dataset is lower than that for the
Indian Pines dataset, However, it can also be verified that the features that were extracted
by the encoder through the algorithm in this paper are more suitable for classification.
Among the six comparison algorithms, PPF-CNN achieved the best classification results
on the dataset. Compared with PPF-CNN, the OA, AA, and Kappa coefficients of this
algorithm were improved by 2.9%, 4.5%, and 3.7%, respectively. At the same time, our
algorithm achieves the best classification accuracy on all classes. Figure 5 shows the visual
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classification results of different algorithms on the PaviaU dataset, from which we can
obtain the similar conclusion for the Indian Pines dataset. The visual classification results
of the algorithm in this paper have less noise points, and shows better performance for
those boundary samples.
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Table 5. Classification comparison results of ARL-GAN with different algorithms on the
PaviaU dataset.

Method RBF-SVM DBN SAE CNN 3DCNN PPF-CNN ARL-GAN

OA (%) 90.3 ± 0.6 91.9 ± 0.3 92.4 ± 0.3 93.0 ± 0.6 95.2 ± 0.7 96.9 ± 0.2 99.8 ± 0.1
AA (%) 86.6 ± 0.9 88.5 ± 0.8 89.3 ± 0.7 88.6 ± 0.8 91.2 ± 1.1 95.1 ± 0.2 99.6 ± 0.2
Kappa 87.1 ± 0.8 89.2 ± 0.4 89.9 ± 0.4 90.7 ± 0.7 93.8 ± 0.9 96.0 ± 0.2 99.7 ± 0.1

1 90.7 ± 1.1 91.6 ± 0.8 92.3 ± 1.1 93.1 ± 1.4 95.5 ± 1.2 98.0 ± 0.1 100.0 ± 0.0
2 96.8 ± 0.7 97.4 ± 0.4 97.6 ± 0.3 97.6 ± 0.9 99.4 ± 0.3 99.2 ± 0.2 100.0 ± 0.0
3 60.2 ± 5.4 69.7 ± 6.0 72.1 ± 3.5 77.9 ± 4.5 92.6 ± 5.4 84.9 ± 1.8 97.9 ± 1.4
4 90.8 ± 2.0 91.2 ± 1.4 90.9 ± 1.4 86.4 ± 3.6 75.2 ± 4.9 95.8 ± 0.8 99.0 ± 0.6
5 98.8 ± 0.4 98.6 ± 0.6 98.7 ± 0.4 98.5 ± 1.4 95.4 ± 4.3 99.8 ± 0.1 100.0 ± 0.0
6 79.5 ± 4.9 85.6 ± 2.2 86.9 ± 1.9 91.0 ± 2.8 99.4 ± 0.6 96.4 ± 0.3 100.0 ± 0.0
7 74.3 ± 5.1 74.8 ± 4.8 78.1 ± 4.9 81.2 ± 2.9 91.5 ± 3.4 89.2 ± 0.8 100.0 ± 0.0
8 88.8 ± 2.2 88.2 ± 1.3 87.8 ± 1.4 92.5 ± 2.2 94.8 ± 1.4 93.7 ± 1.2 100.0 ± 0.0
9 99.8 ± 0.1 99.6 ± 0.1 99.5 ± 0.3 79.0 ± 4.1 77.4 ± 2.8 98.5 ± 0.7 100.0 ± 0.0

The bold value indicates the optimal value.

Salinas: The classification results of the Salinas dataset are shown in Table 6. Firstly,
from the three evaluation criteria of AA, OA, and Kappa coefficients, the classification
effect of the algorithm that is proposed in this paper is better than the other six algorithms.
Consistent with the conclusions from the the first two datasets, the classification effect of
the six classification algorithms that are based on deep learning is better than the traditional
methods based on SVM. On Salinas, the classification effect of 3DCNN is higher than
that of PPF-CNN, which is consistent with the conclusion for the Indian Pines dataset.
Therefore, based on the results of the three datasets, the classification result of 3DCNN is
better than that of PPF-CNN as a whole thanks to its comprehensive utilization of spatial-
spectral information by means of three-dimensional convolution. Compared with the SAE
algorithm, the algorithm in this paper increases the OA, AA, and Kappa coefficients by
8.4%, 5.0%, and 9.3%, respectively. For the three datasets, the algorithm in this paper has a
greater improvement than the SAE algorithm in the three evaluation index values, so it
further proves that the features that are extracted by the encoder of this paper algorithm
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are more suitable for classification. Among the six algorithms, 3DCNN achieves the
best classification results on the dataset. Compared with 3DCNN, the proposed method
improves the OA, AA, and Kappa coefficients by 2.0%, 1.9%, and 2.0%, respectively. The
algorithm in this paper achieves the optimal classification accuracy in all classes, with 100%
accuracy in 10 classes and nearly 100% accuracy in the other 6 classes.
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Table 6. Classification comparison result of ARL-GAN with different algorithms for the
PaviaU dataset.

Method RBF-SVM DBN SAE CNN 3DCNN PPF-CNN ARL-GAN

OA (%) 89.3 ± 0.7 90.8 ± 0.6 91.5 ± 0.1 92.3 ± 1.2 97.9 ± 0.4 92.8 ± 0.4 99.97 ± 0.02
AA (%) 92.5 ± 0.6 94.5 ± 0.8 94.9 ± 0.2 94.2 ± 0.9 98.0 ± 0.6 95.5 ± 0.7 99.97 ± 0.01
Kappa 88.0 ± 0.8 89.7 ± 0.7 90.6 ± 0.4 91.4 ± 1.4 97.9 ± 0.5 91.9 ± 0.4 99.96 ± 0.02

1 97.4 ± 1.5 98.5 ± 0.8 97.9 ± 0.5 93.3 ± 8.7 99.4 ± 0.6 98.5 ± 0.5 100.0 ± 0.0
2 99.7 ± 0.2 98.9 ± 0.2 99.1 ± 0.5 97.4 ± 1.2 99.4 ± 0.6 99.7 ± 0.2 100.0 ± 0.0
3 93.7 ± 1.5 97.5 ± 0.1 95.3 ± 0.6 86.4 ± 4.1 98.8 ± 1.8 99.8 ± 0.1 100.0 ± 0.0
4 97.8 ± 1.3 99.0 ± 0.3 99.5 ± 0.6 98.2 ± 1.8 98.8 ± 1.9 99.7 ± 0.2 100.0 ± 0.0
5 97.5 ± 1.1 97.5 ± 0.2 98.5 ± 0.4 98.1 ± 1.0 99.0 ± 0.7 96.8 ± 0.2 100.0 ± 0.1
6 99.5 ± 0.3 99.3 ± 0.1 99.9 ± 0.1 99.9 ± 0.2 99.8 ± 0.3 99.8 ± 0.3 100.0 ± 0.0
7 99.3 ± 0.2 99.0 ± 0.3 99.2 ± 0.1 99.0 ± 0.9 97.9 ± 2.5 99.5 ± 0.2 99.9 ± 0.1
8 88.9 ± 2.9 83.0 ± 1.4 82.7 ± 0.7 88.4 ± 2.8 96.7 ± 2.2 89.9 ± 0.9 100.0 ± 0.0
9 99.2 ± 0.3 99.0 ± 0.1 99.2 ± 0.1 95.1 ± 0.7 99.8 ± 0.3 99.8 ± 0.2 100.0 ± 0.0

10 88.8 ± 1.9 92.8 ± 0.1 88.9 ± 0.9 93.6 ± 2.4 98.2 ± 2.1 88.3 ± 2.7 99.9 ± 0.1
11 87.5 ± 4.6 91.7 ± 0.1 93.6 ± 7.0 97.6 ± 1.0 97.3 ± 3.8 93.4 ± 2.9 100.0 ± 0.0
12 98.0 ± 2.3 99.0 ± 0.1 96.8 ± 1.0 98.9 ± 1.1 98.5 ± 2.1 99.7 ± 0.7 99.9 ± 0.1
13 98.0 ± 0.8 99.3 ± 0.2 99.2 ± 0.7 94.7 ± 2.4 97.4 ± 5.4 98.6 ± 0.7 100.0 ± 0.0
14 89.6 ± 2.6 92.0 ± 7.4 94.8 ± 0.2 92.5 ± 3.9 98.9 ± 1.0 92.3 ± 1.7 99.9 ± 0.2
15 53.9 ± 7.6 69.5 ± 0.2 75.9 ± 2.4 80.1 ± 5.3 96.5 ± 1.5 72.9 ± 2.5 99.8 ± 0.1
16 90.8 ± 5.0 96.1 ± 2.5 96.1 ± 1.9 93.6 ± 2.6 94.7 ± 5.1 95.7 ± 2.6 100.0 ± 0.0

The bold value indicates the optimal value.
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Figure 6 is the visual classification result of different algorithms for the Salinas dataset.
First, it can be seen that RBF-SVM, DBN, SAE, CNN, and PPF-CNN classify many of
the eighth-class samples into fifteen categories, and many of the fifteenth-class samples
into eighth categories. This is due to the problems of “synonyms spectrum” and “foreign
body with the spectrum” in hyperspectral images. Compared with the five algorithms,
3DCNN has fewer points of error. This is because it uses the joint information of the spatial
spectrum to reduce the impact of this problem. Compared with these algorithms, the
algorithm in this paper can well distinguish between Class 8 and Class 15 samples, extract
more distinguishing features, and achieve better classification results.
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The above experimental results show that compared with 3DCNN, the algorithm in
this paper generally has fewer misclassification points at the boundary, and, compared with
PPF-CNN, the algorithm in this paper has fewer misclassification points inside the region.
The reason for this is that 3DCNN uses 3D convolutional networks, and the network model
needs to be trained with more labeled samples in order to obtain excellent classification
performance while PPF-CNN extends the training dataset by reorganizing the existing
training samples in pairs and relabeling them but ignores the use of unlabeled samples.
However, due to the addition of Conditional Entropy and GAN, the algorithm in this paper
makes full use of labeled samples and a large amount of unlabeled sample data to enhance
the feature extraction ability of the encoder.

3.4. Effectiveness Analysis of Adversarial Learning and Conditional Entropy

In order to verify the effectiveness of the conditional entropy loss function and adver-
sarial learning that is proposed by the algorithm in this paper, the classification results of
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CNN, CNN-CE, and the algorithm in this paper are compared for the three datasets. The
CNN classifiers in CNN and CNN-CE adopt the same network structure and consistent
parameters as the classifiers in this paper. CNN-CE represents the algorithm model of semi
supervised training with conditional entropy. Table 7 lists the classification results of the
three algorithms on OA, AA, and Kappa coefficients. As shown in the table, compared with
CNN and CNN-CE, the proposed method improved the OA by 0.42%, 0.89%, and 0.84%,
respectively. It can be seen that semi-supervised training through conditional entropy can
effectively improve the classification effect.

Table 7. Classification result of CNN, CNN-CE, and ARL-GAN.

Dataset Methods CNN CNN-CE ARL-GAN

Indian Pines
(Train: 5%)

OA 97.04 ± 0.42 97.46 ± 0.43 98.25 ± 0.36
AA 96.17 ± 0.93 93.63 ± 0.46 95.03 ± 2.07

Kappa 96.62 ± 0.47 97.10 ± 0.49 98.01 ± 0.42

Pavia University
(Train: 3%)

OA 98.89 ± 0.08 99.78 ± 0.06 99.83 ± 0.07
AA 98.21 ± 0.23 99.55 ± 0.12 99.66 ± 0.18

Kappa 98.53 ± 0.14 99.71 ± 0.11 99.77 ± 0.09

Salinas
(Train: 1%)

OA 99.13 ± 0.13 99.96 ± 0.02 99.97 ± 0.02
AA 98.27 ± 0.23 99.98 ± 0.01 99.97 ± 0.01

Kappa 99.03 ± 0.09 99.97 ± 0.02 99.96 ± 0.02
The bold value indicates the optimal value.

As shown in the table, compared with CNN-CE, the algorithms in this paper have
improved by 0.79%, 0.05%, and 0.01% respectively on the three datasets under the OA
evaluation standard. The improvement rate of confrontation learning on the Indian dataset
is relatively large, and the improvement is not large on the other two datasets because
the training samples of the Indian Pines dataset are more limited, and the dataset is more
noisy and more difficult to be classified so there is more room for improvement. The other
two datasets have sufficient samples and are much easier to be classified, so there is less
room for improvement. Through the overall analysis of the three datasets, the conditional
entropy loss function and confrontation learning can improve the classification effect to
a certain extent. The reason is that conditional entropy can constrain the classifier, train
the network with a large number of unlabeled samples, and enhance the feature extraction
ability of the network for hyperspectral data. Adversarial learning can improve both the
generative performance of the generator and the discriminant ability of the discriminator,
as well as the final classification performance.

3.5. Number Sensitivity Analysis of Labeled Samples

The method that is based on deep learning is highly dependent on labeled training
samples, and the number of labeled training samples will greatly affect the classification
performance. Therefore, it is necessary to study the sensitivity of the classification algorithm
to the number of labeled training samples. Figures 7–9 show the overall classification
accuracy (OA) of seven algorithms on three datasets: Indian Pines, PaviaU, and Salinas
with different numbers of training samples; the horizontal coordinate is the number of
labeled samples. In the experiment, the number of labeled training samples on the Indian
Pines dataset ranged from 1% to 9% with an interval of 2%. The number of labeled
training samples in the PaviaU dataset ranged from 1% to 5% with an interval of 1%. The
number of labeled training samples in the Salinas dataset ranged from 1% to 3%, with
an interval of 0.5%. For the Indian Pines dataset, the classification accuracy of the seven
algorithms decreases significantly with the decrease of the number of training samples.
However, compared with the other six algorithms, the algorithm in this paper has the
lowest reduction rate, with 85% classification accuracy even when only 1% of the training
samples are available. The other six algorithms have less than 60% classification accuracy
except 3DCNN. The algorithm that is presented in this paper can effectively handle small
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sample problems on the Indian Pines dataset. Among the six comparison algorithms, PPF-
CNN, and 3DCNN achieve better classification results because they use the combination
of sample pair and spatial-spectral to effectively reduce the impact of data volume on the
classification results. The conclusion for the Pavia University dataset is basically the same
as that for the Indian Pines dataset. The classification accuracy of the algorithms in this
paper was more than 99% on the Salinas dataset, with no significant decrease. At the same
time, the algorithm in this paper obtains optimal classification results on three datasets.
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Therefore, the algorithm in this paper is a better choice when there are a limited
number of labeled samples. This result is attributed to the full utilization of the large
amount of unlabeled data by the algorithm in this paper and the excellent design of the
classifier, which can obtain a good classification accuracy even when there are very few
labeled samples.

3.6. Comparison with Existing Hyperspectral Image Classification Algorithms Based GAN

In this section, three generative adversarial networks that are based HSI classification
methods are also introduced for comparison. The comparison results are shown in Table 8.

Table 8. Classification results of 3DGAN, HSGAN, MSGAN, and ARL-GAN.

Dataset Methods HSGAN 3DGAN MSGAN ARL-GAN

Indian Pines (5%)
OA 74.14 95.13 95.61 98.25
AA 65.63 84.81 91.44 95.03

Kappa 70.44 94.89 95.02 98.01

PaviaU (3%)
OA 85.71 98.22 99.17 99.83
AA 81.42 87.17 98.42 99.66

Kappa 84.28 94.93 98.89 99.77

Salinas (1%)
OA 88.29 98.88 99.11 99.97
AA 92.31 92.61 99.23 99.97

Kappa 87.03 97.92 99.03 99.96
The bold value indicates the optimal value.

3DGAN [18] uses image blocks as training samples and uses antagonistic learning
to improve the discriminator’s classification ability. This paper also uses image blocks as
training samples, but uses the antagonistic network to perform representation learning and
uses the features that are extracted by the encoder to classify. The algorithm in this paper
improves the OA index of Indian Pines, PaviaU, and Salinas datasets by 31.5%, 1.63%, and
1.07%, respectively, compared with 3DGAN. HSGAN [22] uses one-dimensional spectral
samples as training samples, uses GAN to extract spectral features with discriminators
in an unsupervised manner, trains classifiers in a supervised manner, and finally votes
for the categories of the test samples from their neighboring cells. Compared with the
HSGAN algorithm in this paper, OA improves by 24.15%, 14.13%, and 11.67% on three
datasets, respectively. Using image blocks as training samples can greatly improve the
classification accuracy of the algorithm. MSGAN uses two generators and a discriminator
to form a variety of spatial spectrum generation adversarial networks hyperspectral im-
age classification. The two generators generate spectral samples and spatial image block
samples respectively. The discriminator fuses the spatial spectrum features to improve the
discriminator’s classification performance in an end-to-end manner. MSGAN uses spatial
spectrum information and is more accurate than 3DGAN and HSGAN. Although the algo-
rithm in this paper also utilizes spatial and partial spectral information, the classification
effect is better than MSGAN, and the OA is improved by 2.65%, 0.63%, and 0.87% for the
three datasets, respectively, which shows that the algorithm in this paper can improve the
classification accuracy more effectively by using the GAN approach. The reason is that
the algorithm adds the encoder as the final classifier and modifies the discriminator to
guide the feature extraction of the encoder, which is more suitable for the classification
task than the previous algorithms that are based on GAN that uses the discriminator as the
final classifier. In addition, with the addition of conditional entropy, the algorithm makes
full use of the information of unlabeled samples, so it is more suitable for improving the
problem of small samples.

4. Conclusions

In this paper, for the problem of small samples in hyperspectral image classification
tasks, an HSI classification algorithm that is based on adversarial representation learning is
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proposed, which introduces unlabeled samples and uses conditional entropy and GAN for
semi-supervised learning. The algorithm also extending GAN to the field of representation
learning, and uses adversarial learning to improve the ability of the encoder to extract
features that are more suitable for the classification task. In the experimental part of this
paper, the effectiveness of the algorithm is verified by experiments. For the three datasets,
the classification accuracy that is obtained by the algorithm is 98.3%, 99.8%, and 99.9%,
respectively. Compared with the optimal results of other algorithms, the algorithm in
this paper increases by 5.5%, 2.9%, and 2.0%, respectively. Conditional entropy is used as
constraint to enhance the performance of the classifier. However, conditional entropy also
increases the error prediction of classifier. The proposed algorithm reduces the adverse
effects of conditional entropy by manually-designed step weights. In our future work, we
will try to select appropriate weights adaptively and adopt other regularization constraints.
In the process of training, the model training speed of this method is relatively slow.
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