
����������
�������

Citation: Fore, A.G.; Stiles, B.W.;

Strub, P.T.; West, R.D. QuikSCAT

Climatological Data Record: Land

Contamination Flagging and

Correction. Remote Sens. 2022, 14,

2487. https://doi.org/10.3390/

rs14102487

Academic Editor: Kun-Shan Chen

Received: 22 March 2022

Accepted: 13 May 2022

Published: 23 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

QuikSCAT Climatological Data Record: Land Contamination
Flagging and Correction
Alexander G. Fore 1,*,† , Bryan W. Stiles 1,†, Paul Ted Strub 2 and Richard D. West 1

1 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA;
bryan.w.stiles@jpl.nasa.gov (B.W.S.); richard.d.west@jpl.nasa.gov (R.D.W.)

2 College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA;
tstrub@coas.oregonstate.edu

* Correspondence: alexander.fore@jpl.nasa.gov
† These authors contributed equally to this work.

Abstract: We develop, utilize, and validate techniques to produce a global data set of accurate coastal
ocean surface vector winds. The dataset extends as near to the coast as 5 km and includes 10 years
of SeaWinds on QuikSCAT ocean scatterometer data obtained from 1999 to 2009. We demonstrate
improved retrievals over other large land-locked bodies of water as well, such as the Caspian Sea
and the Great lakes. To determine the coastal winds we quantify the extent of land contamination in
each scatterometer backscatter measurement and to the extent possible remove that contamination.
After the measurements are thus corrected we retrieve winds with the corrected measurements
using a previously published algorithm which has been extensively used for JPL scatterometer wind
products. The coastal processing vastly increases the number of wind vector cells near coasts. We
have ten times the number of wind vectors within 10 km of coast as without coastal processing,
and over twice as many at 20 km from coast. These new wind vectors are high-quality, and have
zero effect on non-coastal wind vectors. The effect of residual land contamination is quantified by
comparing to buoys at varying distance from the coast and comparing coastal wind vector cells to
oceanward neighbors. We show that the non-coastal QuikSCAT processing has very few good wind
vectors nearer to the coast than about 22.5 km. In comparison to buoys, and oceanward neighbors,
we find a small increase in speed errors of these new coastal wind vectors versus the performance of
non-coastal QuikSCAT at 22.5 km, indicating the high-quality of these new coastal wind vectors. A
quality control scheme is employed that flags regions where the coastal wind retrieval is poor due
to the assumptions inherent in the technique being locally invalid. The coastal winds retrieved in
this manner have been publicly distributed to the oceanography community and utilized in other
published works.

Keywords: scatterometery; radar; coastal winds; ocean vector winds

1. Introduction

QuikSCAT is a Ku-Band (13.4 GHz/2.24 cm) microwave scatterometer which measures
the normalized radar cross-section (σ0). SeaWinds on QuikSCAT was operational for over a
decade, from 1999 to November 2009, providing a high-quality climatological data record
of Ocean Surface Vector Winds (OVW). In this paper we introduce a new coastal data
processing method, Land Contribution Ratio Expected Sigma0 (LCRES), which vastly
increases the number of OVW in coastal areas (within 40 km of coast). Previous work [1]
has introduced the climate data record for the previous version of QuikSCAT without
LCRES processing.

Improvements in resolution of wind fields near the coasts are necessary to increase
our understanding of various parts of coastal meteorology and oceanography. In the
atmospheric marine boundary layer (MBL), winds are modified by air-sea temperature
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differences [2–4], land-sea temperature differences [5], and interactions of the wind field
with coastal geometry created by capes and bays [6,7]. Although scatterometer data have
improved our understanding of wind patterns during upwelling (equatorward winds along
the basins’ eastern boundaries) in the regions between 50–200 km of the coast, the more
complex patterns of winds and wind stress curl in the 50 km next to the coast have only
been sampled during infrequent field campaigns [8–10]. Even less is known about coastal
wind patterns in the same regions during winter downwelling (poleward winds), especially
cases of extreme winds during landfalling storms. The amplification of winds between
island systems such as the Hawaiian Islands and Channel Islands off southern California is
another poorly understood process, with direct impacts on maritime safety [11–13]. In these
regions, convergences and divergences of coastal winds lead to vertical motion in the MBL
that increase and decrease clouds and precipitation. The need to better resolve ’derivative’
fields of wind stress curl and wind convergences in the 50 km next to land imposes the
strongest requirements for improved spatial resolution of scatterometer winds in coastal
regions [7]. Within the coastal ocean, changes in the horizontal patterns of surface wind
stress affect the structure of coastal currents and (especially) vertical motions within the
water column. Vertical motions, in turn, move nutrients into or out of the surface euphotic
zone and have a direct effect on primary productivity [14–16]. Phytoplankton blooms may
be beneficial to coastal marine ecosystems or may result in harmful algal blooms (HABS).
Even benign blooms can lead to excess biomass that sinks, decays, and accentuates hypoxia
and ocean acidity [17]. The same wind forcing that causes upwelling leads to horizontal
currents that both create and bound the coastal regions of greater productivity. When
alongshore upwelling-favorable winds bring denser water to the surface next to the coast,
there is a corresponding drop in sea level that creates a cross-shelf height difference and
an alongshore geostrophic jet at the frontal boundary between the offshore and upwelled
water [18,19]. Additional upwelling at a distance from the coast is created by Ekman
pumping, which is caused by the curl of the wind stress [20]. Modeling studies by [21] off
central Chile demonstrate that a coastal jet created by an equator-ward wind field without
offshore wind stress curl stays next to the coast, whereas a similar jet driven by winds with
a realistic offshore wind stress curl leaves the coast and continental shelf and becomes a
free jet over the deep ocean. Off the U.S. West Coast, offshore movement of the upwelling
front jet greatly expands the region of higher productivity inshore of the jet [22]. In time,
the free jet develops nonlinear meanders that shed eddies, which propagate westward into
the deep ocean, carrying rich coastal water even farther into the open ocean [23]. This
process of eddy generation and westward propagation is ubiquitous in the world ocean,
as demonstrated by [24], with biological consequences described by [25,26]. However,
quantitative, high-resolution observations of gradients of wind stress responsible for the
generation of the non-linear jets and eddies in the 50 km next to the coast are only available
from scattered meteorological moorings and brief aircraft campaigns [8–10].

The 10 years of QuikSCAT data produced using the LCRES method can be used to
systematically examine the atmospheric and oceanic processes described above in coastal
regions of the global ocean. These processes gain societal importance due to their effects
on commercial and recreational uses of the coastal ocean, in addition to their effect on
weather patterns that impact communities located in coastal regions. One example is
the rich fisheries created by upwelling, which account for a large percentage of global
fish production, although they correspond to only a small fraction of the global ocean
surface area. For example, the California and the Humboldt (Western South America)
Current Systems account for approximately one-fifth of the global commercial marine
harvest [14,27]. Sport fishing adds to this, with an estimate that marine sport anglers in
the U.S. spent 14.6 B during 2004, with even greater economic impacts through tourism,
transportation, and other aspects of commerce [28,29]. Finally, offshore wind in coastal
regions are very important for wind power generation [30], and this 10 years global dataset
can enable novel studies for wind power resource assessment.
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2. Data

The input dataset for the coastal reprocessing is the version 2 QuikSCAT Level 1B data
using the slice normalized radar cross-section (σ0) ( https://doi.org/10.5067/QSXXX-L1
B02, accessed on 9 July 2020), and we obtain this data from the Physical Oceanography
Active Archive Center (PODAAC) at JPL. σ0 is the calibrated radar cross section, which
is proportional to the received power, and normalized by gain, area, and range factors.
The distance to nearest coastline map is obtained from Goddard Space Flight Center
and is posted every 0.01◦ in latitude and longitude (https://oceancolor.gsfc.nasa.gov/
docs/distfromcoast/, accessed on 9 July 2020). We then improve the distance from coast
map by including major inland seas (Caspian sea), as well as many of the largest lakes
in the world. For the land mask, we use the 24-category Land Cover and Land Use
maps from the United States Geological Survey (USGS) which is posted at 30 arcsecond
resolution (https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-
products-global-land-cover-characterization-glcc, accessed on 10 March 2022). To compute
the spatial response of the radar on the ground we use the antenna pattern for QuikSCAT
as well as knowledge of the slice bandwidth and chirp rate of the radar.

For validation we use National Data Buoy Center (NDBC) data—we use only buoys
that are within 100 km of coastline. In Figure 1 we plot all the buoy locations used
in the analysis presented in this paper. We use 178 NDBC buoys, and we have about
1.7 million matchups with version 4.1 of QuikSCAT, 1.46 million matchups for V3.1, and
1.4 million matchups for V3. Finally, we use the Liu and Tang model [31] to convert the
buoy measurements to 10 meter equivalent neutral winds.

Figure 1. Locations of NDBC buoys used in this data analysis, we use all NDBC buoys that were
within 100 km of coastline, including some in the Great Lakes.

Table 1 lists all the versions of the QuikSCAT retrieved winds described in this paper.
The newest version (4.1/LCRES) is the one in which coastal winds are retrieved using the
method described in this paper (https://podaac.jpl.nasa.gov/dataset/QSCAT_LEVEL_
2B_OWV_COMP_12_KUSST_LCRES_4.1, accessed on 9 March 2020).

https://doi.org/10.5067/QSXXX-L1B02
https://doi.org/10.5067/QSXXX-L1B02
https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/
https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc
https://podaac.jpl.nasa.gov/dataset/QSCAT_LEVEL_2B_OWV_COMP_12_KUSST_LCRES_4.1
https://podaac.jpl.nasa.gov/dataset/QSCAT_LEVEL_2B_OWV_COMP_12_KUSST_LCRES_4.1
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Table 1. QuikSCAT Data Versions.

Version Coastal Processing Method Description

3.0 Conservative Flagging 20 km distance threshold from low-res landmap.
3.1 Land Contamination Ratio Reject slices with LCR value fland < 0.01.
4.0 LCRES No QC Same as 4.1 except no flag for poor coastal retrievals, not publicly available
4.1 LCRES Reject slices with LCRES < 0.004 and use land correction.

3. Method
3.1. Previous Work in Field

Two approaches have been used by other authors to retrieve QuikSCAT winds closer to
the coast. The first method is the Land Contribution Ratio (LCR) thresholding technique [32]
by Owen and Long. The second is the empirical land mask technique (ELM) [33] by
Vanhoff et al. The LCR technique makes use of a more accurate and computationally
intensive estimate of the spatial response, R = R(lat, lon, b, α) of each measurement. Here
b is the antenna polarization and α is the antenna azimuth angle. The spatial extent of
each measurement is roughly a 25 km by 8 km rectangular intersection with an ellipse as
shown in the leftmost panel of Figure 2 above. The spatial response differs from the spatial
extent in that it quantifies how much a particular point on the ground contributes to the
measurements. Since σ0 values over land are typically more than an order of magnitude
higher than those over ocean, even land outside the nominal spatial extent can adversely
impact wind retrieval.

ROSES 2013 OCEAN VECTOR WINDS SCIENCE TEAM 
NRA NNH13ZDA001N DISCOVERING A DECADE OF COASTAL WINDS FROM SCATTEROMETERS 
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bins. The middle panel shows multiple observations (footprints) obtained by the spinning antenna. The rightmost 
panel shows a portion of the pattern inscribed on the ground by the two rotating antenna beams. The blue circles are 
two rotations of the outer 54-degree incidence angle beam, and the red circles are rotations of the inner 46-degree 
incidence angle beam. The dots at the center of each circle are the location of the spacecraft in its orbit when that 

circle was inscribed. The black rectangle illustrates where measurements from four different azimuths (arrows) 
overlap. Measurements from different azimuths are required to retrieve wind direction and speed. 

The LCR technique makes use of a more accurate and computationally intensive estimate of the 
spatial response R(lat,lon) of each measurement. The spatial extent of each measurement is 
roughly a 25 km by 8 km rectangular intersection with an ellipse as shown in the leftmost panel 
of Figure 1 above. The spatial response differs from the spatial extent in that it quantifies how 
much a particular point on the ground contributes to the measurements. Because NRCS values 
over land are typically more than an order of magnitude higher than those over ocean, even land 
outside the nominal spatial extent can adversely impact wind retrieval. 
 

Figure 2. QuikSCAT Measurement Geometry. The geometry is shown on three scales. On the left,
the smallest scale illustrates the spatial extent for the measurements (about 8 km by 25 km range
slices) obtained during a single radar observation. Range slices are produced by breaking up the
energy received by the radar into range-to-target bins. The middle panel shows multiple observations
(footprints) obtained by the spinning antenna. The rightmost panel shows a portion of the pattern
inscribed on the ground by the two rotating antenna beams. The blue circles are two rotations of
the outer 54-degree incidence angle beam, and the red circles are rotations of the inner 46-degree
incidence angle beam. The dots at the center of each circle are the location of the spacecraft in its
orbit when that circle was inscribed. The black rectangle illustrates where measurements from four
different azimuths (arrows) overlap. Measurements from different azimuths are required to retrieve
wind direction and speed.

The LCR is the ratio between the integration of R over land and R over the entire
surface of the Earth. In practice, everything outside a 100-km radius circle centered at
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the measurement centroid can be ignored, to speed things up. In [32], measurements
with LCR exceeding a threshold were left out of wind retrieval. The threshold used was
allowed to vary based upon local conditions. Land contamination is worst when the ocean
is radar-dark (low wind speed) and the land is radar bright. Owen and Long used the
largest nearby σ0 measurement over land and the lowest retrieved wind speed over nearby
open ocean to set the LCR threshold to determine which measurements are omitted from
each wind retrieval grid cell.

This is typically a conservative approach unless off-shore winds are higher than winds
nearer the coast. The LCR approach allows measurements that are fortuitously oriented to
get closer to the coast. Figure 3 demonstrates how land contamination varies for measure-
ments from two different azimuth looks along the California coast. The radar-bright halo
around the coast varies in thickness depending upon precisely how the measurements align
with the coast. Figure 4 expands a portion of the coast and shows the approximate measure-
ment shapes to illustrate the affect. When the slices are parallel to the coast the region of
land contamination is thin. When they are perpendicular, the contaminated region is thick.
Bays and peninsulas can complicate the situation. The ELM approach estimates a different
land mask for each antenna beam and azimuth angle [33]. The land mask is determined
based on the normalized standard deviation (standard deviation divided by the mean) of
the σ0 measurement data. σ0 measurements over ocean have large variability because of
the effect of wind speed on σ0. σ0 measurements due to typical high winds (15 m/s) can be
20 or more times higher than those for typical low winds (3 m/s) and more extreme winds
can vary σ0 even more. Over land however, σ0 values usually have much smaller variance
when a single azimuth angle is considered (i.e., a factor or 1.5 or less between low and high
extremes). Vanhoff et. al. created a set of land masks for each azimuth angle and antenna
beam M(azimuth, beam, lat, lon) such that M was set to 1 if σ0 measurements with that
centroid location (lat, lon), beam, and azimuth angle had variability less than a threshold
value. M was set to 0 otherwise. The variabilities (and thus M) were computed using a
long time sequence of σ0 measurements for each location, azimuth, and beam. During
wind retrieval, these land masks were applied so that σ0 measurements in location and
instrument geometry regimes with M = 1 were excluded from wind retrieval. The LCR
and ELM techniques have complementary sources of error. ELM has the disadvantage
that it is only as good as its assumption about σ0 variability. In rare instances where land
σ0 is highly variable, ELM will mistake that land for ocean. In similar instances where
wind does not vary much, ELM may mistake ocean for land. One must choose a cutoff
for the variability level that is associated with land interference. The variance does not
drop off as a step function as land is approached. Also, different locations and seasons
have somewhat different shapes for the plot of σ0 variance as one approaches land. While
LCR has fewer empirical assumptions, it relies on accurate measurement shape, location,
and land maps. The strength of the ELM technique is that long term statistical errors in
measurement location, are folded back into the land masks appropriately. Measurement
location errors will automatically widen the regions in the land masks where M = 1. Unlike
LCR, the ELM technique makes no use of the spatial response of each measurement or any
a priori land map. ELM empirically generates a synthesis of measurement spatial response
and land location from the σ0 data. So errors in our knowledge of the location of land or
the spatial response of the measurement do not impact ELM.
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range slices illustrated.

3.2. Proposed Land Correction Technique—Land Contribution Ratio Expected σ0

The proposed technique is a combination of the ELM and LCR methods, which we
call LCRES. The first step in our method is to perform an LCR computation for every slice
σ0 of QuikSCAT that is near a coastline, or the shore of a lake. We compute the LCR as

f l
b =

[∫ ∫
R(x, y, b, α)L(x, y)dxdy

]
/
[∫ ∫

R(x, y, α)dxdy
]

, (1)

where the l superscript indicates land, R(x, y, b, α) is the spatial response function, which is
a function of the spatial location (x,y), the antenna polarization b, and the antenna azimuth
angle α, and L(x, y) is the land map which is 1 over land and 0 otherwise. The land fraction,
or LCR, value itself is quite useful for flagging and is the coastal data processing used for
QuikSCAT version 3.1 data (https://podaac.jpl.nasa.gov/dataset/QSCAT_LEVEL_2B_
OWV_COMP_12_LCR_3.1, accessed on 9 March 2022) . The version 3.1 data is used for
comparison in a later section. However, we can do better by combining the LCR value

https://podaac.jpl.nasa.gov/dataset/QSCAT_LEVEL_2B_OWV_COMP_12_LCR_3.1
https://podaac.jpl.nasa.gov/dataset/QSCAT_LEVEL_2B_OWV_COMP_12_LCR_3.1
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with the σ0 value over land to adaptively weight the land contamination values by the
radar brightness of the land that is included in the spatial response of the radar slice σ0. We
compute σ̂l

0,b, the expected contribution to σ0 from land, for a QuikSCAT slice as

σ̂l
0,b =

∫ ∫
R(x, y, b, α)L(x, y)E(σ0|x, y, b, α)dxdy, (2)

where E(σ0|x, y, b, α) is the expected σ0 at location (x,y). We then use the σ̂l
0,b value (hence-

forth referred to as ES) to flag slice σ0 as being contaminated by land, which allows for more
strict flagging in locations where land is radar-dark, and less strict flagging in radar-bright
areas. Finally, we remove the expected land contribution from σ0 to obtain an estimate of
the water-only σ0.

We have computed ES, as a lookup table E(σ0|λ, φ, b, α), where λ, φ are the latitude
and longitude from the 10 years of QuikSCAT data itself. To do this we loop over all of the
orbits of QuikSCAT, and for each slice we compute the total spatial response, as well as that
only over land, and accumulate the the sum response over land times the slice σ0, and the
total response for all 10 years of QuikSCAT. We accumulate monthly maps of ES into a
climatology that allows for seasonal variations that repeat each year. In Figure 5 we show
ES for four different antenna azimuth angles off the western coast of the United States. The
top row contains ES for HH polarization at 0◦, 45◦, 90◦, and 135◦ antenna azimuth angle
for ascending, and the bottom shows the same for descending. We can clearly see how
much ES varies in the coastal region versus antenna azimuth angle and location, it is very
important to account for the different viewing geometry as well as location.

Evaluation of Coastal Scatterometer Products
Alex Fore, Ted Strub, Corinne James, and Bryan Stiles

Abstract
The routine retrieval of scatterometer vector wind data is not attempted within some distance of land, to avoid contamination

of the winds by land reflections of the radar signals. At the Jet Propulsion Laboratory, the entire QuikSCAT data set is being
reprocessed to retrieve coastal wind values from footprints that are partially covered by land. To evaluate these coastal winds,
we compare measured winds (buoys and coastal land stations) to QuikSCAT winds from the new processing, as well as from
the most recent traditional processing. Our initial comparison is for winter (December-February) along the U.S. West Coast.
Since the newly reprocessed data set is global, our evaluation should provide guidance for applications of the new wind product
in other regions.

Introduction

Nominal processing of the QuikSCAT data is done to avoid any possible land contamination with a fixed dis-
tance from coast threshold not taking into account the highly non-uniform spatial response function of the
slices. If we consider the shape of the spatial response function for each QuikSCAT slice, we can obtain Ocean
Vector Wind (OVW) estimates significantly closer to the coast than in the nominal processing.

We investigate two methods, the Land Contamination Ratio method (LCR) and the LCR Expected Sigma0
(LCRES) method. The LCR [1] is the ratio of the spatial response function of each slice over land to the total
integrated spatial response. We use a 1/120� land mask to decimate land and ocean. This requires an integration
of the spatial response over every slice, for every pulse, in every orbit of QuikSCAT data over 10 years. The
LCR method is the less aggressive of our coastal processing methods and is a simple threshold on the LCR
value for each slice. We have used the value 0.01 in our processing for rejecting possibly contaminated data.
The LCRES method is the more aggressive of our coastal processing methods. This method builds upon the
LCR method in that we compute the LCR value times the Expected Sigma0 (ES) for every slice. The ES is
computed again using the spatial response functions, however, instead of integrating over each slice we project
the slice sigma0 into a higher-resolution grid using each slice’s spatial response function. The LCRES value is
then compared to a threshold and rejected if larger. Thus this method will discard less measurements near low
�0 land areas, conditioned on the observation geometry, as compared to the LCR method.

Land Contamination Ratio Processing Status and Evaluation

We have completed the LCR processing for the entire 10 year mission, requiring nearly 1700 CPU days of
computer time, and have already made a portion of this data available to our co-investigators for preliminary
validation studies.
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Figure 1: 12-hourly composite wind image of the west coast of US, (left) the LCR coastal data product and (right) the nominal V3
data product. Note the increased closeness to coast in the LCR map as compared to V3 map with no obvious increase in speed bias
due to land contamination. We also label each of the buoys used in the buoy comparisons.

In Figure 1 we show a 12-hour speed composite images using the LCR method and the nominal V3 product,
where we can clearly see the improved closeness of the scatterometer observations to the coastline.
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Figure 2: Comparisons on new LCR coastal wind product versus buoys near the west coast of the US for 10 years of winter
QuikSCAT (December-February). We plot all of the wind vector cells (WVC) collocated with each buoy in space and time. (top)
location of buoy (gray dot) and WVC match-ups (blue points), (bottom) variance ellipses for buoy (gray) and QuikSCAT (blue). Each
plot illustrates the number of matchup points, the vector correlation (vcc), the speed and direction correlations, the mean speeds for
each, and finally the RMS vector difference. The buoy locations are illustrated in Figure 1.

We also quantitatively analyze the coastal wind products using buoys that are labeled in Figure 1 for the winter
months (December-February). In Figure 2 we perform a comparison of the buoy data and the QuikSCAT data
over the buoys 46027, 46022, 46030, 46014, and 46013. For each buoy we collocate the QuikSCAT data in
time and space. The upper row of Figure 2 illustrates the spatial extent of QuikSCAT Wind Vector Cells (WVC)
data matched-up with each buoy. The lower row of Figure 2 contains variance ellipses for each data set, where
the semi-major and minor axes are the eigenvalues of the wind covariance matrix for each time series, and
the orientation of the axes of the ellipse represents the projection of the eigenvectors of the covariance matrix
along the zonal and meridional axes. We find that the covariances of the buoy data and QuikSCAT data are
in very good agreement with no major degradation even for buoys 46030 and 46027, which are within half a
beam-width of the coast.
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Figure 3: Same as Figure 2, however, we only plot WVCs in new coastal product not contained in nominal V3 QuikSCAT product.

In Figure 3 we plot the same analysis, however, it only uses WVCs which are in the LCR coastal product
but not in the nominal V3 product. Comparing this plot to Figure 2 we see that the LCR coastal processing
produces new wind estimates near the coast that are adding value in the buoy comparisons.

Land Contamination Ratio Expected Sigma0 Processing Status
We have also begun the generation of the expected �0, which again requires the same full X-factor computa-
tion for every slice, from every pulse, for every orbit of QuikSCAT. We have already completed processing
of the LCRES maps for 2008 and we expect the LCRES map processing to be complete by mid June 2016.
After completion of the LCRES maps we will begin parameter studies for choosing the LCRES thresholds for
flagging and possible land correction.
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Figure 4: Images of Expected Sigma0 (ES) for the west coast of United States for December, January, and February 2008. We plot
the ES for cell azimuths 0, 90, 45, and 135 (left to right) for ascending (top) and descending (bottom). The slices orientations depend
on not only the cell azimuth angle but also ascending / descending since the slices are limited by frequency not range. This plot
illustrates the highly variable slice ES as a function of cell azimuth, relative coastline orientation, and ascending / descending. We
also show the buoy locations (black x) as well.

Progress
• Full-mission reprocessing with LCR method complete.

• Generation of LCRES map underway.

• Buoy analysis of LCR shows added value of wind estimates close to coast.

Next Steps
• Full-mission validation of LCR processing.

• Evaluate QuikSCAT winds at different distances offshore against land stations.

• Make LCR data available to public.

• Finish generation of LCRES maps.

• Begin study of LCRES threshold values.
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Figure 5. Images of ES for the west coast of United States for December, January, and February
2008. We plot the ES for cell azimuths 0, 90, 45, and 135 (left to right) for ascending (top) and
descending (bottom). The slices orientations depend on not only the cell azimuth angle but also
ascending/descending since the slices are limited by frequency not range. This plot illustrates the
highly variable slice ES as a function of cell azimuth, relative coastline orientation, and ascend-
ing/descending. The black x markers show the locations of buoys used in some of our coastal
data analysis.
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Once we have computed the LCR value and have the climatology of ES we may
compute the land-corrected σ0 as

σ̂lc
0,b =

σ0,b − f l
bσ̂l

0,b

1− f l
b

, (3)

where the super-script lc denotes land corrected, f l
b is the LCR, and σ̂l

0,b is the ES from the
look up tables. This equation may be derived by considering the total σ0 to be a linear
combination of that from land, weighted by the land fraction, and that from water, weighted
by one minus the land fraction.

4. Coastal Processing of QuikSCAT Slice σ0 to Coastal Wind Vectors

We have reprocessed the entire QuikSCAT data record, from 19 July 1999 to 21 Novem-
ber 2009—nearly 54,000 orbits of QuikSCAT data. The reprocessing begins with the version
2 L1B slice dataset and produces new version 4.1 netCDF data products. For every slice σ0,
first we check how close that slice is to the coast using an ancillary distance from nearest
coast map (see Section 2); if it is within 50 km of nearest coast we continue with coastal
processing, if not we use non-coastal processing. Next, for the coastal σ0 slices only, we
integrate over the slice and compute the LCR value using the method discussed in Section 3.
Once we have the LCR value we use the climatology of ES look-up tables to compute the
LCRES value as the product of the LCR times the ES value. If that LCRES value for this
slice is larger than 0.004 we remove this slice from further wind processing; otherwise
we apply Equation (3) to compute the corrected σ0 for that slice σ0 before wind retrieval.
Finally, during wind retrieval we modify the maximum likelihood estimator (MLE) to use
measured variance weighting instead of predicted variance. Using measured variance
allows residual land contamination or land correction errors to be de-weighted in the MLE
retrieval of ocean surface wind vectors from σ0.

Data-Driven Quality Control and Flagging

Having generated a coastal data set for the entire 10 years of QuikSCAT using the
LCRES correction we have found some regions that have persistent residual land con-
tamination, such as the region shown in Figure 6a. Here we show the mean oceanward
wind speed difference, which is computed by comparing each WVC to its oceanward
nearest neighbors, then averaging that difference into a map. We see that the northern
shore has persistent land contamination that is not fully removed by the LCRES processing;
however, the southern shoreline does not have the same issues. To address the residual
land contamination left after LCRES processing of slice σ0 data, we have generated a neural
network estimate of the oceanward wind speed bias as a function of the geographic means
and standard deviations of QuikSCAT wind speeds retrieved with and without the LCRES
σ0 correction. The neural network estimate is used as a flag instead of the oceanward speed
bias itself in order to avoid erroneously flagging wind jets as poor retrievals. While wind
jets do induce a bias with respect to oceanward neighbors, they do not exhibit a difference
in the high spatial resolution inputs that the neural network uses to estimate those biases.
In short, the neural network does not have access to the misleading information in the
structure of the larger area wind field that compromises a flag using the oceanward bias
itself. We flag the coastal data by applying a threshold of 0.4 m/s to the neural network
generated map. Retrievals in locations on the map with values higher than the threshold
are flagged as poor regions of coastal data processing. Additionally we flag all data within
5 km of land as having poor coastal processing. In Figure 6b.
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(a) (b)

Figure 6. (a) Map of average coastal wind speed bias as compared to that WVC’s oceanward
neighbors. (b) Same with data flagged as poor coastal processing by this neural network removed.
For each WVC we compute the speed bias versus its less coastal nearest neighbors, then accumulate
that difference into this map. The less coastal nearest neighbors are the WVCs which are immediately
adjacent to the WVC in question, which are also further from the coastline. We see that some regions
have persistent errors, such as the northern shoreline in this sample image. We use a neural-network
based flagging algorithm that removes these regions with persistent errors.

5. Results
5.1. Buoy Comparisons

We have collocated the new QuikSCAT coastal product with NDBC buoys that are
within 100-km of the coast; those buoy locations are shown in Figure 1. In Figure 7a
we plot the number of buoy matchups as a function of distance to nearest coastline for
versions 3 (no coastal processing), 3.1 (LCR processing), and 4.1 (LCRES processing) of
QuikSCAT. In Figure 7b we show the speed bias and standard deviation (std) as compared
to buoy wind speed as a function of distance from coastline. We see that with the LCRES
method we have many more observations near the coast, as much as 10 times more within
20 km of coast. The V3 processing has very few WVCs closer to the coast than 22.5 km,
while the V4.1 coastal processing gets as close to the coast as 10 km, and the V3.1 processing
is somewhat closer to the coast than the V3 processing. The performance of these new
WVCs in V4.1 closer to the coast than 22.5 km is nearly as good as the V3 product at 22.5 km;
in particular we note that V4.1 lower wind speed bias between 10 km and 25 km and similar
wind speed std except below 12 km or so from coast where it is slightly worse. All of the data
show an increase in errors as compared to buoys as we approach the coast, however, that is
not all due to land contamination as the V3 QuikSCAT product has a very conservative
land control applied. Furthermore, spatial inhomogeneity in the coastal region complicates
comparisons of the spatially-averaged wind estimate from scatterometers with the point
source observations from buoys so this increase in errors is expected to some degree.

Note that the binning algorithm used in V3 and onwards over-samples the slice σ0
into the WVC grid which tends to cause noticeable ‘bunching‘ effects near coastlines [1].
The inclusion of more coastal σ0 slices in version 4 and 3.1 explains the relative decrease of
less-coastal WVCs (between 20–40 km from coast) and increase in more coastal WVCs (less
than 20 km from coast) in the right plot of Figure 7.
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Figure 7. (a) Number of buoy matchups as a function of distance to nearest coast in km for
versions 3 (no coastal processing), 3.1 (LCR processing), and 4.1 (LCRES processing). (b) Mean
buoy wind speed difference as a function of distance to nearest coast in km for the same data versions.
Note that the new processing has many more observations near to coast than the V3 processing—at
least 10 times as many buoy hits within 20 km of the coast. We also notice that agreement from
10 km is only marginally worse than at 40 km from shore, while performance at 5 km from coast is
significantly degraded.

5.2. Comparisons to Oceanward WVCs

We also considered an alternative method of quantifying the coastal land contamina-
tion in a WVC: by comparison to the average of the adjacent WVCs (the adjacent WVCs
are the eight nearest neighbors) which are further from the coast. This allows us to see
incremental increases in land contamination as we get closer to the coast. In Figure 8 we
compare each coastal WVC to the average of its nearest-neighbors which are further away
from the coast, then we create statistics as a function of distance from coast. In Figure 8a
we show the number of WVCs as a function of distance from coast over ocean, in Figure 8b
we plot the speed bias and root-mean-square (RMS) difference as compared to oceanward
neighbors, as a function of distance to coast. In Figure 8c,d we plot the same metrics,
but over large inland lakes. Again, we first note that the V3 QuikSCAT has very little WVCs
closer to the coast than 22.5 km, which has a conservative land rejection threshold. Over
ocean, we note that the V3 product sharply drops off in counts around 22.5 km from coast,
while V3.1 and V4.1 get much closer to the coast. Over lakes, we find V4.1 gets much closer
to the coast than either V3 or V3.1, both of which get no closer than about 22.5 km, while
V4.1 gets as close as 10 km to coast. The bias of the V4.1 products is better than that of
the V3 and V3.1 products until under 10 km, while the RMS differences are better than V3
at 22.5 km until about 13km from coast, then about 0.2 m/s worse at 10 km, and 0.4 m/s
worse as it approaches the lower limit of 5 km from coast. Similarly, over lakes we see that
V4.1 has less bias than V3 at 22.5 km while having smaller RMS differences. Note that the
same effect is happening in these comparisons as in the buoy comparisons; that is, that the
gridding algorithm used causes a bunching effect of the WVC centroids near coastlines,
which explains the decrease in WVCs from about 20–40 km and increase below 20 km for
the upper-left and lower-left plots in Figure 8.
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Figure 8. (a) Number of WVCs as a function of distance to nearest coastline, for QuikSCAT V3,
V3.1 with LCR, and V4.1 with LCRES. (b) Speed bias versus oceanward neighbors, as a function
of distance from nearest coastline, for the same datasets. (c) Same as upper-left but statistics only
computed over large inland lakes with respect to lakeward neighbors. (d) Same as upper-right but
statistics only computed over large inland lakes. We see many more WVCs near to coast in the LCRES
method of processing than in V3 QuikSCAT without any coastal processing, and an improvement
as compared to using just the LCR method. On the lower-right plot we note that the performance
degradation close to coast is minimal as we get close to the coast.

We can quantify the increase in coastal wind vector cells by looking at the cumulative
counts (c(x) = total number of samples at a distance less than x from the coast) we
show in Figure 9. We can see that there are nearly 10× as many wind vector cells within
20 km of coast in V4.1 as compared to version 3, and we are increasing the number of
WVCs as compared to V3.1 even as we reduce the speed bias and STD as compared to
oceanward neighbors.
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Figure 9. Cumulative number of wind vector cells as a function of distance from coast.

6. Discussion and Conclusions

The QuikSCAT V4.1 with LCRES processing retrieves winds closer to the coast than
ever before. We show that combining the LCR method with an expected σ0 significantly
improves coastal ocean vector winds with QuikSCAT. We find nearly ten times more
retrievals within 20 km of the coast, which are nearly the same quality as those of the V3
product at 22.5 km from coast as determined with comparisons to buoys and oceanward
neighbors. There is a slight degradation between 5 to 10 km, which we mitigate using
a data-driven neural-network based quality flag. The LCRES approach improved the
version 4.1 data set as compared to the previous release (V3.1) by both removing residual
land contamination and retrieving wind closer to the coast. Distance from the coast is
also provided in the V4.1 product. In Figure 10 we show an example of QuikSCAT V4.1
compared to V3 over a region with significant land contamination, the Mediterranean
Sea. We note a very significant increase in retrievals near to the coast where previously
QuikSCAT had no data available.

Figure 10. (top) One year of QuikSCAT V3 data over the Mediterranean Sea, which does not include
any coastal processing or correction. (bottom) Same for QuikSCAT V4.1. Note the data gap around
land is nearly closed, as we retrieve useable winds up to 10 km from land. Overall QuikSCAT V4.1
retrieves about 4 percent more WVCs than version 3 did.
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In the analysis of wind forcing of the ocean along southern Chile, Strub et al. [34] were
only able to analyze coherent patterns of wind stress and wind stress curl along its west
coast and within the inland sea inshore of Chile Island by using version 4.0 of the QuikSCAT
processing, with LCRES correction for land contamination. In Figure 11 we show a image
of the wind stress curl in this inland sea inshore of Chile island; on the left is the wind
stress curl derived using QuikSCAT V3.1 data (with LCR based flag), and on the right is
the same using QuikSCAT V4. Even the use of LCR data flagging in the earlier version 3.1
did not reveal realistic patterns of wind stress curl, which are necessary to understand the
upwelling that drives high productivity of the marine ecosystem of this region. Globally,
V4.1 has about 4% more WVCs with retrievals than V3 had. Finally, the version 4.1 winds
are publicly available at https://podaac.jpl.nasa.gov/dataset/QSCAT_LEVEL_2B_OWV_
COMP_12_KUSST_LCRES_4.1 (accessed on 16 May 2022).
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The Chilean inland sea (east of Chiloe Island 
and farther south) is an important region for 
salmon farming and shellfish aquaculture. It 
is also subject to toxic algal blooms, leading 
to a need for wind and tide-forced ocean 
circulation models to characterize the 
advective fields.

• Global weather forecast models such as ECMWF 
underestimate winds.

• No wind information in the inland sea was 
available with the standard processing ( version 
3.0 and earlier).

• Version 3.1 with land contamination ratio 
processing obtains winds closer to the coast than 
standard processing, but the wind stress curl field 
does not include the coherent bands of positive 
and negative curl.

• Version 4 (LCRES) retrieves enough data to 
produce gridded fields of wind stress and wind 
stress curl over most of the inland sea. The 
coherent bands of wind stress curl next to the 
coasts are consistent with a decrease of the 
northward winds next to land. This effect 
increases upwelling in regions of negative curl. 

The work reported here was performed at the Jet Propulsion 
Laboratory, California Institute of Technology, under contract with the 
National Aeronautics and Space Administration. © 2017. All rights 
reserved

Figure 11. (left) Wind stress curl for QuikSCAT V3.1 over an inland sea inshore of Chile island.
(right) same for QuikSCAT V4 data. V4 retrieves enough data to predict gridded fields of wind stress
and wind stress curl over most of the inland sea. The coherent bands of wind stress curl next to
the coasts are consistent with a decrease of the northward winds next to land. This effect increases
upwelling in regions of negative curl.
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