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Abstract: Remote sensing products, such as land cover data products, are essential for a wide range of
scientific studies and applications, and their quality evaluation and relative comparison have become
a major issue that needs to be studied. Traditional methods, such as error matrices, are not effective
in describing spatial distribution because they are based on a pixel-by-pixel comparison. In this
paper, the relative quality comparison of two remote sensing products is turned into the difference
measurement between the spatial distribution of pixels by proposing a max-sliced Wasserstein
distance-based similarity index. According to optimal transport theory, the mathematical expression
of the proposed similarity index is firstly clarified, and then its rationality is illustrated, and finally,
experiments on three open land cover products (GLCFCS30, FROMGLC, CNLUCC) are conducted.
Results show that based on this proposed similarity index-based relative quality comparison method,
the spatial difference, including geometric shapes and spatial locations between two different remote
sensing products in raster form, can be quantified. The method is particularly useful in cases where
there exists misregistration between datasets, while pixel-based methods will lose their robustness.

Keywords: similarity comparison; Wasserstein distance; raster; land cover

1. Introduction

With the quick and great development of remote sensing technologies, together with
the spread of open science, there are many available similar remote sensing products, and
global land cover products are very typical examples, which are typically presented as digi-
tal thematic maps in raster. Thus, to facilitate common users’ easy-to-choose appropriate
products, the need to compare their accuracy is growing. An ideal accuracy assessment
is based on comparing a dataset with its true value; however, usually, it is impossible
to obtain ‘ground truth’ in practice, thus accuracy assessments are usually conducted by
comparing the dataset with some ‘reference data’. We know that remote sensing products
from different sources are different in many aspects, including data source, classification
scheme, methodology and resolution, etc. [1]. This is not surprising, given the fact that
quantitative analyses of complex land cover types remain an arduous task [2].

2. Related Works

Table 1 lists some commonly used relative comparison methods of remote sensing
products. Considering their definition, processing units and evaluating indicators, relative
comparison methods can be classified into three categories: error matrix-based, local spatial
feature-based and others. In these methods, spatial features are expressed at three scales:
(i) a local scale for statistical analysis of pixels, (ii) a global scale for analysis of the whole
image, and (iii) specific scopes, such as sliding windows.
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Table 1. Relative comparison methods.

Comparison Methods Processing Unit Qualitative/Quantitative Evaluating Indicator Attention
Scale

Error Matrix-based
methods

Pixel-by-pixel
based Statistical

method [3–5]
pixel

qualitative
OA, UA, PA, kappa

coefficient, information
entropy, etc.

Local
scale

quantitative

Mean, standard
deviation,

entropy, correlation
coefficient, Tau
coefficient, etc.

Quantity and
location-based

method [6]
qualitative

Location-based kappa
coefficient,

quantity-based kappa
coefficient, etc.

local spatial
feature-based

methods

Spatial
distribution-based

method [7–9]

category qualitative

Goodman–Kruskal
Cramér’s V statistics

Theil’s U statistics
Global
scale

Neighborhood-
based comparison

method [10]

Spatial structure and
overlap index

Other methods

Fuzzy comparison
[11,12] pixel and category

qualitative

Fuzzy Kappa coefficient
fuzzy similarity index.

Specific
scope

Curvature-fit
based method

[13,14]
category Polygon matching index

Specific
scopeSliding-window

based method [15] sliding window quantitative Euclidean distance,
correlation coefficient

Existing relative comparison methods are mostly based on the confusion or error
matrix method [16,17]. However, error matrix-based methods ignore the underlying
geometry of the space. For example, the blue pixels in Figure 1 represent water bodies. It is
clear that the error matrix, user’s accuracy, and producer’s accuracy in datasets 2 and 3 are
the same (because the number of water pixels is the same). However, it is obvious that the
spatial positions of the two different areas in datasets 2 and 3 are different compared to
dataset 1, and the difference between dataset 2 and dataset 1 is more like a real water body
than an error. Therefore, the spatial distribution of “errors” and the information contained
in the “errors” are also very important in a relative quality evaluation system. Moreover,
the validation techniques based on pixel statistics rely heavily on probability sampling
design for collecting validation data [3]. In the error matrix-based methods, reference data
are taken as real data, and some studies have shown that if errors in the reference data
are related to the predicted data, the comparison accuracy will be overestimated, and if
the error is conditional independent, the accuracy will be underestimated [18]. The kappa
coefficient based on the error matrix is also considered to be unsuitable [19].
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Researchers have proposed some improved methods based on the error matrix. For
example, Enøe et al. [20] used a maximum likelihood method to deal with unknown binary
reference data. However, this method can only verify the reference data and cannot revise
the result. The authors of [21] proposed to simulate the geometric deviation in different
directions with a certain step size based on the reference image, and then calculate the
geometric accuracy of coarse-resolution remote sensing data by calculating the correlation
between the migrated reference image and the image to be evaluated, while there are still
uncertainties in determining the size of step. To sum up, these methods based on error
matrix lack the description of the spatial structure of remote sensing products.

In order to comprehensively consider and quantify the possible spatial features in
different remote sensing products in the form of raster datasets, we attempted to design
a “similarity index” by taking raster datasets as the probability distributions in a two-
dimensional space, and then measured the difference between two distributions, thus
the problem of accuracy comparison between different raster datasets is turned into a
multi-category optimal transmission question. Therefore, in fact, it is now a question of
spatial similarity measurement.

Optimal transport theory gives a good framework for comparing two measures in
a Lagrangian framework, and Wasserstein distance is an important concept arising from
optimal transport, which are the metrics of probability distributions. At present, some appli-
cations of optimal transport theory in the field of remote sensing have been proposed [22] to
fuse remote sensing products with social media information by using the natural interpreta-
tion of distribution distance in Wasserstein metric space [23] using high-resolution satellite
time-series images to evaluate the accuracy of remote sensing mapping products in the
absence of field verification data by using EMD transmission and Sinkhorn transmission.

The optimal transport theory establishes a geometric tool for effectively comparing
probability distributions. The relative similarity concept in the paper is based on max-sliced
Wasserstein distance [24]. The main contributions of this paper are the following:

(i) Category information contained in multi-source raster datasets is treated as a prob-
ability distribution of spatial information in a 2D space, and then the problem of
consistency measurement between remote sensing products is converted into a mea-
surement question of probability distribution.

(ii) A max-sliced Wasserstein distance-based similarity index is designed and calculated,
which could solve the product comparison problem in the case of misregistration.

3. Methodology

Wasserstein distance provides a way to measure the distance between two non-empty
datasets, and a raster dataset can be taken as a set of multiple types of pixel coordinates, so
this measurement applies.

Wasserstein-P distance between two pixel-based distributions q1 and q2 could be
expressed as follows:

WP(q1, q2) =

(
in f

γ(x,y)∈Γ(q1,q2)

E(x,y)∼γ(x,y)[d
(

x, y)P
]) 1

P

(1)

where x,y are the distribution of pixel coordinates in the two raster datasets, respectively, Γ(q1, q2)
is the set of all possible joint distributions on (x,y) with marginals q1 and q2, d(x,y) is the
distance metric between x and y, generally, the Euclidean distance is taken. In a two-
dimensional case, P = 2.

Figure 2a illustrates the one-dimensional case, that is, using the minimum cost to
convert one distribution into another distribution. Figure 2b is a two-dimensional case,
using a transmission matrix P to describe the transmission plan.
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In fact, it is difficult to calculate the Wasserstein distance in two or more dimensions
directly through the optimal transport theory. Kantorovich–Rubinstein duality can be used
to calculate its one-dimensional case:

W(q1, q2) = sup
‖ f ‖L51

Ex∼q1 [ f (x)]− Ex∼q2 [ f (x)] (2)

where the supremum is over all the 1-Lipschitz functions f X → R. The function f is
commonly represented via a deep net and various ways have been suggested to enforce
the Lipschitz constraint [25].

Then, a sliced version of the Wasserstein-2 distance, proposed by [26], shows its
advantage, which only requires estimating distances of one-dimensional distributions and
is more efficient. The “sliced Wasserstein-p distance” between distributions q1, q2 is defined
as:

W̃p(q1, q2) =

 ∫
ω∈Ω

WP
P (q

ω
1 , qω

2 )dω

 1
P

(3)

where qω
1 , qω

2 denote the projection (i.e., marginal) of q1, q2 onto the directionω, and Ω is
the set of all possible directions on the unit sphere.

The W̃p(q1, q2) distance has important practical implications: provided that the pro-
jected distributions qω

1 , qω
2 can be computed, then for anyω ∈ Ω, the distance W̃p(q1, q2),

as well as its optimal transport map and the corresponding Kantorovich potential can be
analytically computed by using projected measures that are one-dimensional.

For two given datasets D = {(x)} of samples x ∼ q1, F = {(y)} of samples y ∼ q2:

W2
2 (D

ω, Fω) =
1
|D|

|D|

∑
i=1
‖Dω

ϕD(i) − Fω
ϕF(i)‖

2
2 (4)

where ϕD and ϕF are permutations that sort the projected sample sets Dω and Fω, respectively.

Dω
ϕD(1) ≤ Dω

ϕD(2) ≤ · · · ≤ Dω
ϕD(|D|) (5)
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Fω
ϕF(1) ≤ Fω

ϕF(2) ≤ · · · ≤ Fω
ϕF(|F|) (6)

When the number of elements in the two datasets |D|,|F| are different, find the greatest
common divisor θ of |D| and |F|, then make |D|∗ = |F|

θ , |F|∗ = |D|
θ , and replace D(i) with

|D|∗ elements, together with replacing F(i) with |F|∗ elements. Because |D|∗|D| = |F|∗|F|,
it is sure that the element numbers in the two new sets are the same.

If we could find the most meaningful projection direction, the 2D max-sliced-Wasserstein
distance will be calculated, and it is defined as follows:

max− W̃2(q1, q2) =
[
maxω∈ΩW2

2 (q
ω
1 , qω

2 )
] 1

2 (7)

This metric satisfies the properties of non-negativity, the identity of indiscernible,
symmetry, and subadditivity [27]. Hence, it is a true metric.

Taking two land cover datasets, A and B, with K categories and the size of Row×Col
as an example, after each max− W̃2 is calculated by categories, the similarity between A
and B can be defined:

Similarity(A, B) =
K
∑

i=1
[1− 1

2
√

Row2+Col2
×min( 2

√
Row2 + Col2, max−W̃2(i)

1− N(i)
Row×Col

)]× N(i)
Row×Col (8)

where max − W̃2(i) is the max-sliced Wasserstein distance of category i, and N(i) is the
average number of pixels of category i in datasets A and B, that is, N(i) = 1

2 [NA(i) + NB(i)].
It could also be deduced that the similarity between two datasets is order independent,

so we have:
Similarity(A, B) = Similarity(B, A) (9)

This method has the following advantages: (1) It can quantify the difference in both
spatial position and shape, then measure it under a unified standard; (2) it can give a
continuous transformation process while preserving geometric features; (3) it has symmetry
and can still give reasonable measurement results in the case of regional misregistration.

4. Experiment

To demonstrate the rationality of the above-proposed similarity index, we designed
several validation experiments both on test datasets and real datasets. For test datasets,
we set four cases, and use a gradient descent method to give the continuous transforma-
tion process. For real datasets, we calculate the similarity index among three open land
cover products.

4.1. Experiments on Test Datasets

(i) Max-sliced Wasserstein distance between two points

Suppose there are two points on the two-dimensional plane, the coordinates of the
two points are (9.0, 9.0) and (13.0, 12.0), respectively.

The results of the max-sliced Wasserstein distance with the number of projections and
the percentage difference with the Euclidean distance are shown in Table 2.

Table 2. Distance with the number of projections.

Number of projections 5 10 15 20

Max-Wasserstein distance 4.9700 4.9961 4.9970 4.9994
Difference 0.6% 0.078% 0.06% 0.012%

The Euclidean distance between the two points is 5.0. Because the sliced distance
is calculated by using projection, there is a deviation from the Euclidean distance. We
consider that when the number of projections is not less than 20, the deviation is within the
allowable range.
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(ii) Max-sliced Wasserstein distance between areas

The geometric shape and spatial position difference between point sets (usually rep-
resented as polygons in a raster dataset) cannot be simply measured by the Euclidean
distance between points. Here, we design four cases to illustrate the rationality of the
proposed index:

Case 1: Shapes of the polygons in two datasets to be compared are the same, and the
spatial position has a translation transformation;

Case 2: The centroid of polygons is the same, but the shapes are different;
Case 3: The polygon shapes and spatial positions are both different;
Case 4: The distribution is not continuous and there are multiple areas.
Then, we used the gradient descent method to construct the continuous transformation

process.
The initial states of the four examples are shown in Table 3 and Figure 3.

Table 3. Initial state of four cases.

Case.
Distribution Centroid Radius/Side Length

A B A B A B

1 Circle Circle (160,160) (220,160) 60 60

2 Circle Square (160,160) (160,160) 60 60

3 Circle Square (160,160) (220,160) 60 60

4 3
Circles Circle (70,70),(70,250),(250,70) (160,160) 50 60
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The projection number is set to 20, and then the max-sliced Wasserstein distances of
each case are shown in Table 4.

Table 4. Max-sliced Wasserstein distance of four cases.

Case 1 2 3 4

Distance 59.9964 5.6467 61.2305 77.3263

Distance changes during the gradient descent process are shown in Figure 4. As the
number of iterations increases, the distance tends to decrease, which means that distribution
is shifted to the target distribution.



Remote Sens. 2022, 14, 2546 7 of 13

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 13 
 

 

The projection number is set to 20, and then the max-sliced Wasserstein distances of 
each case are shown in Table 4.  

Table 4. Max-sliced Wasserstein distance of four cases. 

Case 1 2 3 4 
Distance 59.9964 5.6467 61.2305 77.3263 

Distance changes during the gradient descent process are shown in Figure 4. As the 
number of iterations increases, the distance tends to decrease, which means that distribu-
tion is shifted to the target distribution. 

 
Figure 4. Distance with steps. 

The process of continuous transformation of four cases in the gradient descent pro-
cess is shown in Figure 5. 

 
Figure 5. Transformation process of source distribution to target. 

Figure 4. Distance with steps.

The process of continuous transformation of four cases in the gradient descent process
is shown in Figure 5.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 13 
 

 

The projection number is set to 20, and then the max-sliced Wasserstein distances of 
each case are shown in Table 4.  

Table 4. Max-sliced Wasserstein distance of four cases. 

Case 1 2 3 4 
Distance 59.9964 5.6467 61.2305 77.3263 

Distance changes during the gradient descent process are shown in Figure 4. As the 
number of iterations increases, the distance tends to decrease, which means that distribu-
tion is shifted to the target distribution. 

 
Figure 4. Distance with steps. 

The process of continuous transformation of four cases in the gradient descent pro-
cess is shown in Figure 5. 

 
Figure 5. Transformation process of source distribution to target. Figure 5. Transformation process of source distribution to target.

In Case 1, the shapes of the two polygons are the same, and the max-sliced Wasserstein
distance measures their difference in spatial position. When it goes to the 99th step, the
initial distribution is transferred to the target distribution (the green circle moves to the
same position as the orange circle).

In Case 2, the positions of the two centroids are the same, so the factor that affects the
max-sliced Wasserstein distance measurement is only their geometric shapes.

In Case 3, both their geometric shapes and spatial positions affect the final measure-
ment, so compared with that in Case 1 and Case 2, the distance is the largest.

In Case 4, the distribution of the points is discontinuous, and there are multiple parts
(blue points). This simulates a more complicated situation in raster datasets. This metric
gives a reasonable result and a continuous transformation process of multiple regions.
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4.2. Experiments on Real Remote Sensing Products

We choose open-source global land-use raster datasets to verify the proposed index,
and the three selected datasets are GLC_FCS30 [28], FROM_GLC [29], CNLUCC [30] in
2015.

The selected area is a rectangle with the coordinates range of (116.18575, 40.00125)
and (116.37300, 40.18375) in the coordinate system of WGS84. The three datasets are the
land-use data of this area at the same time (2015), created by different researchers, with the
same resolution of 30 m.

4.2.1. Dataset Preprocessing

The classification systems of the three datasets are shown in Figure 6:
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Figure 6. Detail of GLC_FCS30, FROM_GLC and CNLUCC datasets.

Comparisons cannot be made under the original non-uniform classification system, so
we reclassified the pixels and classified them into four types: (1) Cropland; (2) Forest/Grass;
(3) Water body; (4) Impervious surfaces. Figure 7 illustrates the classification system and
reclassification results.
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Table 5 shows the pixel numbers of four classification types in each dataset.

Table 5. The number of pixels of four types.

Cropland Forest/Grass Water Impervious Surfaces Total

GLC_FCS30 123,957 39,076 12,966 370,771 546,770
FROM_GLC 73,795 92,438 11,936 368,601 546,770

CNLUCC 95,176 26,149 8522 416,923 546,770

4.2.2. Similarity Calculation

Taking water bodies as an example, distributions of water bodies on the three datasets
are shown in Figure 8.
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Compare the three datasets in pairs separately to calculate the max-sliced Wasserstein
distance of the water distribution (Figure 9 and Table 6):
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Figure 9. Overlay of raster data map frames (a-b. GLC_FCS30-FROM_GLC; a-c. GLC_FCS30-
CNLUCC; b-c. FROM_GLC-CNLUCC).

Table 6. Results of water body.

Distance Row × Col Similarity

a-b 86.9853 749 × 730 91.49%
a-c 180.1471 749 × 730 82.43%
b-c 153.8637 749 × 730 85.01%

The results show that the comparison between GLC_FCS30 and FROM_GLC products
(a-b) has the smallest max-sliced Wasserstein distance and thus, the highest similarity,
which is consistent with the visual judgment.

The multi-category comparison results among the three chosen products are listed in
Table 7:

Table 7. Results of three datasets.

a-b a-c b-c

Cropland Distance 26.9367 93.0022 71.9183
Similarity 96.85% 88.88% 91.87%

Forest/Grass Distance 232.7238 260.1100 423.1698
Similarity 74.71% 72.11% 54.62%

Water Distance 86.9853 180.1471 153.8637
Similarity 91.49% 82.43% 85.01%

Impervious Distance 13.4117 9.71133 15.3557
surfaces Similarity 96.04% 96.68% 94.79%

Total Similarity 93.51% 96.89% 89.80%

4.2.3. Comparison in Unregistered Case

We designed an experiment to illustrate a significant advantage of the proposed
similarity index: it pays more attention to the shape and structure of spatial distribution
than traditional methods, therefore, it can better represent the spatial features of data. We
simulated a misregistered case of a water body in CNLUCC data. Cases 1–3 offset 1 to
20 pixels on the x-axis, y-axis, x- and y-axis, respectively (Figure 10), and then we calculated
according to the similarity index, kappa coefficient and intersection over union (IoU). The
results are shown in Table 8.
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Table 8. Similarity, Kappa and IoU results of three unregistered cases.

Offset Pixel
Case 1 Case 2 Case 3

Similarity Kappa IoU Similarity Kappa IoU Similarity Kappa IoU

1 0.9990 0.9460 0.8991 0.999 0.8961 0.8143 0.9986 0.8717 0.7756

2 0.9981 0.8963 0.8147 0.9981 0.7971 0.6669 0.9973 0.7572 0.6140

3 0.9971 0.8526 0.7465 0.9971 0.7075 0.5527 0.9959 0.6587 0.4969

4 0.9962 0.8129 0.6889 0.9961 0.6312 0.4672 0.9945 0.5796 0.4144

5 0.9952 0.7777 0.6407 0.9951 0.5715 0.4065 0.9931 0.5217 0.3596

6 0.9942 0.7470 0.6011 0.9942 0.5257 0.3632 0.9918 0.4779 0.3208

7 0.9933 0.7195 0.5671 0.9932 0.4897 0.3310 0.9904 0.4438 0.2922

8 0.9923 0.6940 0.5369 0.9922 0.4599 0.3056 0.989 0.416 0.2698

9 0.9913 0.6711 0.5107 0.9913 0.4349 0.2849 0.9877 0.391 0.2502

10 0.9904 0.6499 0.4873 0.9903 0.4127 0.2671 0.9863 0.3671 0.2320

It could be seen that traditional methods are very sensitive to registration accuracy
(shown in Figure 11).
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Both the kappa coefficient and IoU are not robust in three cases, because these methods
do not consider spatial features of pixels; therefore, their results are quite different in cases
of different pixel offsets. The similarity index proposed in this paper focuses on the structure
and characteristics of space, thus, the max-sliced Wasserstein distance is close to the true
pixel offset and the change of similarity result is small.
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5. Discussion

In the above experiments, test datasets are used to illustrate the rationality of Wasser-
stein distance for quantitatively calculating the distribution of pixels in two-dimensional
space. This index can comprehensively consider spatial location information and geometric
shape information, which has practical significance.

After unifying the spatial resolution and classification standards of three chosen land
cover products, single-category similarity and overall similarity are both calculated. In
the calculation of water body similarity, the distribution of large-area water objects in
products GLC_FCS30 and FROM_GLC is relatively consistent, and the difference in the
surrounding scattered and small water bodies is the main reason for the generation of the
distance measurement. The overall similarity results indicate that the GLC_FCS30 and
CNLUCC data have a higher similarity. This is because, in FROM_GLC, the confusion
between Cropland and Forest/Grass types appears more frequently, resulting in a large gap
in the number of pixels between these two types. Therefore, after calculating the overall
similarity with the number of pixels and similarity in the similarity evaluation index, the
overall similarity is quite different from the other two products. The most similar type is
Impervious surfaces, and the pixels of this type account for a large proportion of the total
number of pixels, therefore, it is the main factor that affects the final similarity.

Compared with the error matrix and IoU, the similarity index represents more charac-
teristics of spatial structure. We hope to propose this index to make up for the shortcomings
of existing methods. It can better characterize the spatial relationship between datasets and
solve the comparison problem under a certain degree of misregistration.

6. Conclusions

With the increasing demand for quantitative evaluation of different remote sensing
products, the traditional pixel-based accuracy evaluation system needs to be improved.
The proposed similarity index is a promising way to facilitate this need. It is not limited
to pixel-by-pixel comparison in the case of complete alignment. In a word, the main
idea of this study is to transform the relative accuracy comparison problem of multi-
source raster datasets into an optimal transmission problem in two-dimensional space.
For the mathematical expression of similarity index, based on max-sliced Wasserstein
distance, when the number of projections reaches the threshold, it can be regarded as the
true value. Using the gradient descent method to give the continuous transformation
process also shows that the index can reasonably quantify the spatial distribution. Based
on this similarity index, the spatial difference between multi-source raster datasets can
be quantified. Theoretically, this index is more suitable for land-use change monitoring
and continuous raster datasets comparison. More theoretical development and practical
application of this index are still under work, and we will continue to improve it.
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