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Supplementary Material 
 
 

S1. Systematic review of seagrass mapping in the GBR 

 

 

Figure S1. PRISMA [1] flow diagram of the literature selection process for the systematic review of seagrass mapping in 
the GBR. Note that some studies include multiple mapping events. 
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Table S2. Description of criteria used to evaluate the confidence in the mapping product for a mapping event. Modified [2] 

Criteria Description 

Maturity of methodology Shows the confidence that the mapping method/s be-
ing used are tested and accepted broadly by the scien-
tific community. Methods must be repeatable and well 
documented. Apart from methods used before the 
1980s (before commercial availability of computer-
based GIS tools), maturity of methodology is not a rep-
resentation of the age of the method but the stage of 
development. 

Validation (observing platforms) Shows the degree of field validation that has been es-
tablished and the types of observing platforms used to 
acquire the data. The reason for this criterion is to show 
the confidence that field observations/measures are 
close to a true value and to minimise error propaga-
tion. 

Representativeness (AOI) Shows the level of confidence that the field validation 
data actually represents the whole seagrass area being 
mapped (Area Of Interest) at the time the observations 
were made. This includes the level and temporal 
spread of field validation relative to the Area Of Inter-
est. This criterion takes into consideration the natural 
spatial and temporal variability embedded in the data 
as well as the size of the seagrass area being mapped. 

Directness (mapping approach) This criterion looks at the relationship between the 
earth observing data and the approach being used to 
construct the final map product. An interpreted/mod-
elled meadow boundary has lower confidence that an 
actual meadow boundary mapped directly in situ. 

Measured mapping error Incorporates known spatial errors, levels of statistical 
confidence and any other quantitative measures of ac-
curacy (including correct classification) in the data 
used to make the map, including meadow boundaries. 
The confidence is also influenced by the scale and res-
olution of the map. 

 
  



 

S2. Field validation 

 

Figure S2. Positions of in situ field validation points (spot–checks) conducted using a helicopter, and derived segments 
within the coastal AOIs: (a) at clear water habitat (Yule Point) on 05 September 2017 (37 points); (b) and turbid water 
habitat (Midge Point) on 17 October 2017 (37 points). 



 

 

Figure S3. Coastal clear water habitats (Yule Point) AOI showing the positions of 690 in situ field validation points 
(spot–checks) assessed on foot 14-15 August 2019, and derived segments. Low seagrass cover defined as >0 ≤25% and 
high seagrass cover as >25%.

 

Figure S4. Reef clear water habitat (Green Island) AOI showing positions of 5,415 in situ field validation points (spot–
checks) assessed on foot 25-27 November 2020, and derived segments. Low seagrass cover defined as >1 ≤15%, medium 
as >15 ≤50% and high seagrass cover as >50%. 

 
  



 

S3. Machine- and Deep-learning additional method details and results 

S3.1. Machine-learning 

Additional method details 
When examining seagrass abundance from the PlanetScope Dove imagery, we aimed 

for a balanced repartition across the different classes to cover each AOI as homogeneously 
as possible, but were constrained by the limited extent of the field validation data. For the 
coastal turbid water AOI we used only a binary classification of presence/absence of 
seagrass. For the coastal clear water AOI we used a binary classification for the 2017 map, 
but for the 2019 map we were able to identify two abundance classes by differentiating 
between low (<25%) and high (≥25%) seagrass cover, due to a more extensive field valida-
tion dataset to match the classes used for the UAV deep learning map (Figure S2). Simi-
larly, at the reef clear water AOI, due the wider range of seagrass cover and much larger 
number of field validation points (Figure S3), we were able to identify four abundance 
classes: (1) absence of seagrass; (2) low seagrass cover (1-15%); (3) medium seagrass cover 
(>15-50%); (4) high seagrass cover (>50%). 

Next, rather than using summary variables (e.g. mean of pixel values) to train the 
model and use them as predictors on the remaining unclassified the segments, we used 
all the raw pixel values within the classified reference segments. In addition of the red, 
blue, green and NIR band pixel value, a depth layer was added when appropriate from 
GBR30 Beaman [3]. NIR was not used in the model for Reef clear water AOI, as all seagrass 
meadows were submerged at the time of the image capture. This approach had multiple 
advantages: (1) eliminating trial-and-error to select the best set of summary variables, (2) 
creating a sufficiently large dataset to run a random forest classifier, while using a small 
number of unique segments that suitably accounted for heterogeneity, (3) produced a 
much higher resolution output that was not limited by the minimum size of the segments. 

 
Additional results 

Table S3. Summary of Machine-learning model outputs. 

AOI Location and Year Mean % Accuracy ± SE 

Yule Point - 2017 98.78±0.0024 

Midge Point - 2017 98.69±0.0018 

Yule Point - 2019 93.67±0.0009 

Green Island – 2020 94.70±0.0004 

S3.2. Deep-learning 

Additional method details 
The orthomosaics from the Coastal clear water (Yule Point, 57332 × 57238 pixels, ~0.80 

ha) and Reef clear water (Green Island, 10098 × 7444 pixels, ~4.51 ha) AOIs were decom-
posed into 256 × 256 pixel tiles to be used in deep-learning. A total of 398 (~1.56 ha, about 
29% of the total area) and 510 (~0.013 ha, about 1.6% of the total area) of these tiles for the 
coastal and reef habitats, respectively, were selected for manually annotated (supervised) 
in Labelbox for training, testing and validation. Every pixel in each selected tile was as-
signed a seagrass abundance class. For the coastal habitat, which has a much lower 
seagrass density and composed of structurally smaller species, the classes used were: (1) 
Bare sediment, (2) Low cover seagrass (≤ 25%), (3) High cover seagrass (< 25%), (4) 
Macroalgae/Coral. For the reef habitat the classes used were: (1) absence of seagrass (0%), 
(2) Low cover seagrass (1-15%), (3) Medium cover seagrass (15-50%), (4) High cover 



 

seagrass (> 50%). The resulting annotations were reasonably even across classes for the 
coastal habitat (29, 28, 25 and 17%, respectively), but were more unbalanced at the reef 
habitat (1, 17, 34 and 47%, respectively). 

The Segmentation-Model library (https://github.com/qubvel/segmentation_models) 
in the Keras/TensorFlow frameworks was used in python. This library was a simple way 
to implement a popular Fully Convolutional Network Model called Unet [4] combined 
with a backbone model called Resnet34, pre-trained on the ImageNet datatset. The main 
advantage of the backbone model, used as an encoder of the Unet, is to optimize the fea-
ture extraction process for each tiles, making achieving high level accuracy much faster. 
The models were trained over 50 and 30 epochs (iterations) for the coastal and reef habi-
tats, respectively. Increasing the number of epochs for the training did not result in further 
model improvement. The loss function used for the models was: 

total_loss = dice_loss + (1 × focal_loss) 
The dice loss was weighted for the reef habitat due to the class imbalance (1, 3, 2.5 

and 1 weights for class 1 to 4, respectively). 
The accuracy of the models was assessed using the mean Intersection-Over-Union 

(IOU) score with a threshold of 0.7 and the Dice Coefficient (F1 score). The IoU is defined 
as the area of overlap between the predicted segmentation and the ground truth divided 
by the area of union between the predicted segmentation and the ground truth. The F1 
score is similar and defined as two times the area of overlap divided by the total number 
of pixels. 

Once the deep-learning semantic segmentation models were trained, they were ap-
plied to make predictions over the full UAV orthomosaics and produce the final classified 
maps. In order to do so, the UAV orthomosaics were decomposed into overlapping tiles 
of 256 × 256 pixel on a moving window of 64 pixels. This was to smooth out the predictions 
by avoiding misclassification on the edges. Each pixel, in each tile, received a prediction 
probability for seagrass abundance by assigning the class with the highest probability. To 
compose the final prediction raster, we used the MosaicToRaster function in ArcGIS Pro, 
which applies a mean function over the predictions of overlapping pixels. 

 
Additional results 

 

 

 

Figure S5. Example of deep-learning output from UAV captured imagery of coastal clear water habitat (Yule Point), 14–
15 August 2019. Mask = manually digitized segmentation. PR mask = Segmentation from deep learning model. Masks 
are coded as 0(violet) – 1(yellow). Overall result: Loss = 0.739; mean IOU score = 0.78085; mean F1-score = 0.80752. 



 

 

 

 

Figure S6. Example of deep-learning output from UAV captured imagery of a reef clear water habitat (Green Island) in 
25–27 November 2020. Mask = manually digitized segmentation. PR mask = Segmentation from deep learning model. 
Masks are coded as 0(violet) – 1(yellow). Overall result: Loss = 0.57621; mean IOU score = 0.73876; mean F1-score = 
0.7745. 

 

  



 

S4. Applying enhanced mapping approach to historic data collected by traditional approach 

 

Figure S7. Comparison of mapping approaches at Cairns harbor: (a) the aerial photo of the AOI (black line) from 18 Sep-
tember 2001; (b) map produced from traditional methodology using a helicopter to collect spot–checks (collected 13–14 
November 2001), and the meadow boundary drawn by hand on-screen, visually interpolated [5]; (c) map produced with 
the improved machine learning methodology showing prediction of 60% Bootstrap Probability; (d) and machine learn-
ing methodology showing prediction of 100% Bootstrap Probability. Data accessed from [6] 

 

Table S4. Area of seagrass (hectares) mapped within Cairns Harbour AOI using traditional and enhanced approaches to create 
meso-scale spatially explicit seagrass maps. The range in seagrass area is presented as estimate of reliability for traditional ap-

proach, and Bootstrap Probability (BP) for enhanced approach. 

Mapping approach Seagrass area (ha) 

Traditional method (±5 m) 279.71 (271.64 to 288.91) 

Improved method 60% BP 142.59 

Improved method 100% BP 132.92 
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