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Abstract: Globally, remotely sensed data and, in particular, Airborne Laser Scanning (ALS), are
being assessed by the forestry industry for their ability to acquire accurate forest inventories at
an individual-tree level. This pilot study compares an inventory derived using the ForestView®

biometrics analysis system to traditional cruise measurements and felled tree measurements for
139 Pinus taeda sp. (loblolly pine) trees in eastern Texas. The Individual Tree Detection (ITD) accuracy
of ForestView® was 97.1%. In terms of tree height accuracy, ForestView® results had an overall
lower mean bias and RMSE than the traditional cruise techniques when both datasets were compared
to the felled tree data (LiDAR: mean bias = 1.1 cm, RMSE = 41.2 cm; Cruise: mean bias = 13.8 cm,
RMSE = 57.5 cm). No significant difference in mean tree height was observed between the felled tree,
cruise, and LiDAR measurements (p-value = 0.58). ForestView-derived DBH exhibited a −2.1 cm bias
compared to felled-tree measurements. This study demonstrates the utility of this newly emerging
ITD software as an approach to characterize forest structure on similar coniferous forests landscapes.

Keywords: LiDAR; DBH; ITD; felled tree; loblolly; field data

1. Introduction

Accurate forest inventories are needed to forecast growth and yield over large spatial
scales, especially in areas where on-the-ground field data is lacking due to limited access or
high acquisition cost. To meet this need, airborne scanning Light Detection and Ranging
(LiDAR) scanning, also referred to as Airborne Laser Scanning (ALS), is widely used to
accurately acquire forest inventories at the stand [1] and individual-tree level within the
commercial forestry sector [2–5]. Numerous Individual Tree Detection (ITD) algorithms
exist; however, few have been applied at a landscape scale [1,3,6,7], in part due to a lack of
high-resolution ALS data (e.g., 20 pulses per square meter (ppm)) and costly field validation
data. A further challenge is that robust validation of ITD algorithm-derived tree diameters
is limited but essential, given the use of these metrics in growth and yield models [8].
Within the commercial forest industry, quantification of tree-stem volume is of significant
physiological and financial importance for growth and yield modeling and sustainable
forest management [9–11].

In the southern United states, Pinus taeda L. (P. taeda), commonly known as loblolly
pine, is of high economic importance due to its fast growth rates and relatively high stem
volume [12–14]. Common approaches for modeling tree stem volume rely on allometric
equations that utilize easy-to-measure attributes like tree height and diameter at breast
height (DBH) [15]. Allometric equations are typically non-linear, thus errors in tree height
and DBH measurements can have significant effects on the accuracy of stem volume
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calculations [1,16]. Unquantified errors in tree height and DBH can negatively impact the
accuracy of modeled tree volume [16,17], above ground biomass [18,19], and site index
calculations [20], all of which are core elements in the management and valuation of
commercial forests.

Technological developments in LiDAR sensors and analytical techniques have led to
many recent advances in ITD-derived forest inventories. However, despite these advances,
independent accuracy assessments of these algorithms remain needed to give end-users
information on the suitability and accuracy of the algorithm products. Prior research has
demonstrated the high accuracy of ITD algorithms for individual tree height estimates
at plot [6] and stand scales [1,5,21]. Several studies have also presented accuracy assess-
ments of ITD-derived heights [8,22] to indirect field measured heights from traditional
inventory methods [23,24], and direct measured heights such as those from felled tree
research [25,26]. Specifically, several studies have shown ALS-derived tree heights are
typically more accurate and less biased than field-measured tree height [24,27].

In previous research, ALS-derived tree height measurements and accuracies have
varied depending on LiDAR sensor, ALS flight specifications, and forest structure [28,29].
These studies, and others (i.e., [3]), further demonstrated ITD-derived attribute accuracy
is influenced by the LiDAR sensor platform, data density, and analytical methods, fur-
ther highlighting the need to quantify the accuracies within emerging LiDAR-based ITD
software packages. Accurate tree height measurements, and DBH estimates [30–32] from
ALS data are of significant importance to the forest industry’s application of ITD methods
for silvicultural and forestland investment decisions [5,33]. Thus, while previous studies
of ALS-based forest metrics have been compared to field measurements and felled tree
data (e.g., [3,7,25,29,34,35]), no studies have assessed the ForestView® ITD software’s abil-
ity to accurately measure and map height, DBH, and volume within commercial P. taeda
plantations.

This pilot study compares the results of an emerging and proprietary ALS-based ITD
software, ForestView®, to field measurements within a mature stand of P. taeda in eastern
Texas. ForestView®, developed by Northwest Management Incorporated (NMI, Moscow,
Idaho), which is described in [2], is an individual tree detection and attribute measurement
software that has been applied on >1.1 million hectares of commercial forestland within
the United States and Canada. In their research [2] only assessed ForestView® on a mixed
conifer forest in northern Idaho, limiting the ability to evaluate whether the method is
broadly applicable across the diversity of United States commercial forest types. Therefore,
the objectives of this study are to extend that initial analysis and:

(1) Assess the ability of ForestView® to provide comparable or improved height, DBH
and volume measurements at the individual tree level in a P. taeda stand;

(2) Provide an estimate of total gross volume by tree for forest valuation and merchandiz-
ing considerations.

2. Materials and Methods
2.1. Study Area

The study area was a 0.5-hectare even-aged P. taeda plantation in Cherokee County,
approximately 44 km northwest of Nacogdoches, Texas, Latitude 31.75◦ N Longitude
−95.09◦W (Figure 1). The measurement stand was comprised of six rows planted at a
3.7 m (~12 feet) 3 m square spacing. A private landowner, participating in a multi-state
600,000-hectare ALS-based forest inventory, offered access to measure the remaining trees
(139) being harvested from the target stand. Elevation of this stand was 210 m above sea
level, the soil composition was a well-drained upland Betis loam [36] and the topography
exhibited a slight north to northeast-facing aspect. The subject stand was established in
1999 as a single-species plantation and was commercially thinned to remove every 5th row
prior to field measurement. The stand had a site index of 67 (base 25 year). Data collection
occurred over the course of two days due to heavy rains and inaccessible road conditions
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as well as the duration of time needed to collect quality field data for every tree, complete
UAV flights, and maintain a safe distance from the mechanized harvester as it cut each tree.
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Figure 1. Study area ~44 km northwest of Nacogdoches, TX where LiDAR, field cruise, UAV imagery,
and felled tree data were collected.

2.2. ALS Data and Preprocessing

ALS data were acquired in December 2020 using a RIEGL VQ-1560II sensor (RIEGL,
Horn, Austria) mounted on a fixed-wing aircraft fitted with a Gyro Stabilization 4000 Mount
(SOMAG, Jena, Germany). Elevation of the aircraft was maintained between 1600 and
1900 m above ground level and flight lines alternated orientations while maintaining a
50% flight-line overlap with respect to the 58-degree sensor field-of-view. The average
scan density was 20 pulses per square meter with an average pulse return rate of four
over forested landscapes. The ALS data were preprocessed to normalize laser intensity
within the RIEGL RiPROCESS software (RIEGL, Horn, Austria) and classified to bare earth,
vegetation, water, buildings, and noise returns before being tiled into 500 m2 .LAZ file-type
tiles by the LiDAR acquisition company and delivered to the landowner, and available for
our team.

2.3. ALS Individual Tree Detection and Measurement

The ALS .LAZ files were imported into ForestView® for individual tree detection
and processing of stand- and individual tree-metrics. Individual tree detection within this
software begins with generation of a digital elevation model (DEM) and digital surface
model (DSM) in order to generate a canopy height model (CHM) at 0.5 m resolution
directly from the ALS point cloud. The software then iterates through multiple methods,
similar to watershed and local maxima algorithms [21,37,38], that detect peaks in the
CHM. These peaks are assumed to be the tops of tree “approximate” objects thus their
location and respective height are recorded. For tree attribute estimation, the software
relies on an internal database of field- and ALS-measured stem mapped trees, each having
DBH, height, species, crown condition, and taper information. The software calculates a
large number (~100+) of metrics from the ALS point cloud for each individual tree object,
and uses these metrics along with the field measured attributes in the database to model
tree attributes for each ALS-detected tree. The DBH modeling draws on height-, crown-,
density-, and spacing-related metrics derived from the ALS point cloud data and their
respective allometric relationships to the trees stem mapped in the field. Further details on
ForestView® processing and outputs are reported in [2]. Individual tree location, maximum
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height, and DBH were the only ForestView®-derived Digital Inventory® metrics utilized
in this research. Additional outputs available but not assessed in this study were various
crown descriptors, height to live crown, social dominance, and gross stem volume. Canopy
cover for the study area was calculated as the number of ALS first returns above 1.37 m,
divided by the total number of first returns.

2.4. Field Validation Dataset

Field measurements included a standing-tree inventory cruise of every tree prior to
felling and measurements taken after each tree was felled. Measurements were acquired in
May 2021 generally following the approach of [32] for height, DBH, and social position. Tree
height, height-to-live-crown from the soil surface, azimuth from plot center, and average
canopy width to the nearest 0.3 m were acquired using a Vertex Laser Geo 360 hypsometer
(HAGLOF, Langsele, Sweden). A logger’s tape was used to measure DBH to the nearest
0.25 cm, and a Spiegel relaskop (SILVANUS, Kirchdorf, Austria) was used to gather a bole
height, where 80% of DBH was used to approximate taper following the methods of [39].
Additionally, the location of each tree was further recorded using a JAVAD Triumph-2
(JAVAD EMS, Silicon Valley, CA, USA) with sub-meter precision and differentially corrected
in postprocessing. Each tree was numbered sequentially and painted with high-visibility
tree marking paint at DBH and at the base. Video footage of individual trees within the
study area was acquired using an unmanned aerial vehicle (UAV), Phantom 4 Pro (DJI,
Shenzhen, China), equipped with a 4K camera (DJI, Shenzhen, China). The UAV was flown
at various heights and flight patterns (e.g., 30 m above the canopy and within the canopy
to capture individual trees from each cardinal direction at varying distances). The resulting
imagery served as another tree-matching data source.

After measurement and GPS-recording each tree’s location, every tree was felled with
a mechanical harvester and laid near its respective stump. All heights were remeasured
with a logger’s tape to the nearest 1 foot (0.3 m). An upper-stem diameter, accounting for
stump height, was measured at 32 feet (9.75 m) to 1/10th inch (~0.25 cm) outside-of-bark
with a steel logger’s tape and calipers. All trees measured in the field where manually
matched to the corresponding ForestView® detected tree coordinates using a combination
of the JAVAD location, a 1-foot (0.3-m) resolution canopy height model, notes taken by the
cruiser, and the UAV video footage captured prior to felling.

Lastly, given the temporal discrepancy between the ALS data collection (December
2020) and the felled tree data (May 2021), height and diameter growth from December 2020
to May 2021 were modeled for each tree. Height and DBH growth modeling was informed
using P. taeda growth data from near Nacogdoches, TX [12] and the Forest Projection System
(FPS) software P. taeda species model [40]. These inputs to FPS included all individually
measured trees within the study area as a representative sample plot. This allowed the
model, to generate estimated increases in height and DBH. The adjusted height and DBH
values were then applied to each tree and used throughout the following comparative
analyses. Individual tree volume was calculated by the FPS software referencing the tree
species, height and DBH metrics gathered in the field.

2.5. Height, DBH and Volume Accuracy Assessment

Multiple statistical tests were applied to evaluate the statistical similarity of ALS-
derived and forester-cruised height and DBH to felled tree height and DBH. A Kolmogorov–
Smirnov test was used to assess whether the ALS-derived height and DBH distributions
were statistically similar to the felled tree height and DBH distributions. The Kolmogorov–
Smirnov test identifies differences in the cumulative distribution function of two data
distributions, where the test statistic (D) symbolizes the point of maximum discrepancy
in the cumulative distribution functions. D values closer to 0 indicate significant overlap
in the data distributions and values closer to 1 indicate little to no overlap in the data
distributions.
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Regression-based equivalence tests [41] were used to assess the accuracy of ALS-
derived height and DBH. Regression-based equivalence tests evaluate regression slope and
intercept equality between paired sets of data. Intercept equality implies that the mean of
one dataset is not significantly different than the mean of another dataset. Slope equality
refers to the similarity of pairwise measurements, if these measurements are equal, the
regression will be characterized by a slope of 1. Following similar studies [2,41,42], the region
of equality was set to ±25% of the mean for the intercept and ±25% for the slope. The null
hypothesis of dissimilarity is rejected if the region of equivalence contains two joint one-sided
95% confidence intervals for the intercept or slope. Regression intercept and slope equality
were assessed for each of the paired height and DBH datasets (i.e., ALS-derived vs. felled
data, cruised vs. felled data). Additional accuracy measures, including average root mean
square error (RMSE) (Equation (1)) and Mean Bias (Equation (2)) were calculated between
ALS-derived and forester-cruised and felled tree measurements as follows:

RMSE =

√
∑n

i=1(x̂i − xi)
2

n
(1)

Mean Bias =
1
n

n

∑
i=1

(x̂i − xi) (2)

where (x̂i) are the predicted values, xi are the observed values, and n is the number of
observations. All statistical analyses were conducted in R [43], and the ‘equivalence’ R
package [44] was used to conduct the regression-based equivalence tests.

3. Results

The results of the manual tree matching are provided in (Table 1) and displayed in
(Figure 2a,b). The study area had an average canopy cover of ~86% and ForestView® iden-
tified 153 individual trees (Figure 2a) compared to the 139 GPS-located P. taeda (Figure 2b).
During field measurements some non-conifer stumps were observed. The forestry crew
preparing the stand for measurement reported the removal of multiple Liquidambar styraci-
flua (Sweet gum) trees and number of large mid-story shrubs prior to the research team’s
arrival. These trees and shrubs were not tracked in the field for alignment with the ALS-
derived Digital Inventory.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 16 
 

 

SD Height (m) a 1.2 1.3 1.2 
Mean DBH (cm) b 33.2 32.8 - c 
Min DBH (cm) b 22.9 19.8 - c 
Max DBH (cm) b 40.6 45.5 - c 
SD DBH (cm) b 3.7 4.6 - c 

Mean Gross Volume (m3) 0.64 0.63 0.63 
Min Gross Volume (m3) 0.24 0.19 0.19 
Max Gross Volume (m3) 0.98 1.09 1.06 
SD Gross Volume (m3) 0.15 0.18 0.19 

Total Gross Volume (m3) 85.89 85.28 84.88 
a ITD heights derived from LiDAR plus growth increment from December to May. b ITD DBH de-
rived from LiDAR plus growth increment from December to May. c DBH values for felled trees were 
represented by cruise measurements of standing trees for consistency purposes. 

  
Figure 2. The resulting spatial alignment of the ALS 0.3m canopy height model and the cruised and 
felled tree data. (a) There were 153 trees identified by ForestView®, three trees were not detected 
(omission error), and 15 extra trees were identified by ForestView® (commission error). ALS com-
mission errors were assumed to be attributable to a mix of deciduous tree species and mid-canopy 
shrubs mechanically removed from the site prior to field measurements. (b) There were 139 loblolly 
pine (P. taeda) trees field-mapped (cruised) and mechanically felled within the study area. The se-
quentially numbered individual tree labels are provided for reference. 

The average height of ITD trees from ForestView® and in-field felled tree measure-
ments were within 0.01 m and exhibited similar distributions (Table 1, Figure 3). 

Figure 2. The resulting spatial alignment of the ALS 0.3 m canopy height model and the cruised and
felled tree data. (a) There were 153 trees identified by ForestView®, three trees were not detected
(omission error), and 15 extra trees were identified by ForestView® (commission error). ALS commis-
sion errors were assumed to be attributable to a mix of deciduous tree species and mid-canopy shrubs
mechanically removed from the site prior to field measurements. (b) There were 139 loblolly pine
(P. taeda) trees field-mapped (cruised) and mechanically felled within the study area. The sequentially
numbered individual tree labels are provided for reference.
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Table 1. Summary of December 2020 ALS, May 2021 cruise data, and May 2021 felled tree measure-
ment data within the 0.5 ha study site ~44 km northwest of Nacogdoches, Texas (Latitude 31.75
Longitude −95.09).

Attribute LiDAR Cruise Felled Tree

Total Detected Trees 153 139 139
LiDAR Omissions 3 - -

LiDAR Commissions 15 - -
No. of Matched Felled Trees 135 139 139

Detection Rate (%) 97.1 100 100

Mean Height (m) a 21.0 21.1 20.9
Min Height (m) a 17.2 17.4 17.1
Max Height (m) a 23.3 23.8 23.2
SD Height (m) a 1.2 1.3 1.2

Mean DBH (cm) b 33.2 32.8 - c

Min DBH (cm) b 22.9 19.8 - c

Max DBH (cm) b 40.6 45.5 - c

SD DBH (cm) b 3.7 4.6 - c

Mean Gross Volume (m3) 0.64 0.63 0.63
Min Gross Volume (m3) 0.24 0.19 0.19
Max Gross Volume (m3) 0.98 1.09 1.06
SD Gross Volume (m3) 0.15 0.18 0.19

Total Gross Volume (m3) 85.89 85.28 84.88
a ITD heights derived from LiDAR plus growth increment from December to May. b ITD DBH derived from
LiDAR plus growth increment from December to May. c DBH values for felled trees were represented by cruise
measurements of standing trees for consistency purposes.

The average height of ITD trees from ForestView® and in-field felled tree measure-
ments were within 0.01 m and exhibited similar distributions (Table 1, Figure 3).
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Figure 3. ForestView® growth-adjusted tree height distribution (blue) compared to felled-tree field
measured height distribution (red). The (purple) color is where these two datasets overlap, represent-
ing a “matched result”.

The ALS-derived height of detected trees exhibited a −0.34 m bias and RMSE of
0.53 compared to the felled tree measurement data, whereas the ALS-derived growth-
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adjusted height exhibited a 0.01 m bias and RMSE of 0.41 m compared to the felled tree
measurement data. The cruised tree height exhibited a 0.14 m bias and RMSE of 0.58 m
compared to the felled tree measurement data. For both paired tree height datasets (ALS-
derived vs. felled and cruised vs. felled), the 95% confidence interval for the intercept
(vertical red bar) was within the ±25% region of equivalence (grey polygon), indicating
that the null hypothesis of dissimilarity can be rejected (i.e., paired datasets are equivalent).
Likewise, for both paired datasets, the 95% confidence interval for the slope (vertical black
bar) was within the ±25% region of equivalence (grey dashed lines), indicating slopes
were significantly similar to 1. The linear relationship between ALS-derived and felled
tree height (Figure 4a) had R2 value of 0.89, while the relationship between ALS-derived
growth-adjusted height and felled tree height (Figure 4b) had a R2 value of 0.81. The
relationship between cruised and felled tree height (Figure 4c) had a R2 value of 0.81.
Figure 5 presents results from the regression-based equivalence tests for tree height.
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Figure 4. Equivalence test graphs for felled tree height versus (a) ALS-derived individual tree
height, (b) ALS-derived growth-adjusted individual tree height and (c) manually measured “cruised”
individual tree height. The grey polygon represents the ±25% region of equivalence for the intercept.
The ALS-derived and cruised height are equivalent to the felled height when the vertical red bar is
completely within the grey polygon. The grey dashed lines represent the ±25% region of equivalence
for the slope. If the vertical black bar is within the grey dashed lines, then the regression slope is
significantly similar to 1. The solid black line represents the best-fit linear regression model.

Figure 6 presents results from the regression-based equivalence tests for DBH. For
both paired DBH datasets (ALS-derived vs. cruised and ALS growth-adjusted vs. cruised),
the 95% confidence interval for the intercept (vertical red bar) was within the ±25% region
of equivalence (grey polygon), indicating that the null hypothesis of dissimilarity can
be rejected (i.e., paired datasets are equivalent). For both the ALS-derived non-growth-
adjusted DBH (Figure 6a) and growth-adjusted DBH (Figure 6b), the 95% confidence
interval for the slope (vertical black bar) was not completely within the ±25% region of
equivalence (grey dashed lines), indicating slopes were not significantly similar to 1. The
linear relationship between ALS-derived and cruised DBH (Figure 6a) and the relationship
between ALS-derived growth-adjusted and cruised DBH (Figure 6b) both had an R2 value
of 0.3.
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Figure 6. Equivalence test graphs for cruised tree DBH versus (a) ALS-derived DBH and (b) ALS-
derived growth-adjusted DBH. The grey polygon represents the ±25% region of equivalence for
the intercept. The ALS-derived DBH is equivalent to the cruised DBH when the vertical red bar is
completely within the grey polygon. The grey dashed lines represent the ±25% region of equivalence
for the slope. If the vertical black bar is within the grey dashed lines, then the regression slope is
significantly similar to 1. The solid black line represents the best-fit linear regression model.

The ALS-derived DBH of detected trees exhibited a −2.13 cm bias and RMSE of
4.58 cm compared to the cruised tree measurement data (Table 1, Figure 6a). Because the
cruised tree data were collected after the beginning of the growing season, FPS growth
software [40] and the work by [12] were used to estimate a P. taeda and DBH increment
increase for all ALS-detected trees. This resulted in an average 2.54 cm increase in diameter
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and 65 cm increase in height across the 139 felled trees. The ALS-derived growth-adjusted
DBH of detected trees exhibited a 0.41 cm bias and RMSE of 4.08 cm compared with the
cruised tree measurement data (Table 1, Figure 6b).

A comparison of the growth-adjusted ALS and field-measured DBH values were
shown to differ slightly along a distribution of size classes (Kolmogorov–Smirnov p-value:
0.182, D-statistic: 0.13) (Figure 7). Additionally, within the field data (Table 1) and Figure 7, a
positive bias existed for ALS-measured trees exhibiting a <32 cm DBH and ≤21.5 m height,
and negative bias was observed for ALS-measured trees >32 cm exhibiting a ≥20.2 m
height.
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Figure 7. Empirical Cumulative Distribution Function (eCDF) for individual tree DBH values derived
from ForestView® and cruised measurements. Tree DBH values within each dataset generally follow
a standard normal distribution and were not significantly different within size classes (Kolmogorov-
Smirnov p-value: 0.182, D-statistic: 0.13).

The ALS-derived volume of detected trees exhibited a 0.01 m3 bias and RMSE of
0.15 m3 compared to the felled tree measurement data. The cruised tree volume exhibited
a 0.003 m3 bias and RMSE of 0.03 m3 compared with the felled tree measurement data.
Figure 8 presents results from the regression-based equivalence tests for tree volume. For
both paired volume datasets (ALS-derived vs. felled and cruised vs. felled), the 95%
confidence interval for the intercept (vertical red bar) was within the ±25% region of
equivalence (grey polygon), indicating that the null hypothesis of dissimilarity can be
rejected (i.e., paired datasets are equivalent). For ALS-derived volume vs. felled volume
(Figure 8a), the 95% confidence interval for the slope (vertical black bar) was not completely
within the ±25% region of equivalence (grey dashed lines), indicating the regression slope
was not significantly similar to 1. Conversely, for cruised volume vs. felled volume
(Figure 8b), the 95% confidence interval for the slope (vertical black bar) was within
the ±25% region of equivalence (grey dashed lines), indicating the regression slope was
significantly similar to 1. The linear relationship between ALS-derived and felled tree
volume had R2 value of 0.4, while the relationship between cruised and felled tree volume
had a R2 value of 0.98.
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4. Discussion

Detailed information is required across the operational forest industry sector to achieve
production efficiencies [7,45] and inform investments in forest inventory type and schedul-
ing [46]. Where data are limited, too costly, or of insufficient resolution, mangers experience
added challenges that often lead to less effective decisions [5,47]. The increased application
of wall-to-wall remote sensing data to provide forest inventory metrics has the potential to
optimize timber harvest scheduling, forest investments, and the wood supply chain from
forests to facilities [2,48]. To achieve efficiency gains throughout the supply chain, accu-
rately measured forest inventory information such as tree height, DBH, and volume must
be available to managers, and at sufficient spatial and temporal resolutions [48]. In this
pilot study, we compared the results of an emerging commercial ITD software, ForestView®,
against conventionally cruised and felled-tree data collections to evaluate the accuracy of
this ITD software in providing individual-tree heights and DBHs for a stand of P. taeda
in east Texas. The results were further assessed by inputting ForestView® and felled-tree-
derived height and DBH values into FPS, modeling for gross volume and then comparing
FPS outputs for both felled tree gross volume and ForestView® gross volume. FPS is
most commonly used within the western U.S. and the models it applies are proprietarily
protected from calibration to other geographies; thus, this is a potential source of error in
the volume presented in this study. As individual tree allometric data can be derived from
LiDAR ITD models, future research should focus on the development of volume estimation
that uses population-level information in place of the sample-driven models currently
applied within forest industry. The ALS used in this study was of comparatively greater
pulse density (20 ppm) than many of the datasets used in previous studies that also used
fixed-wing aircraft [3,22,34,49–51]. Ten-fold and greater pulse density (200 ppm) ALS are
available using helicopter [52] and UAV [53] aerial survey platforms, respectively. However,
greater sampling time and cost, coupled with smaller sampling extents, may preclude their
application on many of the operational landscapes (≥10,000 ha) of commercial forestry
in North America. In this study the application of UAV-acquired video was of significant
value in matching felled trees with ForestView® detected trees. This study did not have
access to an ALS unit for the UAV. On-site piloting, battery power, and weather played a
significant role in the quality and cost of the data collected for this project. Additionally,
individual tree locations within this dataset were field verified with a differential GPS and
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contained positional errors ranging from ~0.01 m to ~0.12 m (with 131 of the locations
being more accurate than 10 cm) depending on the canopy density, tree lean and other
factors at the time of sampling. We acknowledge tree lean and canopy density may have
introduced an unknown degree of error into our tree-matching methodology and further
emphasized the value of the UAV imagery. We also acknowledge the use of high-precision
field georeferencing of individual trees played a critical role in quantifying the “match”
and subsequent error of ForestView® tree objects to field-measured trees. Quantification
of georeferencing and matching errors will be needed as LiDAR-derived tree maps are
scaled up to larger spatial scales than the pilot site in this study. The combination of high-
resolution (20 ppm) LiDAR and ForestView® software shown substantial improvement in
tree-to-tree alignment compared to previous studying of DBH from LiDAR in east Texas
P. taeda where a <3 ppm scan and multispectral imagery enabled the alignment of only 28%
of a 155-tree study [32].

In terms of individual tree height measurement, ALS-derived datasets have been
shown to be less costly and more accurate than conventional forest inventory practices.
Conventional forest inventory approaches are sample-based, time and cost intensive, and
are commonly executed over the span of 5 to 10 years. Additionally, traditional field
measurements of tree height generally apply a triangulation method that is labor-intensive
and can result in errors of 1 m to 5 m depending on canopy structure and occlusion of
treetops from the position of the observer [27,54,55]. Across the forest industry, height
measurements derived from Vertex laser rangefinders, relaskops, and clinometers are
broadly accepted within operational forest inventories. Field measurements of individual-
tree specific attributes are also generally understood within both industry and academia to
include human-related systematic error [29] and objective bias dependent on field personnel
experience [56]. Individual tree height derived from ALS data has been found to be highly
accurate (i.e., height RMSE typically less than 1.5 m) [8,17,25,29]. Furthermore, several
studies have demonstrated that ALS-derived tree height can be more accurate, and have less
bias, than field-measured tree height [24,27]. Likewise, the ForestView®-derived tree heights
in this study had lower RMSE (0.40 m) than cruised measurements (RMSE = 0.57 m) when
compared with felled tree data, and aligned with the acceptable levels of accuracy expected
by the commercially operational forest sector in the region where this study was conducted.

The equivalence tests indicated that mean ALS-derived DBH and ALS-derived growth-
adjusted DBH were equivalent to field-measured DBH; however, regression slopes were not
equivalent. This finding indicates that these models likely underpredict higher observations
and overpredict lower observations [44]. This result was not unexpected given the temporal
difference between the ALS acquisition and field data collection periods. This finding also
highlights the importance of timing field data collection with remote sensing acquisitions
to reduce uncertainty, which aligns with other studies [29,57,58]. Tree height and DBH
are highly correlated [27,31,59], and many models utilizing remotely sensed data for DBH
rely on accurate tree, canopy, or full stand-level heights to have confidence in predicted
DBH [31,60–62]. Given the growth rates of P. taeda within the Nacogdoches, TX area [12],
and likely throughout much of the industrial forestlands of the southeastern USA, our
decision to nominally increase the DBH of each tree for the purposes of comparing volume
is justified, but is a potential source of error. Furthermore, there is likely error associated
with the DBH models that ForestView® applies, but we were not able to quantify this error
given the proprietary nature of this software. The results showing equivalence between
mean ALS-derived DBH and cruised DBH and ALS-derived growth-adjusted DBH are,
however, promising for volume calculation as well as highlighting the potential errors
associated with using remotely sensed and ground-based data with temporal discrepancies.

Tree height and DBH are inextricably related to stem volume and operational feasibility
within a commercial forest. The results of the equivalence tests indicate that both ALS-
derived volume and cruised volume are equivalent to felled tree volume. The linearity
of FPS modeled volumes can be partially explained by the work of others [29,31,34,50],
where the use of certain regression techniques within an architecture designed for sample
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data, and inputs of average descriptors for aggregate species, density, diameter, or height
classifications can result in predictable trends. The variability between gross tree volume
from felled tree measurements and those of ForestView® is likely resulting from the natural
DBH variation in trees of similar height and variation in ALS pulse density, which can
impact error associated with inputs to allometric equations (e.g., tree height) [1,16,55,63].
Additionally, the taper and volume equations applied within the FPS model were broadly
defined for P. taeda within the southeastern U.S. and could be improved with regional or
local calibration data. The volume comparisons performed in this study are intended to
help further our understanding of sample- versus population-modeling given the increased
use of remote sensing in forestry [2,48,64,65] and biomass/carbon applications [3,32,66].
Additional research focused on stem volume modeling within FPS would be required to
further characterize variance observed in this study.

The height, DBH and volume results of this study and others using high-density ALS
data indicate that ALS-derived individual tree segmentation can enable accurate derivation
of essential individual-tree metrics over coniferous forests [5,21,48,49] within conditions
similar to those of each respective study. Although we acknowledge that 139 felled trees
may seem like a low sample size, felling this many mature trees for LiDAR ground truth
assessments represents a considerable amount of effort that is rarely conducted. For
example, an assessment in the northwestern United States used only a total of 60 trees,
where only 24 were felled by the principal study and a further 36 were felled by a companion
group [27]. A study in the Italian Alps conducted an accuracy assessment of LiDAR
datasets using 100 felled trees [25], a study in Germany felled 30 trees to cross-compare the
utility of LiDAR and UAVs to assess tree heights [29], and a study in Cameroon felled 61
trees [26]. As a result, most lidar accuracy assessment studies have focused on indirect field
height measurements using laser rangefinders that can exhibit considerable uncertainties,
especially when overtopped and suppressed trees are present, or the treetops are occluded
by branches or other trees [24].

The alignment of multiple datasets (ALS, cruising, and felled-tree) within this study is
not common across the remote sensing literature, and although the sample size is small
compared to operational landscapes the findings align with the work of others such as [8]
who identified strong correlations between individual tree attributes (height, volume)
derived from individual tree segmentation and attributes derived from conventional forest
inventory across a large-scale forested area (24,220 ha). The results from our study and the
review of others suggests individual-tree processing of ALS data can offer a cost-effective
alternative to conventional forest inventories. Throughout the world, the application of
ALS data processing in support of commercial forest inventories has grown since the early
2000s and now supports a number of stand-based inventory examples in many countries
by leveraging area-based imputation methods [5,48]. As the availability of high-resolution
ALS data increases and acquisition costs decrease, accuracy of individual-tree metrics
(e.g., height, DBH, volume), is anticipated to improve. These improvements will likely lead
to an increase in operational ALS-based ITD routines on commercial forests in place of
conventional sample-based inventories. Lastly, as ALS-derived maps of individual trees and
their corresponding attributes become available, forest managers and landowners will gain
access to information far beyond what conventional forest inventories can provide. This
may enable managers to evaluate disease, insect, fire, and forest management impacts on
individual tree productivity and mortality at landscape spatial scales and lead to improved
forest modeling and management.

5. Conclusions

The objectives of this pilot study were to assess the accuracy of ForestView®-derived
individual tree attributes, including height, DBH and volume, for a P. taeda stand in eastern
Texas. This research shows that height, DBH and volume derived using ForestView®

are equivalent to both conventional cruised and felled tree measurements. The resulting
ALS-derived heights from this study were more accurate than heights collected through
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conventional cruise sampling, and highlight the potential of using ForestView® for mea-
suring individual tree attributes in similar pine stands where high-resolution LiDAR is
available [29]. While ForestView® measurements were equivalent to felled tree measure-
ments, observed positive and negative DBH value bias from the ForestView® model at
each end of the tree-height distribution suggests the model may not have fully captured the
natural variation of DBH within this small P. taeda test area. Future research should apply
ForestView® at landscape (>5000 ha) scales to confirm these observations and provide
additional insights into the scalability of this software as well as test the accuracy of tree
counts as identified by the software against on-ground counts without the aid of a 100%
geolocated field population. Additionally, given the need for accurate height and DBH
measurements for calculating tree volume, future research should consider the use of
ALS-derived individual tree-based methods to investigate gross tree volume produced by
traditional forest models such as FPS. Future work should also consider a comparative
analysis of ITD methods, leveraging high-resolution LiDAR, to traditional stand-based
inventory methods at a landscape scale to better differentiate population- and sample-based
forestry approaches and further assess the scalability of these tools. This comparative anal-
ysis would provide insights to managers and conservationists seeking a greater resolution
of forest heterogeneity to better quantify volume, biomass, carbon, and ultimately value,
within forested settings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14112567/s1, Table S1: Felled, cruised, and Lidar-derived tree
measurement data.
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