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Abstract: Medium-low resolution (M-LR) remote sensing ship detection is a challenging problem due
to the small target sizes and insufficient appearance information. Although image super resolution
(SR) has become a popular solution in recent years, the ability of image SR is limited since much
information is lost in input images. Inspired by the powerful information embedding ability of
the encoder in image rescaling, in this paper, we introduce image rescaling to guide the training of
image SR. Specifically, we add an adaption module before the SR network, and use the pre-trained
rescaling network to guide the optimization of the adaption module. In this way, more information is
embedded in the adapted M-LR images, and the subsequent SR module can utilize more information
to achieve better performance. Extensive experimental results demonstrate the effectiveness of our
method on image SR. More importantly, our method can be used as a pre-processing approach to
improve the detection performance.

Keywords: image super-resolution; image rescaling; ship detection; medium-low resolution remote
sensing images

1. Introduction

Medium-low resolution (M-LR) remote sensing images (with the ground sample
distance (GSD) larger than 10 m/pixel) play an important role in marine monitoring [1],
rescuing [2] and management [3]. Meanwhile, ship detection is a significant component of
remote sensing image interpretation. However, the lower resolution means the ship targets
have smaller sizes and less appearance information, and this introduces challenges for ship
detection task in M-LR images. With the ability of recovering image detail information,
image super-resolution (SR) has become a popular solution for small object detection in
recent years [4–8]. However, the ability of image SR is limited since it is an ill-posed
problem and much information is lost in input images. In this paper, we propose a rescaling
assisted image SR method (RASR) to better recover the lost information, and thus improve
the performance of image SR and ship detection.

Image rescaling tries to learn an invertible down-sampling encoder, and the original
images can be recovered greatly by using the corresponding up-sampling decoder. Different
from image SR, image rescaling considers image down-sampling and up-sampling as a
dual problem, and jointly optimizes them to minimize the lost information during the
down-sampling process. Compared to only a decoder (i.e., an SR model), image rescaling
can preserve more information during the down-sampling process, and thus achieves a
better restoration performance. Inspired by the powerful information embedding ability
of the rescaling encoder, we introduce image rescaling to assist the image SR process.
Specifically, we add an adaption module before the SR network, and use the pre-trained
rescaling network to guide the optimization of the adaption module. In this way, more
information is embedded in the adapted M-LR images and transferred to the SR module.
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Consequently, our rescaling assisted image SR method (named RASR) can achieve better
SR performance. Furtherly, we take RASR as a pre-processing approach, and develop
RASR-Det to improve the detection performance on M-LR images.

In summary, the contributions of our work are as follows:

• Inspired by the powerful information embedding ability of the encoder in image
rescaling, we propose a rescaling assisted image SR method to better restore the lost
information in M-LR images.

• We conduct extensive ablation studies to investigate the effectiveness of RASR. More-
over, we compare our RASR with several SR methods on three public datasets. Com-
parative results demonstrate the competitive performance of our method.

• Taking RASR as a pre-processing approach, we develop RASR-Det to improve the ship de-
tection performance on M-LR images. Experimental results demonstrate the effectiveness
of our RASR-Det in handling the M-LR remote sensing ship detection problem.

2. Related Works
2.1. Image Super Resolution

Image super-resolution (SR) aims at reconstructing a high-resolution (HR) image from
one or multiple low-resolution observations. Recently, deep learning has been successfully
applied to image SR and has achieved continuously improving performance. Readers
can refer to recent surveys [9,10] for a comprehensive overview of image SR. Here, we
review several major works in the literature. Dong et al. [11] proposed the first CNN-
based single image SR method to reconstruct HR images by using a three-layer CNN.
Kim et al. [12] proposed a deeper network named VDSR to improve the reconstruction
accuracy. Zhang et al. [13] combined residual connection [14] with dense connection [15],
and proposed residual dense network (i.e., RDN) to fully exploit hierarchical feature
representations for image SR. Li et al. [16] proposed a multiscale residual network to fully
exploit the hierarchical feature representation for image super-resolution. Wang et al. [17]
explored the sparsity prior in image SR and used sparse convolutions to achieve accurate
and efficient image SR. Subsequently, Wang et al. [18] proposed a degradation-aware
network and achieved image SR with arbitrary blur kernels and noise levels. Although these
SR methods have shown their effectiveness, the ability of image SR is limited since much
information is lost in input degradation images.

2.2. Image Rescaling

Image Rescaling is usually used to fit the displays of various resolutions and save
the storage. Kim et al. [19] proposed an auto-encoder-based framework that enables joint
learning of the down-scaling network and the up-scaling network to maximize the restoration
performance. Sun et al. [20] proposed a learned image downscaling method based on content
adaptive resampler with consideration of the up-scaling process. Xiao et al. [21] proposed
an invertible rescaling net that can produce visually-pleasing low-resolution images and
meanwhile capture the distribution of the lost information using a latent variable following
a specified distribution in the down-scaling process. In this paper, we introduce an image
rescaling method to assist image SR in recovering more detail information.

2.3. SR-Based Detectors

In recent years, image SR has become a popular solution in remote sensing small object
detection tasks. Dong et al. [4] proposed a second-order multi-scale SR network to make full
use of the multi-scale information, and demonstrated its effectiveness on object classification.
Rabbi et al. [5] proposed an edge-enhanced SR generative adversarial network (EESRGAN),
and combined it with Faster-RCNN [22] and SSD [23] in an end-to-end manner to improve the
detection accuracy. Courtrai et al. [6] tailored a GAN-based SR network with a detection network
to improve the performance of both image SR and object detection. Wang et al. [7] designed a
feature-driven loss function to make the SR network more suitable for the detection task.
Noh et al. [8] enhanced the features of small regions of interest using the feature-level SR
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technique, and thus improved the detection performance. Zou et al. [24] fed both the super-
solved images and the intermediate features to detection network to improve the detection
performance. He et al. [25] introduced feature distillation to fully exploit the information
in ground-truth HR images to handle M-LR ship detection. Similarly to some SR-based
detectors [4,5], we use our proposed RASR as a pre-processing approach, and develop
RASR-Det to further improve the performance of the M-LR ship detection task.

3. Methodology

In this section, we introduce our proposed RASR method in detail. As shown in
Figure 1, our method consists of two parts, including image rescaling and image SR. Image
rescaling uses an encoder and a decoder to perform down-sampling and up-sampling
operations, respectively. We name the down-sampled images as pseudo LR images, since
they carry more information that is beneficial to image SR than the original M-LR images.
Image SR consists of an image adaption module and an SR module, and the output of
the two modules are adapted images and SR images, respectively. In our method, image
rescaling is pre-trained first to generate informative pseudo LR images, and thus, to guide
the training of image SR. The pre-training of image rescaling is under the supervision of
a rescaling loss between rescaled images and HR images. Then, image rescaling guides
the adaption module through a specific adaption loss between the pseudo LR images and
the adapted images, and thus the adaption module can learn to transform the original LR
images to a more informative version (i.e., adapted images). In this way, the subsequent SR
module can utilize more information and achieves better performance. In the following
subsections, we introduce the structure of each module in detail.

HR image Encoder
Pseudo

LR image
Decoder

Rescaled 
image

LR image Adaption 
module

Adapted
LR image

SR 
module

SR image

Adaption loss SR loss HR image

Image Rescaling

Image SR

HR image Encoder
Pseudo

LR image
Decoder

Rescaled 
image

LR image Adaption 
module

Adapted
LR image

SR 
module

SR image

Adaption loss

Image rescaling (pre-trained)

Rescaling 
loss HR image

SR loss HR image

Image SR

Figure 1. An overview of our proposed RSAR method.

3.1. Image Rescaling

Image rescaling takes an HR image IHR ∈ RαH×αW×3 as its input and produces an
intermediate pseudo LR image Ipseudo

LR ∈ RH×W×3 and a rescaled image Irescaled ∈ RαH×αW×3,
where H and W represent the height and width of the input M-LR image (i.e., ILR ∈ RH×W×3),
and α denotes the upscaling factor. We followed [26] to develop our encoder module. Specifically,
as shown in Figure 2b, the encoder module consists of four convolution layers. All the convolution
layers in our encoder have a stride of 1 except for the second one (which has a stride α). The kernel
sizes of the first two and the last two convolutions are 5× 5 and 3× 3, respectively. The decoder
module has the same architecture as the SR module (as shown in Figure 2a), which will be
introduced in the following subsections.
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Figure 2. The structure of each module in our proposed method.

3.2. Rescaling Assisted Image SR

Since image rescaling is an invertible dual problem, the intermediate pseudo LR
images have more detail information and can be used to guide the training of image SR.
Specifically, we add an adaption module before the SR module to transfer an original M-LR
image ILR ∈ RH×W×3 to an informative one, and then the SR module takes the adapted
M-LR image Iadapted

LR ∈ RH×W×3 instead as input to perform image SR. The details of the
adaption and SR modules are as follows.

Adaption Module. As shown in Figure 2c, the adaption module consists of six con-
volutions and four residual blocks. Specifically, the input image ILR is first fed to three
3 × 3 convolutions to generate initial feature F0 ∈ RH×W×64. Then, F0 is fed to residual
blocks for deep feature extraction, and the extracted features are then fed to three 3 × 3
convolutions to produce the adapted LR image (i.e., Iadapted

LR ). The structure of the residual
block is shown in Figure 2c. Note that we use PReLU [27] as the non-linear layer.

SR Module. As shown in Figure 2a, the SR module takes the adapted image Iadapted
LR

as input, and generates the super-resolved image ISR. Specifically, the input image is first
fed to a 3 × 3 convolution and eight residual dense blocks (RDBs) to generate initial feature
F1 and eight deep features. Then, the extracted deep features are concatenated and fed to a
3 × 3 convolution for global feature fusion. After that, the fused feature is added with the
initial feature F1 and fed to a sub-pixel layer [28] to generate residual feature FSR. Finally,
the residual feature FSR is fed to a 3× 3 convolution to produce residual image IRes, and the
final output image ISR is the pixel sum of Ires and the up-sampling version of Iadapted

LR .

3.3. Loss Function

The training process of our RASR consists of two stages: the pre-training of image
rescaling and the training of RASR.

In the first stage, we pre-train the image rescaling part with a rescaling loss, which can
be defined as Equation (1), where Lrescaling represents the L1 distance (i.e., ‖ · ‖1) between
output rescaled image Irescaled and HR image IHR.

Lrescaling =‖ Irescaled − IHR ‖1 . (1)

In the second stage, we use the generated pseudo LR images from image rescaling to
guide the training of RASR method. The loss function of our RASR is defined as:

LRASR = LSR + λLadaption, (2)
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where LSR and Ladaption represent the SR loss and adaption loss, respectively. λ is a hyper-
parameter to balance the SR loss and adaption loss, and is empirically set to 0.1 in our
implementation. In our method, LSR is the L1 distance between the ground-truth image
LHR and the super-resolved image ISR; Ladaption is the L1 distance between the pseudo LR

image Ipseudo
LR and the adapted LR image Iadapted

LR .

4. Experiments

In this section, we first introduce the datasets and implementation details, then conduct
ablation studies to validate the effectiveness of RASR for bothimage SR and ship detection.
Moreover, we compare RASR with several SR methods to investigate the superiority of
RASR. Finally, we use RASR as a pre-processing approach and choose Faster-RCNN as
the detector to develop RASR-Faster-RCNN, and compare it with several state-of-the-art
detection methods.

4.1. Datasets and Implementation Details
4.1.1. Datasets

We used the HRSC2016 [29], DOTA [30] and NWPU VHR-10 [31] datasets in our ex-
periments.

• HRSC2016: HRSC2016 is a public ship dataset in remote sensing images, and contains
436 images for training, 181 images for validation and 438 images for test. In our
experiment, we use both the train and validation dataset for training and use the
test dataset for test. The GSD of the HRSC2016 dataset is between 0.4 and 2 m/pixel,
and the image sizes are between 300 × 300 pixels and 1500 × 900 pixels. As most
image sizes are about 1000 × 600, we resized original images to 800 × 512 as the
ground-truth HR images.

• DOTA: DOTA is a large-scale dataset used for multi-class object detection in remote
sensing images. The sizes of images are between 800 × 800 and 4000 × 4000 pixels.
Objects in the dataset have various proportions, directions and shapes. In our experi-
ment, the large-scale images are cropped to patches of 512 × 512 pixels for training
and validation. For the ship detection task, we discarded patches without ship targets
and retained 4163 patches for training and 1411 patches for test.

• NWPU VHR-10: NWPU VHR-10 dataset is a multi-class object detection dataset with
GSD smaller than 2 m/pixel. We performed the same operations as in DOTA dataset
to generate training and validation samples. The image sizes are from 533 × 358 to
1728 × 1028 pixels. In our experiment, we cropped the original images into patches of
512 × 512 pixels and discarded patches without ship targets. Our customized NWPU
VHR-10 dataset contains 249 images for training and 52 images for test.

In our experiments, the aforementioned images (patches) were used as the ground-
truth HR images, and their bicubicly down-sampled versions were used as the M-LR
images. Note that since the aligned HR images of real LR images are unavailable, here we
use bicubical down-sampling technology to produce aligned HR and LR image pairs for the
training of image SR. Although bicubical down-sampling is a rather simpler degradation
model than the real scenery, many researches have proved that a model can achieve promis-
ing SR performance on real LR images when it can achieve promising SR performance on
bicubicly down-sampled images. Moreover, our method can also be used to super-resolve
real LR images if the degradation model can be well formulated.

4.1.2. Implementation Details

We implement our RASR and RASR-Det using PyTorch 1.11.0 with an Nvidia RTX
2080Ti GPU.

The training of RASR. We trained the RASR following a two stage pipeline. In the
first stage, we pre-trained the image rescaling network. During training, we randomly
cropped the ground-truth HR images into patches of size 256 × 256 pixels, and performed
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random flipping for data augmentation. The image rescaling was trained with an L1 loss
between the rescaled images and original HR images. The batch size was set to 16 and
the learning rate was set to 1× 10−4. The rescaling model was optimized using the Adam
method [32], and the training was stopped after 1.2× 105 iterations. In the second stage,
we loaded the pre-trained rescaling model, and trained our RASR network with the guide
of SR loss and adaption loss. The training settings are the same as the first stage, but the
total training iterations was 2× 105.

The training of Detector. All the detectors in our method are implemented by using
the MMDetection [33] framework. When training the detector, the learning rate was initially
set to 1× 10−4 and decreased by a factor of 0.1 when the epoch was 14 and 20. The total
number of training epochs was 24, and the batch size was set to 4. We chose SGD [34] as
the optimizer. We performed the following data augmentations for all detectors: random
flipping, random rotation, random color transformation, random brightness and contrast
transformation. Other hyper-parameter settings, such as anchor scales and anchor ratios,
are set as the default settings in MMDetection. Furthermore, in our experiments, we can
use the training dataset for training, and use the test dataset for performance evaluation.

4.1.3. Evaluation Metrics

Image quality evaluation. We use the Peak Signal-to-Noise Ratio (PSNR) and Struc-
ture Similarity Index Measure (SSIM) to measure the quality of super-resolved images.
Given a ground-truth image IHR (signed as x) and its corresponding super-resolved image
ISR (signed as y), the PSNR value is:

PSNR(x, y) = 10log10
2552

MSE(x, y)
, (3)

where MSE(x, y) indicates the mean squared error between IHR and ISR. The SSIM value
is:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (4)

where µx and σx are the mean and variance of image x, respectively; µy and σy are the mean
and variance of image y, respectively. σxy is the covariance between x and y. c1 and c2
are two constants. PSNR and SSIM are calculated in RGB channel space, and we use the
average value on three channels as the final results. The SSIM value is between 0 and 1,
and higher PSNR and SSIM scores indicate better image SR performance.

In our experiments, we use the average PSNR and SSIM values of whole images on
specific datasets to represent the quality of super-resolved images.

Detection performance evaluation. For detection performance evaluation, we fol-
lowed [33] to use the average precision (AP) as the quantitative metric with the Intersection
over Union (IoU) being set to 0.5 (i.e., AP50). We further analyze AP on ship targets of
different sizes: APs for small targets, APm for medium targets and APl for large targets. We
use COCO division standard to divide the datasets. Small and large targets means objects
with areas smaller than 32 × 32 pixels and larger than 96 × 96 pixels, respectively. Medium
targets means the other objects (areas between 32 × 32 and 96 × 96 pixels.)

4.2. Ablation Study

In this section, we conduct extensive ablation studies on the HRSC2016 [29], DOTA [30]
and NWPU VHR-10 [31] datasets to validate the effectiveness of our proposed RASR for
both image SR and ship detection tasks.

4.2.1. Effectiveness of RASR for Image SR

To validate the effectiveness of our proposed RASR for SR problem, we compare
three SR variants: bicubic up-sampling, our SR module and the proposed RASR method.
The quantitative evaluation results of image quality achieved by different variants are
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shown in Table 1. Here, we use the Bicubic down-sampling approach and Bicubic +
Gaussian blur degradation approach to generate LR images.

Table 1. Quantitative evaluation results of image quality achieved by different variants of our
proposed RASR. We use SSIM and PSNR as the evaluation indices.

Down-Sampling Metrics Datasets
Bicubic SR RASR

SSIM PSNR SSIM PSNR SSIM PSNR

Bicubic
HRSC2016 [29] 0.659 23.55 0.687 24.31 0.698 24.44

DOTA [30] 0.672 25.89 0.698 26.12 0.718 26.31
NWPU VHR-10 [31] 0.856 30.18 0.857 30.48 0.870 30.72

Bicubic + Gaussian Blur
HRSC2016 [29] 0.627 22.65 0.664 23.42 0.697 24.25

DOTA [30] 0.642 24.21 0.654 25.32 0.694 25.02
NWPU VHR-10 [31] 0.841 28.71 0.838 29.57 0.856 30.38

We first validate our method on Bicubic down-sampling degradation. On the HRSC2016
datasets, the PSNR value achieved by RASR is 0.89 and 0.13 dB higher than Bicubic up-
sampling and SR module, respectively. Similarly, the SSIM value of our RASR is 0.699,
and is also higher than the results of two variants. That is because, with the assistance
of image rescaling, the SR module in our RASR can acquire more information from the
adapted LR images, and thus improve the SR performance. We also verify the effectiveness
of our method on the DOTA and NWPU VHR-10 datasets. Specifically, on the DOTA
dataset, the PSNR and SSIM of RASR is 26.31 dB and 0.718, and are higher than the bicubic
up-sampling (25.89 dB and 0.672) and SR module (26.12 dB and 0.698). On the NWPU
VHR-10 dataset, the PSNR and SSIM of RASR is 30.72 dB and 0.870, and are higher than
the bicubic up-sampling (30.18 dB and 0.861) and the SR module (30.48 dB and 0.857).
The above results demonstrate the effectiveness of our RASR method.

Then, we extend our ablation experiments on more complex scenarios. Specifically,
besides bicubicly down-sampling operation, we add Gaussian blur to original HR images
when generating LR images. The sizes of Gaussian kernel are set to 21× 21, and sigma is set
to 8. In this way, LR images are more difficult to be super-resolved. The results are shown in
Table 1. It can be observed that the PSNR and SSIM values of different variants on Bicubic
+ Gaussian blur down-sampling degradation are lower than the bicubic down-sampling
degradation. That is because, Bicubic + Gaussian blur degradation lead to more severe
information lost in the LR images. Furthermore, on Bicubic + Gaussian blur degradation,
PSNR and SSIM values of different variants (i.e., Bicubic, SR module and our RASR) are
gradually increasing, which demonstrates the effectiveness and generality of our method.

Figure 3 shows the visualization results of the original HR images and the restored
images by different variants, where Ibic, ISR, IRASR and IHR mean HR image, bicubic up-
sampling image, output of SR module and output of the proposed RASR. Taking bicubic
up-sampling image as baseline, we show the residual image between bicubic up-sampling
image and the output of SR module (i.e., |ISR − Ibic|). It can be observed that the major
differences between the SR image and bicubicly up-sampled image are located at the edges.
Moreover, we show the residual image between the output of RASR and SR module (i.e.,
|IRASR − ISR|). The differences are still at the edges. That is, the SR module can super-
resolve detail information in edges and our RASR can further restore these edge detail
information with the assistance of image rescaling.
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Figure 3. Visualizations of the original HR image (IHR) and the super-resolved images using different
SR methods: bicubicly up-sampling (Ibic), SR module (ISR) and RASR method (IRASR). Furthermore,
the absolute difference of IRASR, ISR and Ibic is visualized.

To qualitatively illustrate the assistance of image rescaling to image SR, we provide the
amplitude-frequency curves of original HR images, outputs of RASR and its variants. We
use Fast Fourier Transform to acquire the frequency images. Specifically, we first transfer an
RGB image to gray version, then we compute the 2-dimensional Discrete Fourier Transform
of the gray image and shift zero-frequency terms to the center of the frequency domain,
finally we use the decadic logarithm of frequency amplitude to generate the frequency
image. Since the frequency map is symmetrical around the center, we can group it according
to the distance between its elements and its center uniformly. We use the pixel distance
between each group and the image center as the abscissa value, and use the summation
of all amplitude values in each group as the ordinate values to generate the amplitude-
frequency graph. Note that we use the decadic logarithm of amplitude to narrow the range
of frequency values, and thus show the difference between curves more clearly. As shown
in Figure 4, the frequency can be divided into low, medium and high frequency bands.
Information in the low-frequency band is rarely lost, and different SR methods contribute
to restoring the information in the medium-frequency band. From Figure 4 we can find that
the outputs of image rescaling is closer to HR images than the outputs of SR module. That
is because pseudo M-LR images in image rescaling has more beneficial information than
original M-LR images. With the assistance of image rescaling, the amplitude-frequency
curve of RASR is beyond the curve of the SR module and is closer to that of image rescaling.
Although RASR can restore partial information in the medium-frequency band, information
in the high-frequency band is hard to be restored due to the irreversible information lost
in image degradation. Moreover, there are still spaces to investigate more innovative SR
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methods since there are still distances between the curve of HR images and RASR outputs
in the medium-frequency band.

Figure 4. Amplitude–frequency curves of original HR images and the output images of RASR and
its variants.

4.2.2. Effectiveness of RASR for Ship Detection

To demonstrate the effectiveness of our proposed RASR method for ship detection,
we use the outputs of different RASR variants as the inputs of detector, and choose Faster-
RCNN (with ResNet50 as backbone) and FCOS (with ResNet101 as backbone) to detect
ship targets. The detection performance is shown in Table 2. Consistent with Section 4.2.1,
we validate on Bicubic and Bicubic + Gaussian blur down-sampling metrics, separately.

Table 2. Quantitative evaluation results of detection performance achieved by different variants of
our proposed RASR. We use Faster-RCNN (with ResNet50 as backbone) and FCOS (with ResNet101
as backbone) as the evaluation detectors, and use AP50 as the evaluation indices. Note that, the im-
provement of RASR compared to SR module is shown in the table.

Down-Sampling Metrics Detector Inputs

Datasets

HRSC2016 [29] DOTA [30] NWPU
VHR-10 [31]

Bicubic

Faster-RCNN [22]

Bicubic 0.788 0.633 0.861
SR 0.838 0.655 0.875

RASR 0.859 (0.021↑) 0.746 (0.091↑) 0.894 (0.019↑)
HR images 0.894 0.847 0.921

FCOS [34]

Bicubic 0.478 0.513 0.822
SR 0.626 0.597 0.852

RASR 0.735 (0.109↑) 0.695 (0.098↑) 0.898 (0.046↑)
HR images 0.839 0.792 0.892

Bicubic + Gaussian Blur

Faster-RCNN [22]

Bicubic 0.785 0.675 0.856
SR 0.876 0.772 0.877

RASR 0.884 (0.008↑) 0.780 (0.008↑) 0.907 (0.030↑)
HR images 0.894 0.847 0.921

FCOS [34]

Bicubic 0.149 0.521 0.807
SR 0.772 0.715 0.852

RASR 0.780 (0.008↑) 0.716 (0.001↑) 0.898 (0.046↑)
HR images 0.839 0.792 0.892

We first validate the effectiveness of our method on Bicubic down-sampling degra-
dation. When taking Faster-RCNN as the evaluation detector, on the HRSC2016 dataset,
directly using bicubically up-sampled images achieves the lowest detection accuracy. When
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the SR module is introduced, the AP50 value is significantly improved from 0.788 to 0.838.
This demonstrates that image SR can provide more useful appearance information than
the bicubic up-sampling operation. Furthermore, using the outputs of RASR to detect ship
targets can further improve the detection performance, and achieves 0.859 in terms of AP50.
That is because, the adaption module can transform the original LR images to informative
ones with the guide of image rescaling, and more information is embedded in the outputs
of RASR and transferred to the detection network. Note that using the outputs of RASR
cannot achieve good performance as HR images (i.e., 0.894) due to the information lost.
Similarly, when taking FCOS as the evaluation detector, on HRSC2016 dataset, directly
using bicubic up-sampling images achieves 0.478 in terms of AP50. When the SR module
is introduced, the AP50 value is improved to 0.626. Using the outputs of RASR to detect
ship targets can further improve the detection performance to 0.735.

We extend our ablation studies on the DOTA and NWPU VHR-10 datasets. With the
bicubicly up-sampled images as input, Faster-RCNN achieves 0.633 and 0.861 in terms
of AP50 on DOTA and NWPU VHR-10 datasets, respectively. When the outputs of the
SR module are fed to the detector, the detection accuracy improves to 0.655 and 0.875 on
DOTA and NWPU VHR-10 datasets, respectively. It can be observed that the detection
performance can be further improved when the outputs of RASR are used, but is still
inferior to the results on HR images. The detection results of FCOS are consistent with
Faster-RCNN on the DOTA and NWPU VHR-10 datasets. FCOS achieves 0.513 and 0.822
when taking bicubicly up-sampled images as inputs on DOTA and NWPU VHR-10 datasets,
respectively. When the SR module is introduced, the AP50 values are improved to 0.597
and 0.852 on DOTA and NWPU VHR-10 datasets, respectively. Using the outputs of RASR
to detect ship targets can further improve the detection performance to 0.695 and 0.898
on two datasets, respectively. These consistent results on two detectors and three datasets
validate the effectiveness of our RASR method on the ship detection task.

Furthermore, we validate the effectiveness of our method on Bicubic + Gaussian blur
down-sampling degradation. It can be observed form Table 2 that two evaluation detectors
with RASR results as inputs both achieve better detection performance than with Bicubic
and SR module results as inputs. Take Faster-RCNN as an evaluation detector example,
our SR module achieves 0.876 in terms of AP50, and is 0.091 better than the Bicubic
method, and our RASR achieves 0.008 improvements over the SR module. For DOTA
and NWPU VHR-10 datasets, Faster-RCNN on RASR results also achieves 0.008 and 0.030
improvements as compared to the results of the SR module, respectively. This demonstrates
the effectiveness and generality of our method on more complex scenarios.

We further show the detection performance on targets with different sizes, as shown
in Table 3. Note that here we use Faster-RCNN with ResNet50 as the backbone to validate
the influence of our method for targets with different scales. Furthermore, we use bicubic
as the down-sampling approach to generate the LR images. It can be observed that the
performance improvement on small targets is the largest. Taking the DOTA dataset as an
example, compared with using the outputs of SR module, using the outputs of RASR can
achieve a 0.086 improvement on small ships, 0.065 improvement on medium targets and
0.053 improvement on large targets, respectively. For the HRSC2016 dataset, Faster-RCNN
achieves 0.052, 0.021 and 0.027 improvements in terms of APs, APm and APl when using
RASR as pre-processing compared to using the SR module. Moreover, the improvement on
small targets is still higher than medium and large targets, respectively. That is because
there is more information lost for smaller targets than larger ones. Thus, the recovered
detail information using our RASR is more beneficial for small target detection.
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Table 3. Quantitative evaluation results of detection performance achieved by different variants of
our proposed RASR. We use Faster-RCNN (with ResNet50 as backbone) as the evaluation detector,
and use AP50, APs, APm and APl as the evaluation indices. Note that, since there is no large ship on
NWPU VHR-10 dataset, the APl on this dataset is −1.

Dataset Inputs
Evaluation Indices

AP50 APs APm APl

HRSC2016 [29]

Bicubic 0.788 0.016 0.817 0.865
SR 0.838 0.050 0.863 0.891

RASR 0.859 (0.021↑) 0.102 (0.052↑) 0.884 (0.021↑) 0.918 (0.027↑)
HR Images 0.894 0.399 0.925 0.917

DOTA [30]

Bicubic 0.633 0.631 0.739 0.258
SR 0.655 0.647 0.755 0.285

RASR 0.746 (0.091↑) 0.733 (0.086↑) 0.820 (0.065↑) 0.338 (0.053↑)
HR Images 0.847 0.842 0.892 0.460

NWPU VHR-10 [31]

Bicubic 0.861 0.036 0.896 −1
SR 0.875 0.011 0.910 −1

RASR 0.894 (0.019↑) 0.162 (0.151↑) 0.913 (0.003↑) −1
HR Images 0.921 0.230 0.946 −1

4.3. Comparison to the State-of-the-Art Methods

We compare our RASR with several state-of-the-art SR models (SelfExSR [35], SR-
CNN [11], VDSR [12], EDSR [36] and RCAN [37]) on three public remote sensing datasets
to investigate the superiority of our method on SR task. Then, we use RASR as a pre-
processing approach and choose Faster-RCNN as detector to develop RASR-Faster-RCNN.
We compare RASR-Faster-RCNN with four state-of-the-art detection methods: GFL [38],
Reppoints [39], HTC [40] and DetectoRS [41]. Note that we use the bicubicly up-sampled
images as the inputs of the compared detectors to ensure the identical input sizes of
different detectors.

4.3.1. Comparison with SR Methods

We compare our RASR to several competitive SR methods in terms of the number
of parameters, SSIM and PSNR on three datasets. Among these competitive SR methods,
SelfExSR is based on non-machine learning, and others are based on CNN. Comparative
results are shown in Table 4. It can be observed that SelfExSR consumes the most inference
time, since it need more iterations to achieve comparable results. Furthermore, our RASR
outperforms SelfExSR, SRCNN and VDSR on all three datasets. Compared with EDSR, our
RASR has fewer parematers and faster inference speed, and is superior to EDSR except
for the PSNR score on the DOTA dataset. Furthermore, with only one sixth of parameters,
our RASR achieves more competitive SR performance than RCAN. The inference speed of
RASR is also faster than RCAN. Although SRCNN and VDSR take fewer time to super-
solve images, the SR quality is not as good as our RASR method. These experimental
results demonstrate the superiority of the proposed RASR.

Figure 5 shows the qualitative results achieved by different SR methods. The selected
scenes are from the three datasets, respectively. Scene A is from the HRSC2016 dataset,
and it can be observed that bicubic up-sampling, SelfExSR, SRCNN and VDSR can not
recover the shape of bow and cannot distinguish bow and port areas. Although EDSR and
RCAN can recover the bow, the contrast between bow and background is lower than RASR.
That is because, RASR can better restore the detail information at the edge areas due to the
assistance of image rescaling. Furthermore, the super-resolved results of SelfExSR have
more visual artifacts, that is because the limited SR ability of SelfExSR on lager scale factor
(the scale factor is 8 in our experiments). Scene B is from the NWPU VHR-10 dataset, it can
be found that RASR can better recover the shape information (as shown in the red bounding
box in scene B) and color information (as shown in the green bounding box in scene B)
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of ship targets. In fact, there is more detail information embedded and transferred to the
SR module in our RASR method. Scene C is from the DOTA dataset, and the ships in this
scene are tiny and clustered. In this scene, EDSR, RCAN and RASR can generate SR images
with distinguished ship instances, but only RASR can further preserve the shape and color
information. Furthermore, the hexagonal star architecture in scene C brings a challenge for
image SR, since much corner information is lost in the degraded images. SRCNN, VDSR,
RDSR, RCAN restore the hexagonal star to quadrilateral or oval by mistake. In contrast,
SelfExSR and our RASR can recover the six corners of the architecture. However, due to
the strong visual artifacts, the suer-resolved ability of SelfExSR is inferior to RASR. Note
that, our RASR cannot recover the complete hexagonal star due to the information lost. It
is worth noting that the super-resolved results of SelfExSR have more visual artifacts, that
is because the limited SR ability of SelfExSR on lager scale factor (the scale factor is 8 in our
experiments, and the max factor is 4 in SelfExSR). These result images on different datasets
demonstrate the effectiveness and superiority of our method.

Table 4. Comparisons of the number of parameters (#Param.), SSIM score and PSNR score for
different SR methods on HRSC2016, DOTA and NWPU VHR-10 datasets. The best results are in bold
faces, and the second results are ubderlined. Note that, the Time is the average processing time per
image of each method on the DOTA validation dataset.

Method #Param. Time
HRSC2016 DOTA NWPU VHR-10

SSIM PSNR SSIM PSNR SSIM PSNR

SelfExSR [35] None 37.878 s 0.670 24.09 0.625 24.64 0.856 30.48
RCAN [37] 15.66 M 69.746 ms 0.689 24.30 0.704 26.63 0.861 30.29

SRCNN [11] 0.12 M 15.944 ms 0.672 23.82 0.682 26.06 0.861 30.59
EDSR [36] 39.17 M 42.114 ms 0.683 24.01 0.701 26.51 0.863 30.62
VDSR [12] 0.67 M 29.978 ms 0.677 23.92 0.686 23.11 0.863 30.71

RASR 2.50 M 38.626 ms 0.698 24.10 0.718 26.31 0.870 30.72

Scene A

Scene B

Scene C Bicubic SRCNN VDSR EDSR RCAN RASR HR

Bicubic SRCNN VDSR EDSR RCAN RASR HR

Bicubic SRCNN VDSR EDSR RCAN RASR HRSelfExSR

SelfExSR

SelfExSR

Figure 5. Visual results achieved by different SR methods.
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4.3.2. Comparison with Detection Methods

Comparative results achieved by RASR-Faster-RCNN and other methods are shown
in Table 5. Compared to original Faster-RCNN, our RASR-Faster-RCNN achieves 0.053,
0.086 and 0.031 improvements in terms of AP50 on the HRSC2016, DOTA and NWPU
VHR-10 datasets, respectively. The significant improvements are at a low cost: about 2.50
MB parameters for image pre-processing approach. It can be observed that our RASR-
Faster-RCNN achieves the best detection performance on three datasets. Note that HTC
and DetectoRS are developed based on Faster-RCNN and have more parameters, and their
performance is better than the original Faster-RCNN. However, compared to RASR-Faster-
RCNN, HTC and DetectoRS are less competitive due to the missing details in the input
bicubicly up-sampled images. In contrast, our RASR-Faster-RCNN uses RASR as the
pre-processing and takes the super-resolved images as the input of Faster-RCNN, and thus
achieves better detection performance.

Table 5. Quantitative results (i.e., mAP50) achieved by different methods (based on ResNet101) on the
HRSC2016, DOTA and NWPU VHR-10 datasets. Our RASR-Faster-RCNN achieves state-of-the-art
detection performance. The best results are in bold faces.

Method

Datasets

HRSC2016 [29] DOTA [30] NWPU
VHR-10 [31]

GFL [38] 0.826 0.575 0.856
Reppoints [39] 0.792 0.592 0.875

HTC [40] 0.634 0.668 0.863
DetectoRS [41] 0.860 0.677 0.808

Faster-RCNN [22] 0.820 0.651 0.853
RASR-Faster-RCNN 0.873 0.737 0.884

Figure 6 shows the detection results achieved by different methods on three scenes.
Scene A is from HRSC2016, and the ship targets have various scales. It can be observed
that GFL, Reppoints, HTC and DetectoRS cannot successfully detect the smallest ship.
Although Faster-RCNN can detect the smallest ship, there are extra false alarms detected
by mistake. Our RASR-Faster-RCNN can successfully detect the tiny ship, since the pre-
processing RASR can restore more detail information, and thus improve the detection
accuracy. Scene B is from the NWPU VHR-10 dataset, in which the shadow and reflection
make some ships (indicated by red arrow) have lower contrast, and introduce challenges
to the detection task. All the comparative detectors cannot detect the ship due to the lost
information in the bicubicly up-sampled images. However, our RASR-Faster-RCNN can
successfully detect these targets with the assistance of RASR. However, when handling
some extremely challenging scenes, our method will produce some false alarms due to the
similar detail structure. For example, in scene C (from the DOTA dataset), the big trace
produces many areas that have similar detail structures with tiny ships, and thus leads to
many false alarms. GFL, Reppoints, HTC and our RASR all generate some false alarms.
Only detectoRS can successfully detect ships in this scene accurately. In the future, we will
improve the performance of our method on these challenging scenes.
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Scene A

Scene B

Scene C

Faster-RCNN GFL Reppoints

HTC DetectoRS RASR-FRCNN

Faster-RCNN GFL Reppoints

HTC DetectoRS RASR-FRCNN

Faster-RCNN GFL Reppoints

HTC DetectoRS RASR-FRCNN

Figure 6. Qualitative results achieved by different methods on three example scenes. We use green
bounding boxes to mark the ground-truth labels and detection results.

5. Conclusions

In this paper, we propose an image rescaling assisted SR method RASR to super-resolve
remote sensing images more effectively. In our method, more detail information can be em-
bedded and transferred to the SR process, and thus enhance the SR performance. Extensive
ablation studies and visualizations have demonstrated the effectiveness of our RASR method
for both image SR and ship detection. Moreover, we take RASR as a pre-processing approach to
the detection network, and develop RASR-Det to further improve the detection performance on
medium-low resolution remote sensing ship detection. Note that, although our method could
recover some texture information, it may hallucinate fake textures and brings some false alarms.
In the future, we would continue to work on this challenge.
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Abbreviations
The following abbreviations are used in this manuscript:

M-LR Medium-low resolution
GSD Ground sample distance
SR Super-resolution
RASR Rescaling assisted super-resolution
RASR-Det Detection framework with RASR as a pre-processing approach
HR High resolution
CNN Convolution neutral network
VDSR Very deep super-resolution network
RDN Residual dense network
EESRGAN Edge-enhanced super-resolution generative adversarial network
Faster-RCNN Method in paper ”Faster-RCNN: Towards real-time object detection

with region proposal networks”
FCOS Fully Convolutional One-Stage Object Detection
ResNet50 Deep residual network with 50 convolution and fully connection layers
ResNet101 Deep residual network with 101 convolution and fully connection layers
GAN Generative adversarial network
RDB Residual dense block
HRSC2016 High resolution ship collections 2016
DOTA A Large-scale Dataset for Object Detection in Aerial Images
NWPU VHR-10 A challenging 10-class geospatial object detection dataset
SGD Stochastic gradient descent
MMDetection Open MMLab Detection Toolbox and Benchmark
PSNR Peak signal-to-noise ratio
SSIM Structural similarity
MSE Mean squared error
RGB Red-green-blue
AP Average precision
IoU Intersection over union
AP50 Average precision with intersection over union being 0.50
APs Average precision for small targets
APm Average precision for medium targets
APl Average precision for large targets
COCO Microsoft COCO: Common Objects in Context
dB Decibel
SRCNN Super-Resolution Convolutional Neural Network
EDSR Enhanced deep residual super-resolution network
RCAN Residual channel attention network
RASR-Faster-RCNN Detection method integrating RASR and Faster-RCNN
GFL Generalized focal loss
Reppoints Point Set Representation for object detection
HTC Hybrid task cascade for instance segmentation
DetectoRS Detecting objects with recursive feature pyramid and

switchable atrous convolution
MB Million bytes
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