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Abstract: The Sentinel-2 constellation has been providing high spatial, spectral and temporal reso-
lution optical imagery of the continental surfaces since 2015. The spatial and temporal resolution
improvements that Sentinel-2 brings with respect to previous systems have been demonstrated
in both the literature and operational applications. On the other hand, the spectral capabilities of
Sentinel-2 appear to have been exploited to a limited extent only. At the moment of definition of
the new generation of Sentinel-2 satellites, an assessment of the usefulness of the current available
spectral bands seems appropriate. In this work, we investigate the unique information contained
by each 20 m resolution Sentinel-2 band. A statistical quantitative approach is adopted in order to
yield conclusions that are application agnostic: multivariate regression is used to reconstruct some
bands, using the others as predictors. We conclude that, for most observed surfaces, it is possible to
reconstruct the reflectances of most red edge or NIR bands from the rest of the observed bands with
an accuracy within the radiometric requirements of Sentinel-2. Removing two of those bands could
be possible at the cost of slightly higher reconstruction errors. We also identify mission scenarios for
which several of the current Sentinel-2 bands could be removed for the next generation of sensors.

Keywords: spectral bands; Sentinel-2; regression; spectral band reconstruction; spectral band selection

1. Introduction

The Sentinel-2 constellation constitutes a revolution in remote sensing in terms of data
quantity, quality and availability. The high spatial and temporal resolutions of Sentinel-2 [1]
have been demonstrated to be crucial for many applications that have been reported in
the scientific literature and validated by operational applications covering a wide range
of use cases, such as land-cover mapping, snow-extent mapping, biophysical parameter
estimation, agriculture monitoring, etc.

Sentinel-2 provides 13 spectral bands with spatial resolutions from 10 m to 60 m and a
5-day revisit cycle.

The particularities of Sentinel-2 with respect to pre-existing comparable systems are:

• in the temporal domain, a systematic acquisition plan (unlike tasked satellites, which
acquire scenes on demand) with a high revisit frequency (5 days compared to the
16 days of Landsat);

• in the spatial domain, a higher resolution than Landsat (10 m to 20 m compared to 30 m);
• in the spectral domain, an increased number of bands with respect to both the classical

blue, green, red, NIR band set and Landsat (4 visible, 1 NIR, 2 SWIR), with the novelty of
3 red edge (RE) bands, although a lack of thermal band with respect to Landsat.

However, as we show in Section 1.4, very few published works have made full use of
the spectral richness of Sentinel-2, and often these uses have not been demonstrated to be
the only way to extract the target information.
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After 5 years of operation, the work on the new generation of Sentinel-2 satellites
(S2NG) has started, and one of the tasks is to identify the set of spectral bands. The question
of «Which additional spectral bands could be put on board S2NG?» has to be balanced
with the one of the «S2 possible useless bands», that is, the current available bands which
could be removed for S2NG. Adding spectral bands to a satellite bears a cost, which could
impact the trade-off with other mission requirements, such as temporal revisit needing an
additional satellite.

Of course, all current Sentinel-2 bands contain potentially useful information, since
they sample different intervals of the electromagnetic spectrum, and, except for the pair
B8-B8A (see Section 1.1), there is no significant overlap between the different spectral
ranges. However, since there exists a high level of redundancy in the underlying observed
nature, one can expect high degrees of correlation between the different bands, allowing us
to question the true usefulness of some bands.

With 5 years of data collection and exploitation, it is now possible to quantitatively
assess the usefulness of the different bands on board Sentinel-2. This could be done in terms
of the quality of the results of downstream processing (biophysical parameter estimation,
land-cover mapping, etc.), but this would need to address a huge number of application
domains with experiments and validation data without the guarantee of exhaustivity or
chances of replicability.

On the other hand, if we address the problem from the information content point of view,
we only have to deal with data at the sensor level. We therefore choose to pose the problem
as a data reconstruction one: if one band can be reconstructed—within a predefined error
margin—from the other bands, it can be removed from the satellite without quantitative
loss of information.

One could argue that what matters is the estimation of physical parameters and that
imperfect reconstruction of a particular band can have no impact for many applications.
This would allow going farther in terms of spectral band removal. We agree with this point
of view, but all downstream processing entails the use of (imperfect by construction) models,
and the closer we get to the sensor, the most application-independent the conclusions of
the study will be.

The aim of this paper is to leverage this interband correlation and assess which bands
could be removed from future iterations of the Sentinel-2 constellation with a minimal impact
on the usefulness of the acquired data. To do so, we predict the reflectances of missing bands
with nonlinear regression algorithms that use the other spectral bands as predictors. In order
to produce results that are representative of real settings and are generalizable, we build a
dataset by sampling pixels from Sentinel-2 acquisitions with a wide variety of geographic
areas and dates. We therefore take an empirical, data-driven approach.

We choose not to leverage the spatial and the temporal dimensions and carry out a
mono-date, pixel-based analysis. We understand that temporal and spatial correlations
would reduce the errors in the reconstruction of missing bands. The goal of the work is not
to propose an optimal regression algorithm, but rather to show that band reconstruction is
possible using regression. The results of this work can be seen as a lower bound in terms of
reconstruction quality and therefore encourage the pursuit of further studies.

1.1. The Sentinel-2 Spectral Bands

Table 1 gives the name and the central wavelength for each band acquired by
Sentinel-2. There are four bands at 10 m resolution: the three usual visible bands (B2–
B4) and a wide NIR band (B8). The 20 m resolution bands are three narrow bands in the
red edge (B5-B7), one narrow NIR (B8A) and two SWIR bands (B11, B12). Finally, the 60 m
resolution bands are aimed at radiometric corrections (B1 for aerosol content estimation,
B9 for water vapor and B10 for cirrus detection). Figure 1 illustrates the relative spectral
responses of the 10 m, 20 m and 60 m resolution bands.
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Table 1. Name and central wavelength of the Sentinel-2 spectral bands [1].

Band Central Wavelength (nm) Spatial Resolution (m)

1—Coastal aerosol 442.7 60
2—Blue 492.4 10
3—Green 559.8 10
4—Red 664.6 10
5—Vegetation red edge 704.1 20
6—Vegetation red edge 740.5 20
7—Vegetation red edge 782.8 20
8—NIR 832.8 10
8A—Narrow NIR 864.7 20
9—Water vapour 945.1 60
10—SWIR—Cirrus 1373.5 60
11—SWIR 1613.7 20
12—SWIR 2202.4 20
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Figure 1. Sentinel-2A relative spectral responses from https://sentinels.copernicus.eu/documents/
247904/685211/S2-SRF_COPE-GSEG-EOPG-TN-15-0007_3.0.xlsx, accessed on 10 May 2022.

https://sentinels.copernicus.eu/documents/247904/685211/S2-SRF_COPE-GSEG-EOPG-TN-15-0007_3.0.xlsx
https://sentinels.copernicus.eu/documents/247904/685211/S2-SRF_COPE-GSEG-EOPG-TN-15-0007_3.0.xlsx
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1.2. S2 Radiometric Requirements

The Sentinel-2 Mission Requirements Document (MRD) [2] states that for the applica-
tions covered by this mission, the radiometric accuracy at top of atmosphere (TOA) has to
be not worse than 3% (goal) to 5% (threshold). For inter-band radiometric calibration, 3%
accuracy is also required.

These requirements allow the definition of error bounds for the band reconstruction
tasks that we assess in this work. For TOA reflectances, we can aim for the 3% reconstruction
error. In terms of surface reflectance, the accuracy of the MACCS-ATCOR Joint Algorithm
(MAJA) processor [3,4] is 0.01 (not in %, but in reflectance values), and we can use this
value as the requirement.

Given the fact that there are other errors in the measure (geometric registration between
bands, Modulation Transfer Function (MTF) differences, etc.), achieving these error bounds
can be considered rather ambitious.

Other approaches to define the reconstruction requirements could be used. For in-
stance, [5] presents a radiometric uncertainty tool which allows estimation of the radio-
metric uncertainty associated with each pixel of a Sentinel-2 image in the TOA images
provided by ESA. The approach integrates all the errors from the TOA reflectance to the
L1C product, and typical values are greater than 10% for open sea, 5% to 15% in rice fields
covered by water and 2% to 4% for land areas. We see that the 3% specification is very
strict.

1.3. Directional Effects

Since the reflectance of surfaces depends on the observation and illumination direc-
tions [6], particular attention has to be payed to the acquisition geometry. Directional effects
are especially important in (nearly) specular reflections, but also in the case of shadow or
volume effects.

The MultiSpectral Instrument (MSI) is composed of two focal planes covering the
VNIR and the SWIR channels, respectively, each one having an array of 12 detectors. Due to
the shifted positioning of the detectors along the track direction on the focal planes, angular
differences between the two alternating odd and even clusters of detectors are induced in
the measurements. The parallax base/height (B/H) ratio ranges between 0.022 and 0.059.
A similar issue occurs between the VNIR and SWIR detectors, resulting in an inter-band
B/H which is less than 0.01 for the VNIR channels and less than 0.018 for the SWIR.

The values of the solar and sensor angles on a 5 km grid are provided in the L1C
product metadata. We leverage this information in the band reconstruction algorithms that
will be used in this work.

1.4. Specific Uses of S2 Bands

The spectral bands of Sentinel-2 allow the computation of a large variety of spectral
indices other than NDVI that are useful for different applications. Table 2 presents a
selection of several of them.

The RE bands have been proposed for chlorophyll estimation, burn severity assess-
ment [7], LAI estimation [8] and non photosynthetic vegetation [9]. The SWIR bands have
been proposed for dry mass vegetation [10] and water or moisture indices [11].

Although a thorough review of the literature is out of the scope of this paper, a
bibliometric analysis shows that very few papers published after the launch of Sentinel-2
make an explicit use of the spectral particularities (RE and SWIR bands). Furthermore, a
recent review about phenology monitoring using Sentinel-2 [12] shows that only one out of
four published papers uses spectral information other than NDVI.

Some studies, for instance [13], claim that RE and SWIR bands during vegetation
senescence appear to be important for machine learning-based classification. The concept
of importance has to be nuanced, since it measures the errors made when the reflectance of
those bands are replaced by random values. In order to have an accurate assessment of
the usefulness of those variables, the classifiers should be retrained without them. On the
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other hand, the same work shows that PSRI, which is computed from red, green and NIR,
is also important, which may indicate a high correlation (and therefore redundancy) with
RE bands.

Table 2. Spectral indices leveraging Sentinel-2 spectral bands for applications related to vegetation
and water surfaces.

Index Formula Application Reference

CIred−edge
(

B7
B5

)
− 1 Chlorophyll, burnt areas [7]

CIgreen
(

B7
B3

)
− 1 " "

REP 705 + 35
(B4+B7)

2 −B5
B6−B5

" "

MTCI B6−B5
B5−B4 " "

NDRE1 B6−B5
B6+B5 " "

NDRE2 B7−B5
B7+B5 " "

TRBI B12+B6
B8A LAI estimation [8]

NSSI B8A−B7
B8A+B7

Non-photosynthetic
vegetation [9]

PSRI B4−B2
B6 Senescent vegetation [14]

STI B11
B12 Tillage, dry vegetation [10]

NDWI B3−B8A
B3+B8A Water bodies [15]

NDWI B8−B11
B8+B11 " [11]

NDWI B8−B12
B8+B12 " "

Another work supporting the interest of RE and SWIR bands is [16], where they
are shown to be useful for gross primary productivity estimation in grasslands. Using
regression approaches, the authors show that those bands are useful to predict the target
variable, but do not study whether by using more complex regressors the error without
those bands could be reduced.

It is interesting to note that other works, for instance [17], show that NDVI is best
suited to monitor grass phenology rather than more sophisticated VIs using RE and SWIR
bands. Another example is [18], where it is shown that the RE bands of Sentinel-2 do
not perform well for the estimation of chlorophyll content changes in certain crops. One
should note that before the launch of Sentinel-2 the same community had great expectations
for these bands for the same application [19]. However, at the time, the authors already
suggested that using the green band in CIgreen also seemed very promising and therefore
further research was required.

The apparent contradictions between these different works are likely due to the fact
that different experimental settings, different data and different applications were involved.

Further, we find that works on the usefulness of spectral bands are usually addressed
only from the point of view of demonstrating that a particular phenomenon has a signature
in a particular band. For instance, a recent publication [20] proposed additional SWIR
bands in order to detect non-photosynthetic vegetation and crop residues. The study
indeed shows that these objects cannot be detected with the SWIR bands of Landsat-8.
However the cited work does not analyze how the complete set of Landsat-8 bands could
be used to retrieve a signature of the phenomenon at hand.

As of this writing and to the best of our knowledge, the most thorough study of
the usefulness of Sentinel-2’s spectral bands is [21]. This reference is actually a detailed
literature review of the use of hyperspectral imagery with the goal of proposing synergies
with Sentinel-2 in order to overcome the limitations of space-borne hyperspectral sensors
(spatial resolution, revisit time and signal-to-noise ratio). Interestingly, the review shows
how the current set of Sentinel-2 bands constitutes in itself a very wise choice for many
applications. However, the limit of such a meta-analysis is that there cannot be a holistic
view of the problem, since the pertinence of each spectral range is performed in isolation in
the reviewed literature. Indeed, this prevents discovering redundancies between different
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bands. For instance, this reference excludes uses for geological and lithological mapping,
such as [22–24], where the higher resolution of Sentinel-2’s NIR bands is assessed for the
estimation of iron oxides.

We think this supports the idea of performing a purely data-driven approach over a
large dataset and with an application-agnostic point of view. However, the work presented
in this paper is just a modest demonstration of what could be done by exploiting the
existing Sentinel-2 archive.

Finally, we will stress again the fact that we do not claim that some Sentinel-2 bands
do not contain useful information. We want to assess the possibility of reconstructing this
information by leveraging redundancies among the complete set of spectral bands. This
reconstruction will, of course, contain errors, and the goal here is to give bounds allowing
informed design trade-offs for future systems.

2. Materials and Methods
2.1. Data Preparation

For this study, a set of 128 Sentinel-2 tiles was used. Figure 2 illustrates the geographic
distribution of these tiles. For each tile, a single date was used and the selection was
random for the period from early 2016 to the end of 2020. The goal was to cover a wide
range of geographic areas and seasons. For each acquisition, the data were obtained at
two processing levels: 1C (from PEPS, CNES mirror of Sentinel data) and 2A (from Theia’s
catalog ), the latter having been produced by the MAJA processor. This allows us to use
accurate masks at the pixel level for clouds, cloud shadows and saturation effects.

������������	�
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Figure 2. Geographic distribution of the tiles used for the study.

For each acquisition, 100,000 pixels were sampled. Only non-saturated pixels were
selected, regardless of their cloud or shadow status. Pixel positions were selected on the
20 m resolution grid. For each 20 m pixel position, the following information was recorded:

• whether the pixel was detected as a cloud or a shadow (without distinction between
these two states),

• the reflectance in the 20 m bands for levels 1C and 2A,
• the reflectance of the four corresponding pixels of each of the 10 m resolution bands

for levels 1C and 2A,
• the reflectance at the 20 m pixel position of the 60 m resolution bands after bicubic

resampling for level 1C,
• the solar and viewing angles for each pixel.

For the analyses performed in the following sections, we split the data at the tile level.
This means that all the pixels used for testing (measures of accuracy of the reconstructions)
belong to tiles for which no pixel was used for training or even intermediate validation.
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In the experiments carried out in this work, we randomly select 100 tiles and do a
80/20% split at the tile level for training and testing purposes. This means that training and
testing pixels come from different tiles and dates. The training set is further split into proper
training samples (80%) and validation samples (20%), the latter being used for monitoring
the convergence of the training. For each experiment (i.e., set of predicted bands and set of
predictor bands), the experiment is repeated 10 times by selecting a different set of 100 tiles
among the 128 available. This allows checking for possible selection biases and allows
further assessment of the robustness of the regressions.

Further, only clear pixels (non-cloudy and not shadow) are used for training and vali-
dating models. This reduces the number of available pixels. On average, each experiment
uses 3.86928 × 106 training samples, 967,320 validation samples and 1.2582 × 106 testing
samples and is repeated 10 times.

The dataset has been made public [25] and is available for other researchers to repro-
duce and improve the work presented in this paper.

2.2. Regression Model

As stated in the introduction, we aim at estimating a subset of the Sentinel-2 bands
from the other ones. This estimation will be done using regression techniques. The regres-
sion algorithms will be calibrated and validated using the data described in Section 2.1. In
this section, we describe the regression approach chosen.

2.2.1. Reflectance Estimation with Associated Uncertainties

The regression problem is posed as the estimation of one or several spectral bands as
a nonlinear combination of a disjointed set of the available bands. For the prediction of a
single-band, this can be written as:

ρ̂i = f ({ρj 6=i},~θ),

that is, prediction of reflectance of band i is a function of the measured reflectances of the
other bands and a set of parameters~θ containing other pertinent information, such as solar
and sensor angles. The regression can jointly estimate several spectral bands in a set I:

{ρ̂i}i∈I = f ({ρj}j/∈I ,~θ) (1)

The regression procedure should also produce a credibility interval of the estimation of
the target variable. (We use the term credibility interval instead of confidence interval because
we adopt a Bayesian point of view: we consider the estimated value is a random variable
and the bounds of the interval are fixed, while the use of confidence intervals considers
the bounds as random variables that result from repeated measures.) In order to do this,
instead of regressing over the expected mean, we can implement a regression of the mean
and the variance of the target variable. Estimating a mean and a variance means that we
are assuming a Gaussian error model.

At inference (estimation) time, the mean will be used for variable estimation (in a
Gaussian model the mean is the value with the highest probability), and the variance will
be used to give the credibility interval.

Given a target value y (in our case ρi) and the estimates µ̂ and σ̂, the predictive
likelihood of the target value given the estimates is the Gaussian distribution whose
probability density function is

p(y|µ̂, σ̂) =
1√

2πσ̂2
e
(y−µ̂)2

2σ̂2
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We can therefore pose the regression problem as the minimization of a cost function
given by the negative log-likelihood [26]. The log-likelihood takes the form:

log(p(y|µ̂, σ̂)) = −1
2

log(2π)− 1
2

log σ̂2 − (y− µ̂)2

2σ̂2

Therefore, after removing the constant term and a multiplicative factor, the cost
function to be minimized is:

L = ∑
i

log σ̂2
i +

(yi − µ̂i)
2

σ̂2
i

where the sum is taken over the training samples.
Beyond being the correct theoretical loss under a Gaussian error model, this penalty

function can be interpreted as follows :

• the term (yi− µ̂i)
2 penalizes the errors between the target value and the estimated mean;

• these errors are weighted by the uncertainty estimation: larger errors will need larger
values of σi to lower the penalty;

• in order to avoid allowing large errors on µi by always estimating large values of σi,
large values of σi are also penalized by the first term in the loss.

2.2.2. Regression Algorithm

The regression algorithm will have to find the approximation of function f in
Equation (1) that minimizes the cost function described above. Since we don’t have prior
knowledge of the shape of f , we choose to use a non-parametric approach. Among non-
parametric algorithms for regression, feed-forward neural networks (multi-layer perceptrons,
MLPs) seem a good choice because they are universal function approximators [27] that
can be used in a multi-variate input and output setting and with custom cost functions.
Conversely, other choices have limitations. For instance, linear and logistic regressions
impose a strong prior on the shape of f , and random forest regression cannot predict several
targets. The main drawback of neural networks is their lack of interpretability.

MLPs are composed of fully connected linear layers (sets of neurons computing
linear combinations of the inputs) followed by nonlinearities φ called activation functions.
Figure 3 illustrates an MLP with a single hidden layer with five neurons. A large number of
layers with different numbers of neurons can be used. Training such a network consists in
finding the set of weights wi that minimize the loss function for the set of training samples.
Optimization is performed by stochastic gradient descent.
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Figure 3. A multi-layer perceptron with one input layer, one hidden layer and one output layer.
Diagram adapted from https://github.com/PetarV-/TikZ, accessed on 10 May 2022.

Another interesting property of MLPs is that they can be combined as elementary
bricks in more complex architectures. This allows the introduction of some structure in

https://github.com/PetarV-/TikZ
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the processing, which brings interpretability and the possibility of introducing some prior
knowledge. We will develop this point in the next section.

2.2.3. Network Architecture

As stated above, the regression neural network will estimate the reflectances of the
target bands using the reflectances of the other bands as predictors. All computations
are performed for individual pixels. In order to take into account BRDF effects, the solar
and sensor angles (both azimuth and zenith, as described in Section 1.3) are also used as
predictors. More precisely, the sines and cosines of each angle are used.

Instead of using all predictors (reflectances and angles) together in a flat vector as input
for an MLP as in Figure 3, we use an attention mechanism where the angular information
modulates the spectral values. This is implemented as illustrated in Figure 4. First, the
spectral and angular information are fed to the Angular MLP which is used to generate
an attention mask. An attention mask is a vector of real numbers in [0, 1] with the same
number of components as the data on which the attention is being applied. In our case, this
is the vector of spectral bands. The Angular MLP is a standard MLP with a single hidden
layer containing eight neurons and a SoftMax layer as output. The SoftMax function is an
exponential normalization that maps a set of values to the unit interval (simplex in more
than one dimension) σ : RK → [0, 1]K and is defined by:

σ(z)i =
ezi

∑K
j=1 ezj

for i = 1, . . . , K and z = (z1, . . . , zK) ∈ RK,

where zi are the outputs of the layer preceding the SoftMax.
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Figure 4. Overview of the nonlinear regression of a set of spectral bands using other bands and
angular information as predictors assuming a Gaussian error model.

Therefore, the Angular MLP learns a set of multiplicative weights (this operation is
represented by the ⊗ symbol in Figure 4) that will be applied to the input reflectances in
order to perform an angular correction. It is interesting to note that this angular correction
takes into account the spectral information itself, that is, the reflectances and the angles are
both used to estimate the correction. It is therefore a kind of self-attention mechanism [28].

A residual connection (a simple, elementwise addition, represented by⊕ in Figure 4) is
used after the attention mask in order to keep spectral information that could be excessively
removed by the attention mechanism before entering the Backbone MLP. The latter is used
to embed the predictors into a feature space that will be used to feed the two modules used
to estimate the target values and their uncertainties, respectively.

The backbone part (a three-hidden-layer MLP with 10 neurons per layer) allows modeling
of the correlation between the target variables and their uncertainties. The independent MLP
branches (with the same architecture as the backbone) for µ and σ get specialized into the
estimation of each set of information. Performing the regression for several target variables
with the same network is a kind of multitask learning that is able to leverage the correlation
between target variables and is more efficient than preforming single target regressions.

For numerical stability and positivity constraints, instead of estimating the σ or σ2, we
estimate log σ.

The output activation functions for the mean and the variance estimations are hyper-
bolic tangents so that the values are contained in the [−1, 1] interval. The output value
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is then rescaled into a predefined interval, [−0.2, 1.3] for µ and [1× 10−5, 1.5] for σ2. The
rescaling for µ allows taking into account the fact that L2A reflectances can sometimes
be negative due to over-correction. Reflectances can also be higher than one in specular
conditions. The rescaling intervals could be learned from the data, but we set them for
simplicity.

The regression of several bands simultaneously is done by a straightforward extension
of the single target case. The output layers for both the means and the variances will have
as many neurons as target variables. The loss function is just the sum of the losses for each
target variable.

The network is trained for 100 epochs using an Adam optimizer [29] with a learning
rate of 0.001 and a batch size of 256.

2.3. Measuring Redundancies in Sentinel-2 Bands

To assess the quality of the spectral regression approaches, we will analyze the statisti-
cal dependence between all the pairs of Sentinel-2 bands. Instead of measuring correlations,
which are limited to linear (Pearson correlation) or monotonic (Spearman correlation) de-
pendencies, we will use the mutual information, I. It measures dissimilarity between the
joint distribution of a pair of variables and the product of the marginals. It is therefore a
measure of the distance to general statistical independence:

I(X; Y) = DKL(P(X,Y)‖PX ⊗ PY),

where DKL is the Kullback–Leibler divergence. The mutual information can also be written
in terms of entropies (H) as follows:

I(X; Y) = H(X, Y)− H(X|Y)− H(Y|X) = H(Y)− H(Y|X) = H(X)− H(X|Y),

and it is therefore a measure of the amount of uncertainty about one variable once the other
is known. The mutual information is positive, but it is not upper-bounded. Therefore, we
use a normalized version using the entropies of each variable:

Inorm(X; Y) =
I(X; Y)√

H(X)H(Y)

We will study this measure for both L1C and L2A data.

3. Results
3.1. Redundancies in Sentinel-2 Bands

As stated in Section 2.3, we start by analyzing the redundancies in Sentinel-2 spectral
bands. Figure 5 displays the values of the normalized mutual information correlation for
all pairs of bands of L1C (left) and L2A (right) data.

Both levels of processing show the same patterns and nearly the same values, al-
though L2A has slightly lower values of dependence. This may indicate that atmospheric
corrections are able to remove effects with high correlation across bands.

We observe high values for the red edge bands between B5 and the red band, and
between the two SWIR bands. Interestingly, B5 presents a relatively low dependence with
respect to B6 and B7, and there is very small redundancy between B8 and B8A (it is, for
instance, lower than between green and B5).

The highest values of mutual information are obtained between adjacent bands of
the B6, B7, B8A triplet; B7 being the most similar to the others. B7 therefore seems a good
candidate for reconstruction from other bands.

One limitation of this analysis is that only pairs of bands are compared, and therefore
it is impossible to assess if the redundancies between, for instance, B7 and B6 are comple-
mentary to those between B7 and B8A, which would allow better reconstruction of B7 from
the other two than if these redundancies were the same.
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It is also interesting to note that B5 has all values higher than 0.4 (except for B8), which
may indicate either the possibility of reconstructing it from the other bands, or conversely,
of it being some sort of pivotal band to reconstruct the others.
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Figure 5. Normalized mutual information.

The relatively low value of the mutual information between B8 and B8A may seem
surprising since the latter is a subset of the former. Actually, this value is the same for B7
and B8, which are adjacent (see Figure 6). However, B8A has a width less than 20% of that
of B8.
��������������	
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Figure 6. Red edge and NIR bands.

This means that these measures of mutual information are lower bounds of the amount
of information that could be reconstructed from other bands.

3.2. Single Band Regression

We present in this section the performance of the reconstruction of each spectral band
by applying the neural network regression algorithm described in Section 2.2. As stated
before, only the 20 m bands are reconstructed, and the following data are used as predictors:

• the sines and cosines of the four observation angles,
• all 20 m bands except for the target one,
• the values of the four 10 m pixels for B2, B3, B4 and B8 associated with the 20 m target

pixel,
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• and, only for L1C, the value of the three 60 m bands interpolated (with a bicubic
interpolator) to the coordinate of the center of the 20 m pixel.

Each regression case is repeated 10 times using the protocol described at the end of
Section 2.1.

3.2.1. Analysis of Errors

Validation metrics are computed across all experiments and reported in Tables 3 and 4
for L1C and L2A data, respectively. The tables present the root mean square error (RMSE),
the mean absolute error (MAE), the relative error (RE) and the coefficient of determination
(R2). The rows of the tables are sorted by increasing values of RE for L1C and RMSE for L2A.

Table 3. Single-band regression results for L1C. The colors in the RE (relative error) column indicate
whether the specification is fulfilled (light gray), nearly fulfilled (middle gray) or unfulfilled (dark gray).

Band RMSE MAE RE R2

B07 7.17 × 10−3 3.90 × 10−3 2.96 × 10−2 9.96 × 10−1

B06 1.82 × 10−2 4.77 × 10−3 3.61 × 10−2 9.88 × 10−1

B8A 1.57 × 10−2 5.33 × 10−3 3.69 × 10−2 9.91 × 10−1

B05 1.57 × 10−2 4.46 × 10−3 3.79 × 10−2 9.92 × 10−1

B12 1.50 × 10−2 9.18 × 10−3 9.35 × 10−2 9.83 × 10−1

B11 1.83 × 10−2 1.26 × 10−2 1.51 × 10−1 9.85 × 10−1

Table 4. Single-band regression results for L2A. The colors in the RMSE (relative error) column
indicate whether the specification is fulfilled (light gray), nearly fulfilled (middle gray) or unfulfilled
(dark gray).

Band RMSE MAE RE R2

B5 7.33 × 10−3 4.96 × 10−3 2.07 × 10−1 9.95 × 10−1

B6 8.26 × 10−3 5.04 × 10−3 1.28 × 10−1 9.96 × 10−1

B7 8.42 × 10−3 5.02 × 10−3 1.18 × 10−1 9.97 × 10−1

B8A 1.11 × 10−2 6.14 × 10−3 2.23 × 10−1 9.95 × 10−1

B12 1.49 × 10−2 9.49 × 10−3 2.41 × 10−1 9.75 × 10−1

B11 2.06 × 10−2 1.36 × 10−2 4.05 × 10−1 9.81 × 10−1

In Section 1.2, we concluded that 3% error for L1C and 0.01 in surface reflectance
values for L2A were good targets for band reconstruction. Of course, we are measuring
reconstruction errors using data which itself may have errors, even if they are below the
radiometric specifications. Therefore, the error bounds need not to be taken very strictly.
Finally, Sentinel-2 can be considered to be over-specified in terms of radiometric quality
for most applications, which makes using these error bands rather conservative from our
point of view.

We see that for L1C only the reconstruction of B7 has an RE lower than 3%, although
the other red edge and NIR bands are below 3.8%. For L2A, B5, B6 and B7 have an RMSE
lower than 0.01, and B8A is only slightly above this level.

Estimating the noise in surface reflectances using the RMSE can suffer from strong
outliers. The MAE gives a measure that is robust to these cases and shows that even B12
could be considered for reconstruction.

The error values presented in Tables 3 and 4 are averages over the validation samples
and do not show the proportion of pixels that do not fulfill the radiometric requirements.
For this purpose, Tables 5 and 6 show the percentage of pixels whose error is lower than a
given threshold.

Table 5 presents, for each L2A band, the percentage of pixels whose error is larger than
a given threshold (from 0.01, which is the accuracy of the L2A processor, up to 0.025). We
see that even for the best-predicted bands (in the red edge), less than 90% of the pixels fulfill
the requirements. However, lowering the requirement accuracy to 0.015, 95% compliance is
achieved for these three bands.
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Table 5. Percentage of pixels beyond a given absolute error threshold (L2A).

Band 0.01 0.015 0.02 0.025

9 4.76 1.94 0.91
B6 12.60 5.35 2.67 1.51
B7 12.47 5.31 2.60 1.39

B8A 19.19 8.73 4.40 2.47
B11 46.75 34.45 25.03 18.11
B12 33.81 22.00 14.96 10.41

Table 6 shows the same results for L1C data. The performance seem to be much better
than for L2A, but we must remember that the requirements for L1C are given as relative
errors (the error must not exceed 3%).

Table 6. Percentage of pixels beyond a given absolute error threshold (L1C).

Band 0.01 0.015 0.02 0.025

B05 6.86 2.37 1.21 0.78
B06 8.09 3.07 1.42 0.79
B07 8.95 3.15 1.19 0.51
B8A 13.49 4.83 1.87 0.82
B11 43.70 30.51 20.97 14.35
B12 30.20 20.38 14.14 9.75

Table 7 shows the percentage of validation pixels compliant with different error
thresholds. We see that the requirement has to be lowered from 3% to 10% in order to get
95% compliance for the red edge and NIR bands. This poor performance is mainly due to
high relative errors in the low reflectances. Tables 8–12 show the compliance with relative
error thresholds for different intervals of reflectances. The results confirm that reflectances
lower than 0.1 contain most of the errors.

Table 7. Percentage of pixels beyond a given relative error threshold (L1C).

Band 0.03 0.05 0.1

B05 37.23 20.44 5.34
B06 26.50 10.74 2.36
B07 21.99 8.97 2.10
B8A 30.11 13.16 3.66
B11 69.33 51.53 22.93
B12 73.79 58.25 30.10

Table 8. Percentage of pixels beyond a given relative error threshold for reflectances in [0, 0.1] (L1C).

Band 0.03 0.05 0.1

B05 49.66 29.34 7.85
B06 39.48 16.89 2.25
B07 45.16 23.58 4.94
B8A 48.46 27.90 7.02
B11 75.16 60.25 32.95
B12 74.92 60.26 33.89
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Table 9. Percentage of pixels beyond a given relative error threshold for reflectances in [0.1, 0.25] (L1C).

Band 0.03 0.05 0.1

B05 35.01 17.53 3.58
B06 25.18 8.93 1.04
B07 21.63 8.11 1.05
B8A 30.70 12.17 1.69
B11 69.40 51.48 20.39
B12 73.14 57.22 27.93

Table 10. Percentage of pixels beyond a given relative error threshold for reflectances in [0.25, 0.5]
(L1C).

Band 0.03 0.05 0.1

B05 7.98 2.69 0.37
B06 16.71 5.98 0.42
B07 14.57 4.03 0.26
B8A 19.82 4.63 0.24
B11 65.31 45.43 15.98
B12 70.94 52.66 19.58

Table 11. Percentage of pixels beyond a given relative error threshold for reflectances in [0.5, 0.75]
(L1C).

Band 0.03 0.05 0.1

B05 10.06 3.15 0.29
B06 10.20 2.93 0.22
B07 17.32 4.88 1.13
B8A 20.40 5.26 0.25
B11 53.24 27.82 3.57
B12 52.10 31.80 5.49

Table 12. Percentage of pixels beyond a given relative error threshold for reflectances in [0.75, 1] (L1C).

Band 0.03 0.05 0.1

B05 13.94 8.35 1.36
B06 5.30 1.17 0.07
B07 3.87 1.30 0.73
B8A 6.61 0.86 0.02
B11 85.90 75.64 51.28
B12 92.86 90.00 81.43

Figures 7 and 8 display scatterplots of predicted versus real reflectance values for the
L1C and L2A bands, respectively. For clarity in the visualization, these scatterplots are
generated with a small random sample of the validation data. Nevertheless, they show the
general behavior and are coherent with the metrics presented in the tables above.
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Figure 7. Scatterplots for the single-band regression (L1C). The colors
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Figure 7. Scatterplots for the single band regression (L1C). The colors indicate the density of points.
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Figure 7. Scatterplots for the single band regression (L1C). The colors indicate the density of points.
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As explained in section 2.2.1, the regression model is also able to estimate the uncertainty414

of the predicted value by associating a variance to it. Since this variance is an estimation itself,415

its meaningfulness needs to be assessed.416

The loss function used to train the model was chosen assuming a Gaussian error model.417

The histograms in figures 9 and 10 show that the distributions of the errors are not Gaussian.418

However, these distributions are mono-modal, which may allow using the estimated variance419

as a good proxy for the uncertainty of the estimation. In order to check this hypothesis, we will420

measure the proportion of pixels having errors higher than a given proportion of the variance.421

In the case of a Gaussian distribution, we have that P (µ−1σ ≤ X ≤ µ+1σ) ≈ 68.27%,422

P (µ−2σ≤ X ≤µ+2σ) ≈ 95.45% and P (µ−3σ≤ X ≤µ+3σ) ≈ 99.73%.423

We can therefore compute the proportion of pixels having an absolute error lower than σ,424

2σ and 3σ and compare to the probability values above.425

Tables 13 and 14 present the above-mentioned proportions of pixels whose errors are426

within the bounds given by the estimated sigma. We see that, although not identical, the427
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It is important to understand that the value of σ is provided by the regression algorithm429

as a prediction. These results show that this prediction of σ is indeed a good proxy for the430

indicate the increas-
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To complete the analysis of the errors, we present the histograms of the errors (true
minus predicted reflectance) using the complete validation dataset (about 5 million pixels).
Figure 9 shows the histograms for the L1C bands and Figure 10 for the L2A bands.
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Figure 9. Histograms of the errors (true value minus prediction) for the L1C bands.
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Figure 10. Histograms of the errors (true value minus prediction) for the L2A bands.

3.2.2. Analysis of the Uncertainty Estimation

As explained in Section 2.2.1, the regression model is also able to estimate the uncer-
tainty of the predicted value by associating a variance with it. Since this variance is an
estimation itself, its meaningfulness needs to be assessed.

The loss function used to train the model was chosen assuming a Gaussian error
model. The histograms in Figures 9 and 10 show that the distributions of the errors are
not Gaussian. However, these distributions are mono-modal, which may allow use of the
estimated variance as a good proxy for the uncertainty of the estimation. In order to check
this hypothesis, we will measure the proportion of pixels having errors higher than a given
proportion of the variance.

In the case of a Gaussian distribution, we have P(µ− 1σ ≤ X ≤ µ + 1σ) ≈ 68.27%,
P(µ− 2σ ≤ X ≤ µ + 2σ) ≈ 95.45% and P(µ− 3σ ≤ X ≤ µ + 3σ) ≈ 99.73%.

We can therefore compute the proportion of pixels having an absolute error lower
than σ, 2σ and 3σ and compare the results to the probability values above.
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Tables 13 and 14 present the above-mentioned proportions of pixels whose errors are
within the bounds given by the estimated sigma. We see that, although not identical, the
proportions are relatively similar to what one should get in the Gaussian case.

Table 13. Probability of the absolute error being lower than n× σ (L1C).

Band σ (68.27%) 2σ (95.45%) 3σ (99.73%)

B05 68.80 92.26 98.29
B06 70.23 93.14 98.53
B07 70.82 93.27 98.43
B8A 70.36 91.99 97.57
B11 56.86 84.11 94.94
B12 61.57 87.50 96.23

Table 14. Probability of the absolute error being lower than n× σ (L2A).

Band σ (68.27%) 2σ (95.45%) 3σ (99.73%)

B5 65.68 90.00 96.87
B6 71.84 93.85 98.70
B7 74.28 94.50 98.69

B8A 70.07 92.13 97.93
B11 56.18 81.51 93.04
B12 64.70 91.15 97.91

It is important to understand that the value of σ is provided by the regression algorithm
as a prediction. These results show that this prediction of σ is indeed a good proxy for
the probability of the reflectance estimation being in the predicted interval. Therefore, the
estimation of σ can be a threshold and used as a validity mask for the estimations.

3.3. Double-Band Regression

We present here the results for the case where two bands are predicted from the others.
This case will, of course, produce higher estimation errors because for each predicted band
there is one fewer predictor.

Tables 15 and 16 present the results for the L1C and the L2A data. Each row in the
tables presents the results for a pair of bands jointly predicted. The same quality metrics
as for single-band regression are presented. Each table has 15 rows since we evaluate all
possible combinations of pairs of bands.

The rows in Table 15 are sorted in increasing order of the maximum relative error of
the pair of bands. This allows one to quickly see that only one pair of L1C bands (B06
and B07) can be predicted with less than 3% error, and that another pair (B07 and B8A) is
slightly above this threshold.

For the L2A data presented in Table 16, the rows are sorted by increasing RMSE using
the maximum of the pair in each row. In this case, only the pair (B5, B8A) fulfills the 0.01
error threshold, although the pair (B5, B6) is not much above this threshold.

Figure 11 presents the scatterplots for the two best pairs of L1C bands (the two first
rows in Table 15. Altough the scatterplots are generated by subsampling the test dataset
for readability, one can see that the estimations are unbiased and have a small dispersion
around the regression lines. One can also see that part of the error comes from pixels
with reflectances higher than one, for which there is underestimation. Since the regression
algorithm is configured to yield reflectances in the [−0.2, 1.3] interval, we can expect that
the error in this interval is smaller than what is reported in the tables.
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Table 15. Double-band regression results for L1C. The colors in the RE (relative error) columns
indicate whether the specification is fulfilled (light gray), nearly fulfilled (middle gray) or unfulfilled
(dark gray).

Band RMSE MAE RE R2 Band RMSE MAE RE R2

B06 9.28 × 10−3 4.79 × 10−3 2.67 × 10−2 9.93 × 10−1 B07 1.07 × 10−2 4.93 × 10−3 2.64 × 10−2 9.93 × 10−1

B07 1.68 × 10−2 5.49 × 10−3 3.47 × 10−2 9.89 × 10−1 B8A 1.95 × 10−2 7.84 × 10−3 4.34 × 10−2 9.84 × 10−1

B05 9.31 × 10−3 3.96 × 10−3 5.12 × 10−2 9.94 × 10−1 B06 1.01 × 10−2 4.22 × 10−3 4.07 × 10−2 9.94 × 10−1

B05 6.52 × 10−3 3.58 × 10−3 3.88 × 10−2 9.94 × 10−1 B11 1.66 × 10−2 1.12 × 10−2 7.57 × 10−2 9.86 × 10−1

B06 1.52 × 10−2 4.85 × 10−3 3.24 × 10−2 9.92 × 10−1 B11 1.75 × 10−2 1.16 × 10−2 9.04 × 10−2 9.82 × 10−1

B06 4.38 × 10−2 1.58 × 10−2 1.00 × 10−1 9.47 × 10−1 B8A 1.90 × 10−2 5.88 × 10−3 7.06 × 10−2 9.92 × 10−1

B05 8.20 × 10−3 4.16 × 10−3 3.64 × 10−2 9.94 × 10−1 B07 4.34 × 10−2 1.66 × 10−2 1.21 × 10−1 8.41 × 10−1

B05 3.79 × 10−2 8.14 × 10−3 9.38 × 10−2 8.74 × 10−1 B12 1.92 × 10−2 1.07 × 10−2 1.27 × 10−1 9.66 × 10−1

B05 9.64 × 10−3 4.24 × 10−3 3.93 × 10−2 9.96 × 10−1 B8A 4.63 × 10−2 1.93 × 10−2 1.31 × 10−1 9.45 × 10−1

B07 1.74 × 10−2 4.45 × 10−3 4.05 × 10−2 9.88 × 10−1 B11 5.92 × 10−2 2.88 × 10−2 1.97 × 10−1 8.47 × 10−1

B8A 2.66 × 10−2 7.06 × 10−3 5.44 × 10−2 9.73 × 10−1 B12 1.64 × 10−2 1.00 × 10−2 2.26 × 10−1 9.72 × 10−1

B07 1.93 × 10−2 5.07 × 10−3 4.74 × 10−2 9.87 × 10−1 B12 5.17 × 10−2 2.00 × 10−2 2.37 × 10−1 7.91 × 10−1

B06 7.30 × 10−3 3.88 × 10−3 3.07 × 10−2 9.95 × 10−1 B12 3.63 × 10−2 1.78 × 10−2 2.52 × 10−1 8.59 × 10−1

B8A 5.70 × 10−2 1.47 × 10−2 1.25 × 10−1 8.87 × 10−1 B11 6.20 × 10−2 2.80 × 10−2 2.79 × 10−1 7.51 × 10−1

B11 3.73 × 10−2 2.45 × 10−2 2.93 × 10−1 9.18 × 10−1 B12 3.26 × 10−2 2.03 × 10−2 2.24 × 10−1 9.05 × 10−1

Table 16. Double-band regression results for L2A. The colors in the RE (relative error) columns
indicate whether the specification is fulfilled (light gray), nearly fulfilled (middle gray) or unfulfilled
(dark gray).

Band RMSE MAE RE R2 Band RMSE MAE RE R2

B5 7.38 × 10−3 4.96 × 10−3 1.77 × 10−1 9.95 × 10−1 B8A 9.31 × 10−3 6.22 × 10−3 1.38 × 10−1 9.96 × 10−1

B5 1.11 × 10−2 6.07 × 10−3 1.80 × 10−1 9.95 × 10−1 B6 1.33 × 10−2 6.37 × 10−3 1.25 × 10−1 9.94 × 10−1

B6 8.68 × 10−3 5.07 × 10−3 1.91 × 10−1 9.96 × 10−1 B12 1.53 × 10−2 9.59 × 10−3 3.52 × 10−1 9.77 × 10−1

B6 1.24 × 10−2 6.70 × 10−3 5.37 × 10−1 9.89 × 10−1 B7 1.54 × 10−2 7.70 × 10−3 1.51 × 10−1 9.85 × 10−1

B5 1.26 × 10−2 5.35 × 10−3 2.03 × 10−1 9.94 × 10−1 B11 1.72 × 10−2 1.15 × 10−2 1.94 × 10−1 9.85 × 10−1

B7 7.30 × 10−3 4.72 × 10−3 1.23 × 10−1 9.96 × 10−1 B12 1.74 × 10−2 1.11 × 10−2 1.97 × 10−1 9.78 × 10−1

B7 1.13 × 10−2 5.98 × 10−3 1.10 × 10−1 9.94 × 10−1 B8A 1.74 × 10−2 7.70 × 10−3 1.65 × 10−1 9.87 × 10−1

B8A 1.21 × 10−2 6.10 × 10−3 1.91 × 10−1 9.95 × 10−1 B12 1.79 × 10−2 1.08 × 10−2 3.03 × 10−1 9.75 × 10−1

B8A 1.07 × 10−2 6.74 × 10−3 1.09 × 10−1 9.94 × 10−1 B11 1.93 × 10−2 1.31 × 10−2 2.22 × 10−1 9.79 × 10−1

B6 9.79 × 10−3 5.60 × 10−3 1.47 × 10−1 9.95 × 10−1 B8A 1.99 × 10−2 8.58 × 10−3 2.10 × 10−1 9.81 × 10−1

B11 4.14 × 10−2 2.89 × 10−2 3.29 × 10−1 9.01 × 10−1 B12 3.54 × 10−2 2.36 × 10−2 4.86 × 10−1 8.90 × 10−1

B7 3.74 × 10−2 1.41 × 10−2 5.18 × 10−1 9.21 × 10−1 B11 4.98 × 10−2 2.50 × 10−2 2.37 × 10−1 8.56 × 10−1

B5 5.80 × 10−2 1.17 × 10−2 2.11 × 10−1 8.73 × 10−1 B12 1.71 × 10−2 1.09 × 10−2 4.36 × 10−1 9.76 × 10−1

B6 6.55 × 10−2 1.44 × 10−2 7.58 × 10−1 8.01 × 10−1 B11 4.06 × 10−2 1.88 × 10−2 3.21 × 10−1 8.75 × 10−1

B5 7.70 × 10−2 4.45 × 10−2 2.87 × 10−1 8.35 × 10−1 B7 9.79 × 10−3 5.83 × 10−3 9.24 × 10−2 9.96 × 10−1

For L2A data, Figure 12 presents the scatterplots for the pairs of bands in the three
first rows of Table 16. As with the L1C case, the scatterplots show unbiased estimations
with small dispersions, except for the B12 band in the third pair. The random sample
of the test set used for generating these scatterplots does not contain pixels showing the
underestimation of reflectances higher than one, but they also exist.

It is difficult to explain these results. First of all, the pairs of bands that are predicted
the best differ between L1C and L2A. This was already the case for the regression of a single
band, but in that case we could clearly define two groups: red edge–NIR and SWIR. In
the case of two bands, one could have expected that for a pair of bands to be correctly
reconstructed, they would have to be nonadjacent so that the missing information could be
reconstructed using the neighboring bands. However, we see that the best pair in L1C is
(B06, B07) and that the second best pair in L2C is (B5, B6).

With the same kind of reasoning, one could have expected that the pair (B11, B12)
should be the one with the largest errors, since reconstructing the SWIR bands using only
the VIS–NIR range should be nearly impossible. This is the case in terms of relative error,
but not in terms of RMSE, which makes SWIR a better candidate for L2A reconstruction
than more spectrally distant pairs.
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Figure 13 presents the scatterplots for the prediction of the SWIR bands in L1C (top row)
and L2A (bottom row). Although the dispersions are important, there is no systematic bias
in the estimation, which confirms the redundancy of spectral information for most surfaces.

Figure 11. Scatterplots for the double-band regression (L1C). Each row in the figure corresponds to a
row in Table 15. The colors

Version May 14, 2022 submitted to Remote Sens. 15 of 24

Figure 7. Scatterplots for the single band regression (L1C). The colors indicate the density of points.

3.2.2. Analysis of the uncertainty estimation413

As explained in section 2.2.1, the regression model is also able to estimate the uncertainty414

of the predicted value by associating a variance to it. Since this variance is an estimation itself,415

its meaningfulness needs to be assessed.416

The loss function used to train the model was chosen assuming a Gaussian error model.417

The histograms in figures 9 and 10 show that the distributions of the errors are not Gaussian.418

However, these distributions are mono-modal, which may allow using the estimated variance419

as a good proxy for the uncertainty of the estimation. In order to check this hypothesis, we will420

measure the proportion of pixels having errors higher than a given proportion of the variance.421

In the case of a Gaussian distribution, we have that P (µ−1σ ≤ X ≤ µ+1σ) ≈ 68.27%,422

P (µ−2σ≤ X ≤µ+2σ) ≈ 95.45% and P (µ−3σ≤ X ≤µ+3σ) ≈ 99.73%.423

We can therefore compute the proportion of pixels having an absolute error lower than σ,424

2σ and 3σ and compare to the probability values above.425

Tables 13 and 14 present the above-mentioned proportions of pixels whose errors are426

within the bounds given by the estimated sigma. We see that, although not identical, the427

proportions are relatively similar to what one should get in the Gaussian case.428

It is important to understand that the value of σ is provided by the regression algorithm429

as a prediction. These results show that this prediction of σ is indeed a good proxy for the430

indicate the increasing density of points.
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Figure 12. Scatterplots for the double-band regression (L2A). Each row in the figure corresponds to a
row in Table 16. The colors

Version May 14, 2022 submitted to Remote Sens. 15 of 24

Figure 7. Scatterplots for the single band regression (L1C). The colors indicate the density of points.

3.2.2. Analysis of the uncertainty estimation413

As explained in section 2.2.1, the regression model is also able to estimate the uncertainty414

of the predicted value by associating a variance to it. Since this variance is an estimation itself,415

its meaningfulness needs to be assessed.416

The loss function used to train the model was chosen assuming a Gaussian error model.417

The histograms in figures 9 and 10 show that the distributions of the errors are not Gaussian.418

However, these distributions are mono-modal, which may allow using the estimated variance419

as a good proxy for the uncertainty of the estimation. In order to check this hypothesis, we will420

measure the proportion of pixels having errors higher than a given proportion of the variance.421

In the case of a Gaussian distribution, we have that P (µ−1σ ≤ X ≤ µ+1σ) ≈ 68.27%,422

P (µ−2σ≤ X ≤µ+2σ) ≈ 95.45% and P (µ−3σ≤ X ≤µ+3σ) ≈ 99.73%.423

We can therefore compute the proportion of pixels having an absolute error lower than σ,424

2σ and 3σ and compare to the probability values above.425

Tables 13 and 14 present the above-mentioned proportions of pixels whose errors are426

within the bounds given by the estimated sigma. We see that, although not identical, the427

proportions are relatively similar to what one should get in the Gaussian case.428

It is important to understand that the value of σ is provided by the regression algorithm429

as a prediction. These results show that this prediction of σ is indeed a good proxy for the430

indicate the increasing density of points.
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Figure 13. Scatterplots for the double-band regression of the SWIR bands in L1C (top) and L2A
(bottom). The colors

Version May 14, 2022 submitted to Remote Sens. 15 of 24

Figure 7. Scatterplots for the single band regression (L1C). The colors indicate the density of points.

3.2.2. Analysis of the uncertainty estimation413

As explained in section 2.2.1, the regression model is also able to estimate the uncertainty414

of the predicted value by associating a variance to it. Since this variance is an estimation itself,415

its meaningfulness needs to be assessed.416

The loss function used to train the model was chosen assuming a Gaussian error model.417

The histograms in figures 9 and 10 show that the distributions of the errors are not Gaussian.418

However, these distributions are mono-modal, which may allow using the estimated variance419

as a good proxy for the uncertainty of the estimation. In order to check this hypothesis, we will420

measure the proportion of pixels having errors higher than a given proportion of the variance.421

In the case of a Gaussian distribution, we have that P (µ−1σ ≤ X ≤ µ+1σ) ≈ 68.27%,422

P (µ−2σ≤ X ≤µ+2σ) ≈ 95.45% and P (µ−3σ≤ X ≤µ+3σ) ≈ 99.73%.423

We can therefore compute the proportion of pixels having an absolute error lower than σ,424

2σ and 3σ and compare to the probability values above.425

Tables 13 and 14 present the above-mentioned proportions of pixels whose errors are426

within the bounds given by the estimated sigma. We see that, although not identical, the427

proportions are relatively similar to what one should get in the Gaussian case.428

It is important to understand that the value of σ is provided by the regression algorithm429

as a prediction. These results show that this prediction of σ is indeed a good proxy for the430

indicate the increasing density of points.

Actually, if the scatterplots of Figure 13 were obtained for biophysical parameter
estimations, for instance LAI, chlorophyll, biomass, etc., they would be considered very
good (see, for instance [30] or [18]). Of course, image quality criteria need to be more
strict than those of downstream tasks, but this kind of result suggests that the impact of
reflectance noise in downstream applications needs to be assessed.

4. Discussion

From the results presented in Section 3, we can identify several limitations of this
work.

First, analysis of the errors based on type of surface (material, land cover, vegetation
status, etc.) should be carried out in order to assess the impact on different applications.
Although the spatial sampling of the data for this study contained enough variability for
the results to be general, particular surfaces with specificities may need special attention.
Furthermore, selecting the appropriate samples in the areas of most interest for particular
applications can allow fine-tuning of the regression algorithm and improve the performance
of the estimations.
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A second limitation is related to the choice of regression algorithm for the study. The
goal of the work was not to propose an optimal regression algorithm, but rather to show
that band reconstruction is possible using regression. The choice of the neural network
with a negative log-likelihood as a loss function was made for simplicity of implementation,
the possibility of performing multi-target regression, and the generation of uncertainties
associated with the estimations. Other approaches could yield better results and even
produce a different set of bands candidate for removal.

All of the above suggests that replication of the study by other teams would be useful.
For this purpose, the dataset has been published [25], and the source code is available for
inspection and download (https://src.koda.cnrs.fr/mmdc/mmdc-legacy/-/blob/master/
mmdc/spectral_regression.py, accessed on 10 May 2022).

A third limitation is the pixel-based approach taken here. Reconstructing a missing
band from the reflectances of the other bands of the same pixel assumes unicity of the
solution: one combination of observed bands can only correspond to one value of the
missing band. Although the results of this study tend to show that this is the case, there are
pixels for which the error is high. In the current setting, the regression algorithm is able to
flag these pixels by reporting high uncertainty, but this is not fully satisfactory. One way
of lifting the ambiguity would be to add some spatial context for the regression, so that
the observations of neighboring pixels, and therefore the local texture, helps the prediction.
This could be implemented with spatial convolutional layers in the regression algorithm.

In the same way, a multi-temporal extension of the algorithm could improve the
estimations. However, this extension is less straightforward than adding spatial context,
since clouds and cloud shadows introduce irregular temporal sampling that should be
taken into account. Further, the relative geometric accuracy of multi-temporal series should
be taken into account in this case.

5. Conclusions

In this paper, we have investigated the possibility of reconstructing one or two of the
20 m resolution bands from Sentinel-2 using the remaining bands. The goal of the study
was to assess the possibility of removing some of the current Sentinel-2 spectral bands for
the next generations of similar satellites.

The interest of working on band reconstruction is that the approach is independent
of the application. The main rationale is, if a band can be reconstructed with errors which
are within the radiometric requirements of the sensor, downstream applications can use a
reconstructed band instead of a real measure.

The main findings of the study are that, at the least, one of the bands among B5,
B6, B7 and B8A could be removed from next generation sensors, as all of them can be
reconstructed with small errors when the others are available. Removing two bands could
be possible at the cost of slightly higher reconstruction errors.

We have also shown that the estimation of a credibility interval for the predicted
reflectances is possible and can therefore be used as a quality mask.

However, this study has several limitations that have been clearly identified in section
4 and that would need to be addressed in the future.

If the next generation of Sentinel-2 had one or several bands removed, one could
argue that the approach presented in this work could not be applied, since the regression
calibration (i.e., the neural network training) needs the target band. Several responses can
be given to this argument. If the bands used as predictors remain the same in the new
sensor, the regressions calibrated with the current Sentinel-2 data should be applicable.

If the bands used as predictors for this study were not available in the next genera-
tion of satellites, one could constitute enough training data by using acquisitions from a
hyperspectral mission such as CHIME [31]. The appropriate spectral bands (predictors and
targets) could be generated using the relative spectral responses of the next generation of
Sentinel-2.

https://src.koda.cnrs.fr/mmdc/mmdc-legacy/-/blob/master/mmdc/spectral_regression.py
https://src.koda.cnrs.fr/mmdc/mmdc-legacy/-/blob/master/mmdc/spectral_regression.py
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Finally, given the temporal revisit of Sentinel-2, it would be interesting to evaluate
the possibility of having different bands in different satellites of the constellation, so that
the band predictions could be temporally interleaved. For instance, with two satellites,
one could imagine removing B6 in the A unit and removing B7 in the B unit. In this
configuration, the reconstruction of B6 at a given date could use the other bands for this
acquisition, as well as the most recent acquisition of the other satellite, for which B6 would
have been observed. This kind of scenario would allow for interesting configurations where
one satellite of the pair could have the SWIR bands absent. Indeed, the variance observed in
Figure 13 could be highly reduced if the two SWIR bands for a previous date were available.
Of course, for surfaces where the SWIR signature can change quickly during cloudy periods
(snow falls), the impact of this kind of setting should be studied. Fortunately, available
Sentinel-2 archive data allows that.

Another interesting possibility of the approaches presented in this paper is the addition
of new bands, but only in some satellites of the constellation. On this topic, we should
stress the comments on [32], as we did in Section 1.4: the fact that a particular phenomenon
has a signature in a particular band does not mean that this same phenomenon cannot be
detected by using a (nonlinear) combination of other bands. The results presented in this
paper indicate that the question can be reversed.

The attentive reader will have understood that many options are open to reduce
costs and hardware complexity for the successors of the current Sentinel-2 system by
leveraging spectral, spatial and temporal correlations of the observed surfaces through
ground data processing.

This work is just an example of what could be done by using the richness of the
Sentinel-2 archives. We think that with the help of other scientists, further studies could be
defined. For instance, a subset of geographic areas and dates for each target application
together with ground measures could be made available. This would allow the objective
assessment of errors due to the lack of particular bands.
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