
Citation: Wilson, D.; Alshaabi, T.;

Van Oort, C.; Zhang, X.; Nelson, J.;

Wshah, S. Object Tracking and

Geo-Localization from Street Images.

Remote Sens. 2022, 14, 2575. https://

doi.org/10.3390/rs14112575

Academic Editors: Yue Wu, Kai Qin,

Qiguang Miao and Maoguo Gong

Received: 6 April 2022

Accepted: 21 May 2022

Published: 27 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Object Tracking and Geo-Localization from Street Images
Daniel Wilson 1,† , Thayer Alshaabi 1,†, Colin Van Oort 1,†, Xiaohan Zhang 1 , Jonathan Nelson 2

and Safwan Wshah 1,*

1 Complex Systems Center, University of Vermont, 194 South Prospect Street Burlington,
Burlington, VT 05405, USA; daniel.wilson@uvm.edu (D.W.); thayer.alshaabi@uvm.edu (T.A.);
cvanoort@uvm.edu (C.V.O.); xiaohan.zhang@uvm.edu (X.Z.)

2 Penn State Department of Geography, 302 N Burrowes Street, University Park, PA 16802, USA;
jkn128@psu.edu

* Correspondence: safwan.wshah@uvm.edu
† These authors contributed equally to this work.

Abstract: Object geo-localization from images is crucial to many applications such as land surveying,
self-driving, and asset management. Current visual object geo-localization algorithms suffer from
hardware limitations and impractical assumptions limiting their usability in real-world applications.
Most of the current methods assume object sparsity, the presence of objects in at least two frames,
and most importantly they only support a single class of objects. In this paper, we present a novel
two-stage technique that detects and geo-localizes dense, multi-class objects such as traffic signs
from street videos. Our algorithm is able to handle low frame rate inputs in which objects might
be missing in one or more frames. We propose a detector that is not only able to detect objects in
images, but also predicts a positional offset for each object relative to the camera GPS location. We
also propose a novel tracker algorithm that is able to track a large number of multi-class objects. Many
current geo-localization datasets require specialized hardware, suffer from idealized assumptions
not representative of reality, and are often not publicly available. In this paper, we propose a public
dataset called ARTSv2, which is an extension of ARTS dataset that covers a diverse set of roads in
widely varying environments to ensure it is representative of real-world scenarios. Our dataset will
both support future research and provide a crucial benchmark for the field.

Keywords: deep learning; object geo-localization; object detection; object tracking; traffic sign dataset

1. Introduction

Due to the rise of the internet and social media platforms, there exists an overwhelm-
ing quantity of publicly available images containing key geospatial information in the
background. Furthermore, most modern hardware automatically records the location at
which an image was taken. Most notably, transportation departments collect millions of
street images every year. The purpose of these images is to manage road assets for road
safety purposes; therefore, recognizing and geo-localizing road assets from these images is
of extreme importance to many applications.

Object geo-localization is the process of taking objects identified in one or more
images and determining their geospatial location represented as global positioning system
(GPS) coordinates. It has a variety of applications including land surveying, self-driving
vehicles [1], asset management [1–3], and any other domain that might benefit from the
capability to automatically detect and geolocate objects of interest [4,5].

Determining objects’ GPS locations from street images can be a cheap solution for
road asset geo-localization, but this task is also very challenging due to GPS error, multiple
appearances of the same objects in images or frames, the variety of object types (for
example road signs can contain more than 200 sub-classes), etc. A particularly challenging
component of this problem is the lack of a pre-defined relationship between the number of

Remote Sens. 2022, 14, 2575. https://doi.org/10.3390/rs14112575 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14112575
https://doi.org/10.3390/rs14112575
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8527-0231
https://orcid.org/0000-0001-6344-9604
https://doi.org/10.3390/rs14112575
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14112575?type=check_update&version=2

Remote Sens. 2022, 14, 2575 2 of 26

images and how many times each object appears in the dataset. Objects may appear in one,
two, or any number of images, meaning an algorithm must both detect re-occurrences of
the same object across multiple images, and then collapse them into a single prediction.

Geo-localization algorithms can be categorized based on how they handle repeated de-
tections. Triangulation-based methods use a classic triangulation approach to determine an
object’s GPS using the depth to an object in an image and the image’s coordinates, and typi-
cally a clustering algorithm to condense repeated object occurrences [6,7]. Re-identification
approaches use an object detector that detects objects by receiving multiple frames as
input, which implicitly merges repeated detections across the multiple input frames [2,3].
Tracker-based approaches separately detect objects in each frame, and re-occurrences of
objects across multiple frames are identified using an object tracking algorithm [1].

Ref. [6] proposed a triangulation-based method using a two-stage framework which
performed object segmentation and then object geo-localization. They later improved their
approach in [7] by combining footage from a drone point cloud to enhance accuracy. These
methods have an inherent performance ceiling as they rely on noisy segmented objects.
In addition, they assume object sparsity, in which all objects within a certain distance
threshold are assumed to be a single object.

Re-identification methods were proposed by [2]. Their model receives two images as
input, and jointly detects and geo-localizes objects between those two frames. Following
this idea, they proposed a graph-based approach in [3] to handle greater than two frames. A
limitation is these methods require the objects to appear in at least two frames. In addition,
they assume all objects are close to the camera for easy detection.

Recently, ref. [1] proposed a tracking-based method to geo-localize traffic signs using
a deep neural network that was mostly end-to-end trainable. Their architecture detects
objects, predicts their pose in five dimensional space, and then associates those objects
between frames. In their approach, they only selected objects appearing in at least five
frames. Their system required a total of six cameras, imposing a crucial hardware limitation.

In addition to the aforementioned drawbacks of each technique, most notably, all
share a major limitation in which they are only capable of geo-localizing one class of objects.
In addition, many of these approaches rely on expensive or uncommon hardware not
accessible in many use cases. For example, ref. [7] relies on drone footage, and ref. [1] uses
an array of six cameras, which requires the use of specialized hardware.

An additional current pitfall in the field is the use of datasets constructed exclusively
in a single environment, such as city streets [1,2]. Datasets also commonly only annotate
occurrences of objects close to the camera, since these are the easiest for an algorithm to
detect [1–3]. Datasets also contain objects that are visually distinct and spaced far apart
from one another [1–3], making them easier to distinguish. A comprehensive survey of the
field of object geo-localization is provided in [8].

In this paper, we seek to rectify the limitations of the current algorithms by proposing
a new tracking-based deep learning approach to geo-localize dense objects from low frame
rate video using a novel tracker algorithm. The proposed approach handles multi-class
objects that might exist in one or multiple frames and uses only cheap hardware. Our
proposed system relies exclusively on a single camera, each image’s GPS location, and the
image heading, which makes our system practical for mass adoption.

We also propose a new dataset for benchmarking geo-localization algorithms. Our
proposed dataset is an extension of [9]. We capture a variety of driving environments,
and achieve a broad class distribution containing 199 different sign types. Crucially, it
contains clusters of signs with similar and in some cases identical appearance, posing a
very challenging and much more realistic benchmark compared to previous datasets.

Our proposed dataset and methodology is not limited to traffic signs. Our system is
generalizable and could easily applied to other applications including geo-localization of
telegraph poles, painted street markings, traffic lights, side walks, trees, buildings, and
any other land features of interest. Our dataset provides a crucial benchmark that any

Remote Sens. 2022, 14, 2575 3 of 26

class-based geo-localization algorithm from these domains could use as an additional
benchmark to aid in research and development.

Our research contributions can be summarized as:

1. An enhanced version of the ARTS [9] dataset, ARTSv2, to serve as a benchmark for
the field of object geo-localization.

2. A novel object geo-localization technique that handles a large number of classes and
objects existing in an arbitrary number of frames using only accessible hardware.

3. An object tracking system to collapse a set of detections in a noisy, low-frame rate
environment into final geo-localized object predictions.

2. Related Work

A somewhat similar area of research are simultaneous localization and mapping
(SLAM) algorithms which are designed to model the surrounding environment typically
for the purposes for vehicle navigation [10]. By contrast, the purpose of geo-localization
algorithms is to determine object positions on a global scale by predicting their GPS
coordinates and building a geographical information systems (GIS) map. Furthermore,
since SLAM is intended primarily for navigation, these algorithms are designed to run in
real time. Object geo-localization algorithms can be applied to pre-existing datasets, since
they are not necessarily intended for real time applications.

Object geo-localization from images has been the focus of important recent research.
Before deep learning, the most common approach for object geo-localization was to use
epipolar constraints [11] to reconstruct 3D points from corresponding image locations.
This method has been used to predict traffic light locations [12], and to triangulate and
estimate the locations of traffic signs that were detected from their silhouette [13]. A related
approach [14] proposed a pipeline that triangulated telecom assets using a histogram of
oriented gradients (HOG) as feature descriptors, along with a linear SVM [15] from Google
Street View (GSV) images. These methods suffer from poor performance as they used
handcrafted features.

Deep neural networks (DNNs) have become the new state-of-the-art technique in
geo-localization due to their capabilities to capture complex relationships directly from
data through building an effective hierarchical feature representation. While it is already
common practice to detect objects in images using deep learning approaches, object geo-
localization has the additional requirement that objects appearing in multiple images must
be merged into a single prediction. There are three core approaches to accomplishing this
merging. First, in triangulation-based approaches, triangulation is used to determine object
geo-locations and then a clustering algorithm is typically employed to merge repeated
detections [6,7]. The second class of approaches are re-identification-based. In these
approaches, a model jointly detects objects using multiple frames as input. When making
predictions, these models produce a single prediction for an object from the multiple input
frames, thus implicitly merging objects in those frames into a single prediction [2,3]. Third,
tracker-based approaches explicitly associate objects between frames, forming tracklets of
detections from the same object [1]. These tracklets can then be condensed using a weighted
average or a similar approach to create a final sign prediction.

The first triangulation-based approach was proposed by [6], who built a framework
that uses a convolutional neural network (CNN) to perform monocular depth estimation
from images. They used a Markov random field (MRF) to triangulate the coordinates of the
detected objects, and merged the repeated occurrences of objects across multiple images
using a clustering algorithm. The authors later expanded their method by incorporating
point cloud data captured from drones to enhance geo-localization accuracy [7]. This
enhancement came at the cost of introducing a hardware constraint due to requiring drone
footage. Triangulation methods are limited in their performance as they rely on noisy
segmented objects. Ref. [16] proposed to reduce the noise associated with this method
using a structure from motion technique. All these approaches contain the fundamental

Remote Sens. 2022, 14, 2575 4 of 26

assumption of object sparsity, in which all objects within a certain distance threshold are
assumed to be a single object.

The first re-identification-based method was proposed by [2], who combined object
detection and re-identification into a joint learning task using a soft geometric constraint on
detected objects from GSV images. The largest limitation of this approach is it required each
object to appear in exactly two images, which was not a reasonable real world assumption.
To address this limitation the same authors [3] proposed GeoGraph, a graph neural network
(GNN)-based method for geo-localization, which is capable of jointly detecting objects in
more than two frames. Both these models require a fixed number of input images to be
determined before training. Real-world data do not contain objects that disappear after a
fixed number of frames, meaning these approaches are not sufficient for real scenarios.

The only tracker-based approach was proposed by [1]. They constructed a deep
neural network consisting of an object pose regression network and an object matching
network. The object pose regression network detects objects and predicts their 5D pose.
The object matching network matches the detected objects to combine objects with repeated
appearances in multiple images. The limitation of this approach is that the camera’s
intrinsic matrix along with six different image perspectives were used as input to the
algorithm, meaning specialized hardware must be used to gather the inputs for the model.

In addition to the drawbacks mentioned for these techniques, most notably, all share
a major limitation in which they are only capable of geo-localizing one class of objects.
In this paper, we are going to propose a new multi-class tracking-based technique for
object geo-localization from images. Our proposed technique can handle objects that might
exist in one or multiple frames. Our algorithm uses a single camera, the image’s GPS
location, and the image’s heading, which makes our system viable for mass adoption using
a cheap hardware.

Many general purpose tracking-by-detection frameworks have been developed over
the past decade for a wide range of applications [17–22]. The most common approach is
to use visual cues and motion tracking to trace objects in a sequence of images [23–26].
An alternative approach is to train a model to explicitly measure the similarity of each
pair of objects. Ref. [27] constructed a deep siamese convolutional network to learn such a
similarity function, which was trained during an offline learning phase and then evaluated
during tracking. Another approach is to model multiple object tracking using a Markov
decision process (MDP), as proposed by [28]. A final noteworthy approach uses dual
matching attention networks to incorporate both spatial and temporal information [23].
The networks generate attention maps on input images, which are used to perform tracking.

Most object geo-localization datasets are limited to low frame rates. Traditional object
trackers are designed for high frame rate data in which objects only move small distances
between frames. They cannot be effectively applied to datasets where there are large jumps
between frames. Furthermore, traditional trackers are not designed to take advantage
of objects’ GPS coordinates as additional information with which to perform association
between frames. We therefore cannot apply traditional object tracking approaches to our
dataset, and instead opt to design a novel tracker to address the unique properties of our
geo-localization dataset.

3. Datasets
3.1. Existing Datasets

Despite recent interest, only a limited of datasets have been proposed to support
research in object geo-localization. There are three major datasets (Pasadena, TLG, and
ARTS) which are summarized in Table 1.

Ref. [2] proposed a multi-view dataset in which the goal is to re-identify multiple occur-
rences of street side trees from different views. It includes 6020 individual trees, 6141 GSV
images formatted as panoramas, and 25,061 bounding boxes. Each tree was annotated
from its four closest panoramas, and is labeled with a unique ID so re-identification can be
performed; however, their dataset is not publicly available, and is limited due to not con-

Remote Sens. 2022, 14, 2575 5 of 26

taining distinct classes of objects. It is limited in its size due to only containing 6141 images.
This dataset also assumes object sparsity, meaning that all objects within a nearby radius
are assumed to be the same object. Furthermore, their dataset does not contain clusters of
objects, which is the most challenging scenario for object geo-localization algorithms.

Table 1. A comparison between the Pasadena multi-view object re-identification [2], the traffic light
geo-localization (TLG) [1], ARTS v1.0 easy and challenging [9], and ARTSv2.0 datasets.

Pasadena
Multi-View ReID [2]

Traffic Light
Geo-Localization (TLG) [1]

ARTS v1.0 [9]
ARTSv2.0

Easy Challenging

Number of classes 1 1 78 171 199

Number of images 6141 96,960 9647 19,908 25,544

Number of annotations 25,061 Unknown 16,540 35,970 47,589

Side of the road X

Assembly X

Unique Object IDs X X X

5D Poses X

GPS X X X X X

Color Channels RGB RGB RGB RGB RGB

Image Resolution 2048× 1024 1600× 1900 1920× 1080 1920× 1080 1920× 1080

Publicly Available X X X X

Researchers from Uber [1] compiled another dataset for traffic light detection derived
from nuScenes, a popular open-source dataset for autonomous driving [29]. The dataset
has 400 scenes, each lasting 20 s with 12 frames per second. All images have metadata
indicating the 5D pose of the camera and each annotated traffic light. Each traffic light can
be distinguished by a uniquely assigned ID. Their dataset is also limited in that it lacks
object classes. It is built from images in a single city-like environment, which lacks the
variation associated with data from the real world. Objects are only selected for the dataset
if they appear in at least five keyframes. These assumptions artificially reduce the difficulty
of the dataset relative to the real world. This dataset is also reliant on the availability of the
camera’s intrinsic matrix, which requires the use of specialized hardware to capture.

The third noteworthy dataset was ARTS proposed by [9]. The original ARTS dataset is
composed of nearly 20,000 images containing 171 different classes of signs. The dataset is
structured as sequences of images referred to as road segments. Each segment contains
a sequence of images taken from a camera mounted to the top of a car driving down a
road, with roughly one second intervals between each image to satisfy storage constraints.
Each image contains an annotation for each readable sign, and each annotation specifies a
bounding box around the sign, the sign’s class, and the GPS coordinates of that sign. The
camera’s coordinates and heading are also available for each image. The ARTS dataset
contains an easy and challenging subset, along with a third format referred to as video logs.
All three configurations of the dataset provide manually labeled annotations in a format
similar to PASCAL VOC [30]. The easy version of the dataset contains a total of ∼10 K
images and ∼17 K annotations, covering 78 different sign classes. All annotated signs in
the easy version were captured at up to a 100 m radius of the camera with a minimum
of 50 samples per class. The challenging version of the dataset contains a total of ∼35 K
annotations scattered in ∼20 K images, covering 171 sign classes, with a minimum of
20 samples per class captured from a distance up to 100 ms. The video logs contain the raw
sequences of images and their annotations in the same directory, without being organized
into train, validation, and test sets.

Remote Sens. 2022, 14, 2575 6 of 26

The ARTS dataset would benefit from more training samples to address its sparse
class distribution by providing more effective samples per class. In addition, a limitation of
the ARTS dataset is that it lacks unique identifiers to indicate repeated occurrences of the
same sign in multiple images, which inhibits the capability of researchers to benchmark
models on this dataset. In the following section, we are going to propose our extension
to the ARTS dataset, which will be the largest dataset for traffic sign geo-localization and
benchmarking.

3.2. ARTSv2 Dataset

Substantial enhancements have been made to the ARTS dataset [9] to construct
ARTSv2. We have increased the number of images to 25,544, the number of unique sign
classes to 199, and the number of annotations to 47,589. These enhancements help provide
more training samples for less common sign classes, which is one of the fundamental prob-
lems with this dataset. Moreover, each sign annotation has been updated with additional
attributes. First, each annotation specifies the ‘sign side’, which indicates the side of the
road the sign is on, represented as a string indicating left, right, or other. The “other” string
is provided for signs that should not be labeled as either left or right, such as signs attached
overhangs above the road. Second, each annotation has a binary attribute marking whether
the sign is part of an assembly. A sign assembly refers to a group of signs supported by
the same post. An example assembly is shown in Figure 1. Each sign that is part of an
assembly will have this boolean attribute annotated as True, whereas stand-alone signs
that are not part of an assembly will have this attribute set to false. Finally, each physical
sign in a road segment has been given unique integer identifier. Since most signs appear in
multiple images, a sign annotation will have the same ID each time the that physical sign
appears. These unique identifiers are crucial since in order to evaluate the performance
of geo-localization algorithms, repeated occurrences of the same object must be identified.
Sample images are shown in Figure 2.

All the systems proposed and implemented in this paper use the ARTSv2 dataset.

Figure 1. An example of a sign assembly containing multiple signs of similar appearance. All of the
signs on the assembly have a green and white appearance, so it is difficult for a model to distinguish
between them. There are two signs containing the word “East” which appear essentially identical.
There are also two signs with the text “Vermont 15”. The arrow in the bottom left is a mirrored
version of the arrow in the middle right. Since these signs contain so many similar characteristics,
and in some cases are nearly identical, it is extremely challenging to create a geo-localization model
that separately geo-localizes these signs.

Remote Sens. 2022, 14, 2575 7 of 26

Figure 2. Sample images from the ARTSv2 dataset. The images contain a variety of sign types, often
clustered very close together, which makes for challenging geo-localization. Environment and road
types also vary widely.

3.3. Dataset Construction

To construct this dataset, images were first gathered from a vehicle with a top-mounted
camera, which records footage while traveling in the State of Vermont in the United States.
The vehicle travels across the state to capture footage in a wide range of environments,
including highways, cities, and rural streets. Since the storage constraints associated with
storing so much video would be prohibitive, frames along with their respective GPS and
headings are extracted from the video at approximately 1 s intervals. To construct the
annotated dataset from these images, human annotators used a version of labelImg [31],
which we have modified with the capability to annotate each sign’s GPS coordinates, road
side, assembly attribute, and unique integer identifier. This tool will be made publicly
available to support the construction of other geo-localization datasets. An image of the
user interface is shown in Figure 3.

Remote Sens. 2022, 14, 2575 8 of 26

Figure 3. A sample image of the graphical user interface provided by our modified version on
labelImg. The image being annotated is displayed in the upper left, and bounding boxes that have
been annotated are overlaid on the image. The user can use the map displayed in the upper right
to select the GPS coordinates for each sign. In the bottom pane, the user can enter all appropriate
information associated with the sign, including its class, GPS coordinates, assembly attribute, sign
side, and integer identifier.

3.4. Unique Characteristics

Compared to other traffic recognition and geo-localization datasets, ARTS is the largest
in terms of both the number of images, classes, and annotations. The dataset contains high
quality 1920 × 1080 resolution images, available in multiple formats including video logs
and individual annotations in a format similar to the PASCAL VOC format. ARTSv2 is also
the only dataset containing labels specifying side of road and assembly attributes. Table 1
shows a full comparison between ARTS and similar geo-localization datasets in terms of
number of classes, number of images, and number of annotations for each dataset.

Current datasets for object geo-localization algorithms are simple and constructed
under ideal circumstances [1,2]. The ARTSv2 dataset contains multiple unique challenges,
which makes it more representative of circumstances encountered in the real world. First,
ARTSv2 features 199 different sign classes appearing with a highly imbalanced distribution,
thereby classes such as stop signs appear far more frequently than more obscure classes of
signs. This is an important characteristic of our dataset, since imbalanced class distributions
are a substantial challenge currently faced by machine learning models. The heavy-tailed
distribution increases the difficulty of training models to predict sign classes appearing less
frequently because they have fewer training samples. In addition to posing a significant
challenge, this class imbalance is much more representative of what we expect to see in
the real world compared to other datasets. This class imbalance is visually illustrated
in Figure 4, which shows the cumulative probability distribution of class frequencies in
the dataset.

Remote Sens. 2022, 14, 2575 9 of 26

Figure 4. A cumulative class distribution plot showing the distribution of frequencies at which
different classes appear in ARTSv2. The x-axis indicates a class frequency, and the y-axis value
indicates the probability that a class occurs at most the number of times indicated on the x-axis. The
sharp rise on the left side of the graph shows there are many classes that appear with low frequency,
posing a unique challenge for geo-localization algorithms, which must adapt to classes with few
training samples.

US traffic sign classification also faces the unique challenge of inconsistency between
states. While the US Department of Transportation standards are followed to varying
degrees, there are a wide variety of specific traffic sign configurations across state road
networks. Roads contain many signs that do not conform to known standards. Classifying
these non-standard signs therefore poses another unique challenge, as models must learn
to cope with signs that may be truly unique, meaning that they only appear once in the
entire dataset. Signs that do not fit into a clear category were annotated with an “unknown”
class label.

Another unique challenge associated with this dataset is the existence of many objects
with similar appearances to road signs, which tends to create false positives from object
detectors. Business signs and billboards, hand-made signs placed for events such as yard
sales, and car license plates tend to create false positives because they contain visual
characteristics similar to road signs. Models trained on this dataset therefore face the
challenge of learning to distinguish between road signs, sign-like objects, and other signs
that are not technically classified as road signs.

The ARTSv2 dataset was captured in a wide variety of driving environments. There
are road segments corresponding to highways, small rural roads, complex intersections,
and busy city roads. The vehicle travels at a variety of speeds, takes many turns, and moves
up and down hills, which causes signs to change their positions unpredictably between
frames. The vehicle may move between other cars or trees such that a sign is visible in
one frame and obscured in the next, only to re-appear again a few frames later. Unlike
other datasets, we do not remove these non-ideal scenarios since we expect them to be
encountered when applying this technology to the real world.

Finally, sign assemblies are a particularly challenging component of our dataset for
several reasons. First, assemblies contain clusters of nearby signs that need to be individu-
ally detected and geo-localized. Clusters of nearby objects is the most common challenge
for object geo-localization algorithms, which is why other datasets have opted to remove
them. This challenge is compounded by the fact that signs of similar appearance are partic-

Remote Sens. 2022, 14, 2575 10 of 26

ularly likely to occur on the same assembly, since assemblies tend to group together signs
intended for a specific function, such as an indicating nearby highways. These assemblies
of signs have similar GPS coordinates and often extremely similar appearances, meaning
there are few features a model can use to distinguish between these objects. Clusters of
similar objects is the most difficult characteristic of the ARTSv2 dataset, which is a challenge
that has been neglected by previous research.

4. Materials and Methods
4.1. System Overview

At a high level, our system is composed of two core stages as displayed in Figure 5.
In the first stage, road images are provided to a modified RetinaNet we have con-

structed called GPS-RetinaNet. GPS-RetinaNet receives these images as input, and outputs
a bounding box around each sign, its sign class, and its geospatial location. Since most
signs will appear in multiple images, the purpose of the second stage of our system is to
condense these repeated detections into a single prediction. First, we train a similarity
network, which receives pairs of sign detections predicted by GPS-RetinaNet as input. The
similarity network learns to predict a scalar value that measures how similar its input detec-
tions are. Next, we used a modified variant of the Hungarian algorithm to pair detections
of high similarity. Intuitively, detections with high similarity are more likely to be from
the same sign. A list of signs paired together by the Hungarian algorithm is referred to
as a tracklet. Each tracklet is then condensed into final sign prediction using a weighted
average, producing the final GIS map as shown in Figure 6. The following sections will
break the components of this pipeline down in more detail.

Figure 5. An overview of the Sign Hunter pipeline. First, raw images extracted from videos of a road
vehicle (top-left) are fed into GPS-RetinaNet (top-middle) which detects, classifies, and predicts signs’
GPS offsets. Pairs of detections output by GPS-RetinaNet are provided as input to the similarity
network (top-right), which quantifies the similarity between the signs. The Hungarian algorithm [32]
(bottom-left) uses the similarity scores to merge repeated occurrences of objects, which forms tracklets
(bottom-middle) containing all the occurrences of each object in the dataset. These tracklets are
condensed into final sign predictions to create a GIS map (bottom-right) of sign locations.

Remote Sens. 2022, 14, 2575 11 of 26

Figure 6. The end result of our pipeline is that signs are classified based on their sign type and placed
on a map corresponding to their geo-location. Each dot indicates the location of a single sign after all
the repeated detections have been merged. Properties of the sign such as its class can be inspected by
clicking on it on the map tool.

4.2. GPS RetinaNet

The first stage of our model performs three functions. It detects each sign visible in a
road side image, classifies what type of sign it is, and regresses its geospatial coordinates.
We have constructed a system with these capabilities by modifying the popular object
detector RetinaNet [21]. RetinaNet is an object detector already capable of performing
detection and classification. It uses a backbone network as the core of the architecture,
and employs a feature pyramid network to extract features from this backbone. The
outputs from the feature pyramid are provided as input to two sub-networks, one of which
regresses bounding boxes around objects and the other of which predicts the detected
object’s class. RetinaNet is not, however, capable of regressing geo-coordinates. We
modified its architecture by building GPS-RetinaNet, which contains an additional fully
connected GPS sub-network. The GPS sub-network extracts features from RetinaNet’s
feature pyramid [21] and learns to regress a detected object’s offset in a coordinate system
local to the image. We call this additional sub-network the GPS subnet, which expands
RetinaNet’s base architecture as is displayed in Figure 7. Each sub-network is composed
of four fully connected convolutional layers with ReLU activations. The classification
sub-network terminates with (K× A) linear outputs, where A is the number of different
anchors used in the network and K represents the number of classes. The box-regression
sub-network ends with (4× A) linear outputs to determine the relative position of the
object [21]. The GPS sub-network concludes with (2× A) linear outputs for each spatial
level in the network. We use the popular ResNet [33] as the backbone for this architecture.
Sample outputs are shown in Figure 8.

Since directly predicting GPS coordinates of signs is challenging without knowing
which direction an image is facing, we instead train the GPS sub-network to predict offsets
relative to the image, which we then convert to the sign’s actual GPS coordinates. In more
detail, the GPS-subnet learns to regress two local offset values, indicating the horizontal
and vertical distance to the sign in meters, which represents the position of the detected

Remote Sens. 2022, 14, 2575 12 of 26

object from the perspective of the camera image. These offsets are then fed into a coordinate
transform to generate the object’s predicted GPS location as follows:

Xr = Xo × cos θ + Yo × sin θ (1)

Yr = Xo × sin θ −Yo × cos θ (2)

Olat = Yr/6378137 (3)

Olon = Xr/(6378137× cos(π × Clat/180)) (4)

Plat = Clat + Olat × 180/π (5)

Plon = Clon + Olon× 180/π (6)

The variables Xo and Yo represent the respective horizontal and vertical offsets pre-
dicted by the network from the perspective of the image in meters. We use θ to represent
the camera’s facing direction (measured with a compass), and Clat and Clon indicate the
camera’s latitude and longitude. Both Xr and Yr are calculated as the meter offsets along the
longitudinal and latitudinal axis after being rotated from the camera’s coordinate system.
Hence, Olat and Olon are offsets converted from meters to latitude and longitude, and Plat
and Plon provide the final latitude and longitude prediction of the detected object after
adding the predicted offset of the camera coordinates.

To provide supervision when training the network, we must be able to calculate the
desired offsets from the annotated GPS coordinates. In other words, in addition to the
capability of converting the offsets predicted by the network to GPS coordinates, we also
require the ability to invert this transformation and convert the annotated GPS coordinates
to offsets. This can be simply accomplished by re-arranging the above formulas as show
below, in which all of the variables remain the same, except that Plat and Plon are replaced
with Alat and Alon, which represent the annotated latitude and longitude of the sign,
respectively.

Olat = (Alat − Clat)× π/180 (7)

Olon = (Alon − Clon)× π/180 (8)

Xr = Olon × (6378137× cos(π × Clat/180)) (9)

Yr = Olat × 6378137 (10)

Xo = Xr × cos θ + Yr × sin θ (11)

Yo = Xr × sin θ −Yr × cos θ (12)

Figure 7. GPS-RetinaNet. Similar to RetinaNet [21], this architecture uses a FPN [17] backbone on top
of a ResNet [33] model (a) to create a convolutional feature pyramid (b). Then, we attach three sub-
networks (c); one for classification, one for box regression, and one for GPS/depth regression.

One of the most challenging characteristics of the ARTSv2 dataset is its heavy class
imbalance. To address this, we propose a modification to Focal Loss [21] that replaces

Remote Sens. 2022, 14, 2575 13 of 26

γ in the original definition with an adaptive modulator. We define the new focusing
parameter as:

Γ = e(1−pt), (13)

FLe(pt) = −(1− pt)
Γ log(pt). (14)

For convenience, we refer to our new definition of Focal Loss as (FLe) throughout the
paper. FLe introduces two new properties to the original definition. First, it dynamically
fine-tunes the exponent based on the given class performance to reduce the relative loss for
well-classified classes while maintaining the primary benefit of the original FL. Figure A1
directly compares FL with FLe, highlighting that FLe (shown in green) crosses over FLγ=2
(shown in orange) around (pt = 0.3). As pt goes up from 0.3 → 1, FLe starts to shift up
slowly ranging in between FL and Cross Entropy CE (shown in blue). See Appendix A for
more technical details. We use Fle loss to train the classification sub-network, and we use
the standard L1 loss to train the bounding box and GPS regression sub-networks.

Figure 8. Sample images and detections from the ARTSv2 datset. Images contain a variety of sign
types, often clustered very close together, which makes for challenging geo-localization. Each box
around each sign represents a separate detection from GPS-RetinaNet. The color of the box represents
which tracklet the detection has been assigned to by the multi-object tracker. Since a tracklet is a list
of signs predicted to be the same, re-occurrences of the same sign in multiple images should have the
same color box around it.

4.3. Multi-Object Tracker

When GPS-RetinaNet is applied to an image, it produces detections for each sign
specifying a bounding box, sign class, and (after a coordinate transform) GPS coordinates.
Because images in the ARTSv2 dataset are taken approximately one second apart, the
same sign will typically appear in multiple frames. Since our final goal is to produce one
geo-localized sign prediction for each sign, we need to collapse the multiple detections

Remote Sens. 2022, 14, 2575 14 of 26

produced for many signs into a single prediction for each distinct, physical sign. Our
proposed solution is a tracker that iteratively steps through the images in each road segment
from the ARTSv2 video logs. As the tracker steps through the images, it merges repeated
detections from the same signs appearing in multiple frames. This tracker is composed of
two core components, the similarity network and the Hungarian algorithm. The role of
the similarity network is to compute a learned heuristic indicating how likely it is a pair
of detections provided by GPS-RetinaNet refer to the same sign. The second component,
which is a modified variant of the Hungarian algorithm, uses these similarity scores as input
to merge repeated detections. Our multi-object tracker is designed to operate in a low-frame
rate environment in which objects can move considerable distances along unpredictable
trajectories between frames due to the vehicle’s motion. The tracker incorporates both
the use of visual cues, predicted GPS position, predicted class, and relative bounding box
position to address the core challenge posed by clusters of similar signs.

4.3.1. Similarity Network

To train the similarity network, we format the sign annotations from the ARTSv2
dataset to the same format as the detections output by GPS-RetinaNet, so that they can be
used as the inputs when training the network. We can use the unique integer identifiers
from ARTSv2 to determine if a pair of annotations fed to the similarity network are from the
same sign, which will determine the appropriate output for the network during training.

As shown in Figure 9, the similarity network receives three types of inputs associated
with each annotation. First, the similarity network receives a vector of values containing
the image GPS, image heading, the sign class (represented as a 50 dimensional embedding
vector), sign GPS, and bounding box. The second input to the similarity network is the
pixels showing an image of the sign. The pixel information within the sign’s bounding
box is extracted and resized to a 32× 32× 3 resolution using bi-linear interpolation. The
third input to the network is a rank 3 tensor containing a “snapshot” encoding the spatial
position of each sign relative to all other signs in the image. This is accomplished by
assigning each sign in the frame to a square in a 10× 10 grid, corresponding to its location
in the image. The correct square to place the sign at is calculated using Formula (15), in
which Gx and Gy represent the grid X and Y cells the sign is placed, Bx and By indicate the
center coordinates of the sign’s bounding box, H and W are the height and width of the
image, and S is the size (in our case 10) of the grid. Along the depth axis at each square in
grid containing a sign, we concatenate a vector containing that sign’s GPS coordinates and
its 50 dimensional class embedding. Grid locations that do not contain a sign are padded
with a vector of zeros. The net result is a 3D tensor containing a “snapshot” of information
encoding the relative position of signs in the image. This component of our architecture is
crucial to address the challenge of signs with similar or identical appearance discussed in
Figure 1. If two identical by appearance signs are in an image, this input can allow those
signs to be distinguished based on their position in the grid relative to one another. Since
the similarity network predicts the similarity of a pair of signs, it receives two instances of
each of these three inputs, one of which is from each sign.

Gx = bBx/Wc × S (15)

Gy = bBy/Hc × S (16)

The network is trained to predict a value between 0 and 1, which represents the
probability that a pair of detections belong to the same sign. These values can be interpreted
as a similarity metric, where output values closer to 0 indicate the sign detections have
greater similarity, and are thus less different from one another. Conversely, when receiving
inputs from different signs the network should predict outputs closer to 1, indicating that
the detections have less in common with one another.

The architecture of this network contains two siamese sub-networks and a third sub-
network designed to handle the remaining inputs. The 32× 32× 3 scaled images containing

Remote Sens. 2022, 14, 2575 15 of 26

the pixels from the detections are fed through the first siamese sub-network consisting
of two sets of convolutional layers containing 32 3× 3 convolutional filters followed by
batch normalization. The resulting features are sent through two fully connected layers
resulting in a vector of 32 features. The 3D tensors containing a snapshot of all the signs
are processed by a second siamese sub-network consisting of two convolutional layers
each containing 32 3× 3 convolutional filters, which are followed by two fully connected
layers resulting in a vector of 8 features. The fully connected outputs of these two siamese
sub-networks are concatenated with the vector containing the camera heading and GPS,
predicted sign GPS, sign class, bounding box, and sign class embedding. The resulting
vector is sent through multiple fully connected layers to generate the final prediction. The
exact architecture is shown in Figure 9.

The final task of training the similarity network is to develop a satisfactory noise
distribution when training. During test time, the similarity network receives output
detections from GPS-RetinaNet as input, but as discussed above we must train the similarity
network on annotations from our dataset since they contain the labels indicating if two
signs are the same. We therefore want to construct a noise distribution for these training
annotations that mimics the noise introduced by our object detector. To find a noise
distribution, we implemented an algorithm that tests if an annotation has an obvious
detector output match when the image that annotations is from is provided as input to
GPS-RetinaNet. First, we checked if the annotation’s bounding box has one (and only one)
detection in the same image for which their intersection over union (IOU) is greater than
0.9. If this is the case, we measure the latitude and longitude discrepancy between the
annotation and detection, create a boolean variable indicating if the classes match, and
subtract the differences between the X and Y coordinates of their bounding boxes. These
three values quantify how much “noise” was introduced by the detector by measuring how
different the annotation is from the corresponding detection predicted by GPS-RetinaNet.
By repeating this process for each annotation, we construct a noise distribution representing
how often and by how much the detected GPS, detected class, and detected bounding
boxes differ from the annotated GPS, annotated class, and annotated bounding box. We can
then stochastically sample from this noise distribution to serve as our data augmentation
when training the similarity network.

Figure 9. The architecture of the similarity network. The network uses two siamese sub-networks
and then concatenates all the resulting features. The remaining features are sent through two more
fully connected layers before predicting the similarity score.

We trained this network on an Nvidia GTX 1080 ti with 11 GB of VRAM and imple-
mented the network using the Keras application programming interface with tensorflow

Remote Sens. 2022, 14, 2575 16 of 26

as the back-end. We regularized the inputs from each image such that each color value
of each pixel was scaled from 0 to 1. Our network incorporated batch normalization after
each layer, in addition to a dropout ratio of 0.25 after each fully connected layer. We fed
inputs into the network in batch sizes of 128, and used the Adam optimizer [34] with a
learning rate of 0.0001 to optimize the weights of the network. We trained the network for
20 epochs. Finally, since we found categorical cross entropy led to poor performance, we
used the mean squared error as the loss function optimize.

4.3.2. Modified Hungarian Algorithm

Once we have learned a function to quantify the similarity between detections, we
used the similarity values provided by the network to merge repeated detections from the
same signs. We accomplished this with a modified version of the Hungarian algorithm [32].
The Hungarian algorithm provides a polynomial time solution to compute the minimum
cost in a bipartite graph where each edge has a matching cost. In each pair of consecutive
frames from our dataset, we constructed a bipartite graph where each node represents a
detection from that image, and each edge connecting two nodes has a weight that indicates
the assignment cost for marking those two nodes as belonging to the same sign. The
assignment cost of each pair of signs is determined by providing them as input to the
similarity network and taking the resulting similarity score as previously described. By
using the Hungarian algorithm to compute the assignments of nodes that achieves the
minimum sum of costs, similar sign detections as measured by the similarity network are
most likely to be paired, and detections with greater pairing cost are less likely to be paired
with one another.

One limitation of the Hungarian algorithm is that it always pairs as many nodes from
the bipartite graph as possible. For example, if one set in the graph has 5 nodes and the
other set contains 4 nodes, the 4 pairings that minimize the sum of costs will be selected
by the Hungarian algorithm. This behavior is undesirable for our application, since it is
possible for multiple signs to disappear from view between frames and for many new signs
appear to appear in the second frame, so pairing as many nodes as possible would result
in nodes representing detections from different objects being incorrectly paired. We solve
this problem with a simple modification to the algorithm. If the similarity score computed
between a pair of detections is greater than a cutoff threshold of 0.7, then the detected
objects are forcibly split, meaning the detections will be placed in separate tracklets. The
final output of the tracker is a set of tracklets in which each tracklet represents a list of
detections predicted to belong to the same sign.

4.3.3. Geo-Localized Sign Prediction

The only remaining step in our pipeline is to condense the tracklets into sign predic-
tions. The simplest method is to predict a sign at the GPS coordinates and with the class
from the last frame in the tracklet, which we refer to as the frame of interest (FOI) method.
A similarly simple approach is to take a weighted average of the predicted GPS coordinates
from each detection in the tracklet. Frames in which the camera is closer to the sign have
their predicted GPS weighted more heavily. We predict the class as being the mode of the
detections in the tracklet. A third approach involves performing triangulation to condense
the tracklets into sign predictions, and predicting the sign class as the mode class from the
tracklet. Finally, we can use the Markov random field model proposed in [6] to reduce the
tracklets we have produced into sign predictions.

5. Results
5.1. Object Detector Performance

While the ultimate objective of our system is to perform object geo-localization, as
an intermediary step we first benchmark the performance of our object detection system.
We initialized our object detector with weights from a pre-trained model on the COCO
dataset [35]. We kept the default optimization parameters provided by RetinaNet [21]

Remote Sens. 2022, 14, 2575 17 of 26

with the exception of increasing the initial learning rate to 1 × 10−4. We used smooth
L1 loss on both the bounding box regression-subnet and the GPS-subnet. The L1 loss for
the GPS subnet is computed relative to the correct offset by transforming the annotated
GPS coordinates to the local image coordinate system using the transformation outlined in
Section 4. We used our custom focal loss function to train the classification subnet. Our
models were trained and tested on a workstation with an NVIDIA 1080ti GPU, as well as a
computing cluster with NVIDIA Tesla V100 GPUs. We reported the mean average precision
mAP evaluated with an intersection over union IoU = 0.5 on the ARTSv2 dataset. To further
illustrate the effect of the proposed FLe loss function, we show how the average precision
score differs between the worst, 50th percentile, and best performing class. Results are
shown in Table 2.

Table 2. Average precision scores on the testing portion of the ARTSv2 dataset. The MAP score
indicates the mean of all average precision scores evaluated at an IoU threshold equal to 0.5. We
further show average precision scores for the class with the minimum average precision score, the
50th percentile AP score, and the maximum AP score.

Loss Function mAP50 APmin AP50% APmax

RetinaNet-50 (FL) 69.9 15.9 70.0 100
RetinaNet-50 (FLe) 70.1 17.2 70.1 100

5.2. Object Detector GPS Prediction

Each detection produced by the detector has a corresponding offset prediction from the
GPS-subnet, which can be transformed to a GPS location using the previously established
coordinate transformation. To quantify the performance of this component of our system,
we computed the mean absolute error between the location predicted by GPS-RetinaNet
and the ground-truth location of the corresponding sign. To construct an error metric easily
interpretable by humans, we converted the absolute error between GPS locations to meters
using the Haversine formula, which provides accurate approximations at close distances.
The Haversine formula is denoted as follows where δ is the relative distance, ψ is latitude,
λ is longitude, and R is the mean of earth’s radius equal to 6371 km:

a = sin2
(

∆ψ

2

)
+ cos ψ1 · cos ψ2 · sin2

(
∆λ

2

)
,

δ = 2R · atan2
(√

a,
√

1− a
)

.

The distribution of mean GPS regression errors for each class is displayed in Figure 10.

5.3. Similarity Network

Next, we quantified the performance of the similarity network, which learns to predict
a value closer to 0 if the two input detections belong to the same physical sign and a value
closer to 1 if the detections are from different signs. Intuitively, the range of values from 0 to
1 can be interpreted as an abstract measure of “distance” between the two detections. Values
closer to 0 indicate the signs are less distant and thus have more in common, whereas values
closer to 1 indicate the signs are more distant and thus less similar. Since this network
is not performing classification, we can instead quantify its performance by measuring
the absolute error at different percentiles. In Table 3, each percentage indicates how often
the network predicts a value with an absolute error less than or equal to the listed error
value. We use 80% of the annotations for training the network, 10% for validation, and the
remaining 10% is reserved for testing.

Remote Sens. 2022, 14, 2575 18 of 26

Figure 10. Average GPS testing error for each class. The x-axis shows the average geo-localization
margin of error of a given class, and the y-axis indicates how many classes fell within that approximate
margin of error. Our GPS-subnet scored a median MOE of (±5) meters. We can see that the
GPS-subnet can accurately estimate distance within a reasonably low margin of error, especially
considering how far many signs are from the camera in the ARTSv2 dataset.

Table 3. A table showing the distribution of prediction errors. Each percentile indicates the percent
of absolute errors from the similarity network that are at worst equal to the listed error value.

Percentile Absolute Error

50 0.0165
75 0.1195
90 0.3846
95 0.6106
97 0.7436
98 0.8064
99 0.8844

5.4. Tracker

The objective of the tracker is to collapse down the detections produced by RetinaNet
into geo-localized sign predictions. Object geo-localization using deep learning is a new
and growing field. There are yet to be any universally accepted performance metrics,
especially since performance in this domain is particularly sensitive to the difficulty of the
dataset. The goal of our performance evaluation is to quantify how well the physical sign
predictions match up with the annotated physical signs distinguished in the ARTS dataset
by their integer ID. Specifically, we define a true positive as when the tracker predicts
a sign that correctly matches to a real sign within 15 m. We define a false negative as a
circumstance where there exists a real sign, but the tracker fails to generate a corresponding
prediction. Lastly, we define a false positive to be when the tracker predicts the existence of
a sign, but no real-world counterpart exists. An ideal tracker should achieve as many true
positives as possible, while minimizing the count of false negatives and false positives.

In Table 4, we show the number of true positives, false negatives, and false positives
during different years containing different road segments. The data for geo-localization are
divided into years in which they were gathered, and each year contains road segments that
the tracker steps through to perform geo-localization. Each individual year is captured in a

Remote Sens. 2022, 14, 2575 19 of 26

variety of geographical regions spread throughout the state of Vermont. Individual years
do, however, differ in terms of the driving environments they contain. The 2012 data mostly
contain footage from towns, which are challenging due to the density of signs and extra
objects present. The 2013 data are composed mostly of highways, and are therefore the
least challenging due to having fewer signs, more space between signs, and fewer non-road
signs such as signs for businesses. The 2014 data contain many rural segments, which are
less challenging, but also contain some towns with difficult sign assemblies.

Figure 11 quantifies the GPS error between each predicted sign and its corresponding
ground truth. The x-axis shows the GPS error measured in meters, and y-axis indicates the
probability of a sign being geo-localized within the corresponding mean error.

Table 4. A performance benchmark of the full system end-to-end. Raw images are fed into GPS-
RetinaNet, which detects signs, predicts their class, and regresses their GPS offsets. Pairs of detections
from consecutive frames predicted by GPS-RetinaNet are fed into the similarity network to predict a
similarity score. These similarity scores are provided to the Hungarian algorithm to merge repeated
detections of the same sign. These final sign predictions are compared to the annotations in the dataset
to determine if they are true positives, false negatives, or false positives. The data are organized into
three separate years in which it was gathered. Since each year represents a different set of driving
environments, the results are shown separately. The 2012 data contain many towns, 2013 contain
mostly highways, and 2014 contain a combination of towns are rural segments. The “All” section
shows the combined results for all three years.

End-To-End Performance

Year Collected 2012 2013 2014 All

Noteworthy Features Towns Highways Rural Segments
and Small Towns

All Geographical
Environments

True Positives 264 3170 3179 6163
False Negatives 176 604 842 1622
False Positives 67 826 1581 2474

Figure 11. A probability distribution of GPS errors between the predicted geo-localized sign coor-
dinates and the actual coordinates from the annotations. The x-axis indicates the amount of GPS
error in meters between a predicted and an actual sign, and the y-axis indicates the probability of a
random sign having the error indicated on the x-axis.

Remote Sens. 2022, 14, 2575 20 of 26

5.5. Comparison to Other Methods

Comparison to existing geo-localization techniques is challenging due to the limita-
tions of current approaches, lack of standardized evaluation metrics and varying structure
to datasets.

We believe our dataset is the most representative of data encountered by geo-localization
systems in the real world; however, this also limits the comparisons we are capable of
performing. For example, it is impossible for us to compare our results to [1], since their
method uses 5D pose data, which are unavailable in our dataset. Many other tracking
methods do not transfer well to our problem either due to not being designed to deal with
the very low frame rate or the broad and sparse class distribution contained by the dataset.
Other systems also do not take object class into account, and thus are unable to generate
complete predictions on our dataset.

While there are not directly analogous state-of-the-art approaches to compare to, we
can compare the geo-localization performance of different techniques on our tracklets. Each
algorithm receives as input each sequence of detections created by the tracker, and we
will compare how effectively the GPS coordinates of each sign can be determined from
each of these tracklets. The simplest method is to predict a sign at the GPS coordinates
and the sign’s class using the last detection in the tracklet, which we refer to as the frame
of interest method. The intuition behind this approach is the detection should contain
the most accurate class and GPS predictions during the last frame in which the camera
is closest to the sign. A similarly simple approach is to take a weighted average of the
GPS coordinates from the tracklet, in which images where the camera is closer to the sign
are weighted more heavily. The class is predicted to be the mode of the detections in the
tracklet. Our third approach is to perform triangularization to condense the tracklets into
sign predictions. Finally, we use the Markov random field model proposed in [6] to reduce
the tracklets into sign predictions. The results are displayed in Table 5.

Table 5. Performance comparison using different methods to reduce tracklets into sign detections.
For each method, we count the total true positives, false negatives, and false postives compared to the
ground truth for the full dataset. The mean GPS error indicates the mean absolute distance between
a true positive sign prediction and its corresponding ground truth in meters. The STD GPS error
indicates the standard deviation of the distribution of true positive GPS errors.

Geo-Localization Performance Comparisons

Tracking Method True
Positives

False
Negatives

False
Positives

Mean GPS
Error

STD GPS
Error

Triangularization 6079 3000 1918 6.67 4.33
MRF 6677 4379 2156 6.57 4.98
Frame of Interest 6677 2759 1558 5.85 4.40
Weighted Average 6670 2751 1565 5.81 4.38

6. Discussion
6.1. Object Detector Performance

We can see in Table 2 that our proposed FLe loss function slightly improves the average
mean average precision score of the object detector. The particular difference between these
loss functions, however, is that FLe demonstrated improved tail performance with greater
AP scores for more challenging classes. This result supports the effectiveness of FLe in
emphasizing low performing classes and ensuring that training gives more weight towards
improving their AP. Moreover, FLe does not appear to have significantly decreased the
mAP or the AP of classes that performed well with FL. This suggests that FLe is a sound
compromise between promoting poorly performing classes and retaining the performance
of easier classes.

Remote Sens. 2022, 14, 2575 21 of 26

6.2. Object Detector GPS Performance

In Figure 10, we show the distribution of the mean prediction errors for each sign class.
We observe that most classes have mean predicted distances within 5 m of their labeled
ground truth coordinates; however, we note that it is possible the ground truth coordinates
themselves could have additional error due to hardware limitations associated with GPS.
We observe that the distribution has a right skew due to a few outlier classes with much
larger errors. This is largely a consequence of these signs appearing with low frequency in
the dataset. Inspection of these difficult classes revealed they corresponded to signs that
have a particularly broad distribution in their size, which is unsurprisingly challenging on
a data set composed of images from a single camera.

6.3. Similarity Network

As we can see from Table 3, the similarity network achieved a 90th percentile error
of approximately 0.38. This means that 90% of predictions it made had an absolute error
less than or equal to this value. A total of 95% of the prediction errors were less than 0.61.
We can use these values as feedback to decide how we should set our cutoff value for the
modified Hungarian algorithm we used. Since we only want to use our cutoff to forcibly
split detections when the network is confident they are the not the same sign, this result
justifies our decision to use 0.7 as the cutoff threshold.

Visual inspection of failed predictions from the similarity network showed it struggles
most with signs that are far away from the camera or similar in appearance to each other.
Both these failure cases make intuitive sense because further away and more similar signs
will both have fewer visible distinguishing features. Another common failure case for the
similarity network is when signs disappear between frames due to being occluded by an
object, or are are only partially visible due to being on the edge of the camera’s field of view.

6.4. Tracker

Table 4 shows the final performance results of the full end-to-end system broken down
by the different years the images from the dataset are organized into. The performance is
strongest for 2013. The images from 2013 are captured from the highway, meaning signs
tend to be spread further apart. This means the tracker makes fewer errors in combining
detections into tracklets, which results in fewer false positives. By contrast, the 2014 data
were captured in a combination of rural environments and towns, and therefore have
many sign assemblies containing clusters of similar in appearance signs. This additional
challenge resulted in greater false positives due to the previously discussed challenge with
differentiating between similar signs within clusters.

Manual inspection of false negatives showed that they typically belonged to small
signs that are far away or rotated such that they are not directly facing the camera. Due
to their lower visibility, it is unsurprising these characteristics increase the likelihood of
a sign being undetected. Inspection of false positives shows many of them are caused
by detections of other signs that are not actual road signs. For example, a sign from a
restaurant may be detected and predicted as a sign, but since this is not technically a traffic
sign it is considered a false positive during evaluation. False positives are also caused by
other objects with sign-like appearances such as license plates. Finally, inspection of some
false positives revealed they were correct detections of actual traffic signs, however they
were not annotated as part of the dataset due to being far off in the background of the
image or only partially visible in the frame.

6.5. Comparison to Other Methods

We compared the different methods for condensing tracklets into the final sign predic-
tion as is shown in Table 5. The weighted average approach is the most effective method
of converting the tracklets into sign predictions. It achieved the lowest GPS error, low
standard deviation, and good scores for true positives, false negatives, and false positives.
Using the “Frame of Interest” from each tracklet to create the final sign prediction achieved

Remote Sens. 2022, 14, 2575 22 of 26

similar performance. Triangulation has a low standard deviation in its error and is therefore
more consistent; however, both triangulation and the MRF approach have greater mean
GPS error.

7. Conclusions

In this paper, we presented an enhanced version of the ARTS dataset [9], ARTSv2,
which will serve as a comprehensive geo-localization dataset to support future research in
the field. Each sign annotation in ARTSv2 consists of a sign class, a side of road indicator, a
sign assembly indicator, and a unique sign integer identifier.

We also proposed a novel two-stage object geo-localization system that handles a
objects from a large number of heavily skewed classes which exist in an arbitrary number of
frames using only accessible hardware. In the first stage, we constructed an object detector
called GPS-RetinaNet, which predicts bounding box coordinates, sign classes, and GPS
offsets for each detected sign in an input image. GPS-RetinaNet uses FLe, a novel variant
of focal loss, during training to effectively handle the class imbalance present in ARTSv2.

The second stage of our proposed modes is a novel object tracking system to collapse
a set of detections in a noisy, low-frame rate environment into final geo-localized object
predictions. The traffic sign tracking and geo-localization was handled using a learned
metric network and a variant of the Hungarian algorithm.

Future research should explore optimizations and tuning to facilitate high frame rate
object geo-localization.

The noise introduced to GPS coordinates due to both equipment error and annotation
inconsistencies limits the capability of GPS to serve as a ground truth. To limit GPS error,
future work could use satellite images to achieve enhanced geo-localization performance.
Future work could also experiment with how to better distinguish between signs with
similar visual features and locations during tracking, as these objects have the fewest
distinguishing features.

Author Contributions: Conceptualization, D.W., T.A., C.V.O., X.Z., S.W. and J.N.; methodology, D.W.,
T.A. and C.V.O.; software, D.W., T.A. and C.V.O.; validation, D.W., T.A. and C.V.O.; formal analysis,
D.W., T.A. and C.V.O.; investigation, D.W., T.A., C.V.O. and S.W.; resources, S.W. and J.N.; data
curation, D.W., S.W. and J.N.; writing—original draft preparation, D.W., T.A., C.V.O., X.Z. and S.W.;
writing—review and editing, D.W. and S.W.; visualization, D.W. and T.A.; supervision, S.W. and J.N.;
project administration, S.W. and J.N.; funding acquisition, S.W. and J.N. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Vermont Agency of Transportation.

Data Availability Statement: We have made the ARTSv2 dataset publicly available to support
research and development in both traffic sign recognition and object geo-localization. ARTSv2 can be
accessed at the following https://drive.google.com/drive/u/1/folders/1u_nx38M0_owB0cR-qA6
IOWgZhGpb9sWU (accessed on 5 April 2022). Source code is also available, and can be accessed at
the following https://gitlab.com/vail-uvm/VTrans-AI (accessed on 5 April 2022).

Acknowledgments: Computations were performed using the Vermont Advanced Computing Core
supported in part by NSF award No. OAC-1827314. We thank Josh Minot and Fayha Almutairy
for their contributions, discussions, and feedback on this project. This work would not have been
possible without great collaboration between the Vermont Artificial Intelligence Lab and the Vermont
Transportation Agency. We would like to thank Rick Scott and Ken Valentine for championing
this project.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Focal Loss was first introduced in [21] to address the challenge of overwhelming
the loss value of rare classes with many easy classes during training for datasets with
unequally distributed samples. One of the most crucial properties of the FL is the basic

https://drive.google.com/drive/u/1/folders/1u_nx38M0_owB0cR-qA6IOWgZhGpb9sWU
https://drive.google.com/drive/u/1/folders/1u_nx38M0_owB0cR-qA6IOWgZhGpb9sWU
https://gitlab.com/vail-uvm/VTrans-AI

Remote Sens. 2022, 14, 2575 23 of 26

idea of down-weighting the loss of easy (well-classified) classes in favor of focusing the
training on the hard classes in the dataset. Focal Loss is defined as:

FL(pt) = −(1− pt)
γ log(pt). (A1)

The focusing parameter γ acts as a modulator to fine-tune the effect of down-weighting
the loss of easy classes. Ref. [21] noted that γ = 2 works well, since it maintains acceptable
performance on easy classes while noticeably improving performance on hard classes. In
our experiments, however, we found that fixing the focusing parameter value for all classes
results in an unintended effect in which the loss value of a wide range of classes starts to
become down-weighted prematurely, not allowing them to achieve better average precision
in a reasonable amount of time. In other words, FL increasingly down-weights the loss
value of all classes once their probability pt surpasses 0.3, which one can argue that it is too
low to consider as a threshold for ‘well-classified’ classes.

We propose a modification to Focal Loss that replaces γ in the original definition by
an adaptive modulator. We define the new focusing parameter as:

Γ = e(1−pt), (A2)

FLe(pt) = −(1− pt)
Γ log(pt). (A3)

Figure A1. Our modified Focal Loss function (FLe) compared with FL (γ = 2), and cross entropy (CE).
FLe introduces an adaptive exponent to the original FL [21]. This effectively changes the underlying
distribution of classes in regards to their APs and promotes some of the poorly classified classes to a
better score while preserving the performance of well-classified classes.

For convenience, we will refer to our new definition of Focal Loss as (FLe). FLe
introduces two new properties to the original definition. It dynamically fine-tunes the
exponent based on the given class performance to reduce the relative loss for well-classified
classes maintaining the primary benefit of the original FL. Figure A1 directly compares
FL with FLe, highlighting that FLe (shown in green) crosses over FLγ=2 (shown in orange)
around (pt = 0.3). As pt goes up from 0.3 → 1, FLe starts to shift up slowly ranging in
between FL and Cross Entropy CE (shown in blue).

In practice, this allows us to ultimately define ‘well-classified’ classes as (pt > 0.7)
instead of (pt > 0.3) in the original definition. In other words, FLe reduces the loss down-
weighting effect on classes when their pt values are in the range (0.3 ≥ pt ≥ 0.7) while still

Remote Sens. 2022, 14, 2575 24 of 26

focusing on hard classes. This results in slightly improved performance that manifests at
the beginning of the training and continues throughout the process until both FL and FLe
converges at a similar mAP; however, FLe will have a slightly lower standard deviation
as more classes will cluster around mAP whereas FL will have a greater spread of APs
per class.

Appendix B

We argued in Section 2 that traditional trackers were ineffective in the object geo-
localization domain due to not being designed for low frame rate datasets and not taking
GPS information into consideration during tracking. In Table A1, we tested several popular
object trackers and verified that they provide extremely poor results. As stated, they are
unable to track objects due to how far apart frames are, leading them to nearly always
predict two objects as being “different.” Since objects are rarely predicted to be the same by
traditional trackers, repeated occurrences of objects are not merged, leading to extremely
high false positive rates.

Table A1. Performance using different trackers to condense repeated detections from GPS-RetinaNet.
Other methods essentially fail completely to merge repeated detections, since they nearly always
predict detections from separate frames are different signs. This occurs because they are not designed
to handle large “jumps” in object’s positions and angles between frames.

Tracker Performance Comparisons

Tracker True Positives False Negatives False Positives

Boosting [36] 8062 173 24,425
MIL [37] 8068 167 24,130
KCF [38] 8061 175 25,812
TLD [39] 8055 180 21,903
MedianFlow [40] 8054 181 20,834
GoTurn [41] 8049 186 22,203
MOSSE [42] 8042 193 21,422
CSRT [43] 8061 174 23,052

Proposed Tracker 6677 2759 1558

References
1. Chaabane, M.; Gueguen, L.; Trabelsi, A.; Beveridge, R.; O’Hara, S. End-to-End Learning Improves Static Object Geo-Localization

From Video. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Virtual, 5–9
January 2021; pp. 2063–2072.

2. Nassar, A.S.; Lefèvre, S.; Wegner, J.D. Simultaneous multi-view instance detection with learned geometric soft-constraints.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019;
pp. 6559–6568.

3. Nassar, A.S.; D’Aronco, S.; Lefèvre, S.; Wegner, J.D. GeoGraph: Graph-Based Multi-view Object Detection with Geometric Cues
End-to-End. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 488–504.

4. McManus, C.; Churchill, W.; Maddern, W.; Stewart, A.D.; Newman, P. Shady dealings: Robust, long-term visual localisation using
illumination invariance. In Proceedings of the Institute of Electrical and Electronics Engineers (IEEE) International Conference on
Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 901–906. [CrossRef]

5. Suenderhauf, N.; Shirazi, S.; Jacobson, A.; Dayoub, F.; Pepperell, E.; Upcroft, B.; Milford, M. Place recognition with ConvNet
landmarks: Viewpoint-robust, condition-robust, training-free. In Proceedings of the Robotics: Science and Systems XI, Rome,
Italy, 13–17 July 2015; pp. 1–10.

6. Krylov, V.A.; Kenny, E.; Dahyot, R. Automatic Discovery and Geotagging of Objects from Street View Imagery. Remote Sens. 2018,
10, 661. [CrossRef]

7. Krylov, V.A.; Dahyot, R. Object geolocation using mrf based multi-sensor fusion. In Proceedings of the 2018 25th IEEE
International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 2745–2749.

8. Wilson, D.; Zhang, X.; Sultani, W.; Wshah, S. Visual and Object Geo-localization: A Comprehensive Survey. arXiv 2021,
arXiv:2112:15202.

9. Almutairy, F.; Alshaabi, T.; Nelson, J.; Wshah, S. ARTS: Automotive Repository of Traffic Signs for the United States. IEEE Trans.
Intell. Transp. Syst. 2019, 22, 457–465. [CrossRef]

http://doi.org/10.1109/ICRA.2014.6906961
http://dx.doi.org/10.3390/rs10050661
http://dx.doi.org/10.1109/TITS.2019.2958486

Remote Sens. 2022, 14, 2575 25 of 26

10. Bailey, T.; Durrant-Whyte, H. Simultaneous localization and mapping (SLAM): Part II. IEEE Robot. Autom. Mag. 2006, 13, 108–117.
[CrossRef]

11. Szeliski, R. Computer Vision: Algorithms and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010;
pp. 307–312.

12. Fairfield, N.; Urmson, C. Traffic light mapping and detection. In Proceedings of the 2011 IEEE International Conference on
Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 5421–5426.

13. Soheilian, B.; Paparoditis, N.; Vallet, B. Detection and 3D reconstruction of traffic signs from multiple view color images. ISPRS J.
Photogramm. Remote Sens. 2013, 77, 1–20. [CrossRef]

14. Hebbalaguppe, R.; Garg, G.; Hassan, E.; Ghosh, H.; Verma, A. Telecom Inventory management via object recognition and
localisation on Google Street View Images. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer
Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 725–733.

15. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 21–23 September 2005; Volume 1,
pp. 886–893.

16. Liu, C.J.; Ulicny, M.; Manzke, M.; Dahyot, R. Context Aware Object Geotagging. arXiv 2021, arXiv:2108.06302.
17. Lin, T.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In

Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 936–944. [CrossRef]

18. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

19. Girshick, R. Fast R-CNN Object detection with Caffe. In Proceedings of the 2015 IEEE International Conference on Computer
Vision (ICCV), Santiago, Chilie, 7–13 December 2015; pp. 1440–1448. [CrossRef]

20. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In
Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 91–99.

21. Lin, T.; Goyal, P.; Girshick, R.B.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. arXiv 2018, arXiv:1708.02002.
22. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer

Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988.
23. Zhu, J.; Yang, H.; Liu, N.; Kim, M.; Zhang, W.; Yang, M.H. Online multi-object tracking with dual matching attention networks.

In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 366–382.
24. Voigtlaender, P.; Krause, M.; Osep, A.; Luiten, J.; Sekar, B.B.G.; Geiger, A.; Leibe, B. Mots: Multi-object tracking and segmentation.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 7942–7951.

25. Son, J.; Baek, M.; Cho, M.; Han, B. Multi-object tracking with quadruplet convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5620–5629.

26. Xu, J.; Cao, Y.; Zhang, Z.; Hu, H. Spatial-temporal relation networks for multi-object tracking. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 3988–3998.

27. Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H.S. Fully-Convolutional Siamese Networks for Object Tracking.
In Proceedings of the Computer Vision—ECCV 2016 Workshops, Amsterdam, The Netherlands, 11–14 October 2016; Hua, G.,
Jégou, H., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 850–865.

28. Xiang, Y.; Alahi, A.; Savarese, S. Learning to Track: Online Multi-object Tracking by Decision Making. In Proceedings of the 2015
IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 4705–4713. [CrossRef]

29. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuScenes: A
multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11621–11631.

30. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

31. Tzutalin. Tzutalin. LabelImg. Git Code. 2015. Available online: https://github.com/tzutalin/labelImg (accessed on
5 April 2022).

32. Kuhn, H.W. The Hungarian Method For The Assignment Problem. Nav. Res. Logist. Q. 1955, 2, 83–97. doi: 10.1002/
nav.3800020109. [CrossRef]

33. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

34. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980.
35. Lin, T.; Maire, M.; Belongie, S.J.; Bourdev, L.D.; Girshick, R.B.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft

COCO: Common Objects in Context. arXiv 2014, arXiv:1405.0312.
36. Grabner, H.; Grabner, M.; Bischof, H. Real-Time Tracking via On-line Boosting. In Proceedings of the British Machine Vision

Conference 2006, Edinburgh, UK, 4–7 September 2006; Volume 1, pp. 47–56. [CrossRef]

http://dx.doi.org/10.1109/MRA.2006.1678144
http://dx.doi.org/10.1016/j.isprsjprs.2012.11.009
http://dx.doi.org/10.1109/CVPR.2017.106
http://dx.doi.org/10.1109/ICCV.2015.169. Accessed 1 April 2022
http://dx.doi.org/10.1109/ICCV.2015.534
http://dx.doi.org/10.1007/s11263-009-0275-4
https://github.com/tzutalin/labelImg
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.5244/C.20.6

Remote Sens. 2022, 14, 2575 26 of 26

37. Babenko, B.; Yang, M.H.; Belongie, S. Visual tracking with online Multiple Instance Learning. In Proceedings of the 2009 IEEE
Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 983–990. [CrossRef]

38. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-Speed Tracking with Kernelized Correlation Filters. IEEE Trans. Pattern
Anal. Mach. Intell. 2015, 37, 583–596. [CrossRef]

39. Kalal, Z.; Mikolajczyk, K.; Matas, J. Tracking-Learning-Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1409–1422.
[CrossRef]

40. Kalal, Z.; Mikolajczyk, K.; Matas, J. Forward-Backward Error: Automatic Detection of Tracking Failures. In Proceedings of the
2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2756–2759. [CrossRef]

41. Held, D.; Thrun, S.; Savarese, S. Learning to Track at 100 FPS with Deep Regression Networks. arXiv 2016, arXiv:1604.01802.
42. Bolme, D.; Beveridge, J.; Draper, B.; Lui, Y. Visual object tracking using adaptive correlation filters. In Proceedings of the 2010

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010;
pp. 2544–2550. [CrossRef]

43. Lukežič, A.; Vojíř, T.; Čehovin Zajc, L.; Matas, J.; Kristan, M. Discriminative Correlation Filter with Channel and Spatial Reliability.
Int. J. Comput. Vis. 2018, 126; 671–688. [CrossRef]

http://dx.doi.org/10.1109/CVPR.2009.5206737
http://dx.doi.org/10.1109/TPAMI.2014.2345390
http://dx.doi.org/10.1109/TPAMI.2011.239
http://dx.doi.org/10.1109/ICPR.2010.675
http://dx.doi.org/10.1109/CVPR.2010.5539960
http://dx.doi.org/10.1007/s11263-017-1061-3

	Introduction
	Related Work
	Datasets
	Existing Datasets
	ARTSv2 Dataset
	Dataset Construction
	Unique Characteristics

	Materials and Methods
	System Overview
	GPS RetinaNet
	Multi-Object Tracker
	Similarity Network
	Modified Hungarian Algorithm
	Geo-Localized Sign Prediction

	Results
	Object Detector Performance
	Object Detector GPS Prediction
	Similarity Network
	Tracker
	Comparison to Other Methods

	Discussion
	Object Detector Performance
	Object Detector GPS Performance
	Similarity Network
	Tracker
	Comparison to Other Methods

	Conclusions
	Appendix A
	Appendix B
	References

