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Abstract: Support vector machine (SVM) has a good effect in the supervised classification of hy-
perspectral images. In view of the shortcomings of the existing parallel structure SVM, this article
proposes a non-parallel SVM model. Based on the traditional parallel boundary structure vector
machine, this model adds an additional empirical risk minimization term to the original optimization
problem by adding the least square term of the sample and obtains two non-parallel hyperplanes,
respectively, forming a new non-parallel SVM algorithm to minimize the additional empirical risk of
non-parallel SVM (Additional Empirical Risk Minimization Non-parallel Support Vector Machine,
AERM-NPSVM). On the basis of AERM-NPSVM, the bias constraint is added to it, and AERM-
NPSVM (BC-AERM-NPSVM) is further obtained. The experimental results show that, compared
with the traditional parallel SVM model and the classical non-parallel SVM model, Twin Support
Vector Machine (TWSVM), the new model, has a better effect in hyperspectral image classification
and better generalization performance.

Keywords: hyperspectral image; classification; support vector machine; non-parallel support
vector machine

1. Introduction

At present, various technologies of hyperspectral remote sensing have been widely
studied [1] and applied to meteorological observation, agricultural production [2], ab-
normal target detection [3], environmental monitoring [4], military reconnaissance and
other fields. Hyperspectral remote sensing data greatly improve the ability of ground
object classification and recognition because of their rich spectral information. At present,
hyperspectral remote sensing has shown great potential in all aspects of social life, and
its application has gone deep into all aspects of life, providing an important technical
support for accurate management. The classification of hyperspectral remote sensing
images [5–7] is one of the important ways for people to obtain information value, and it
is a key technology for hyperspectral images to be widely used. Through classification,
we can clearly understand the spatial distribution of features and find rules from them.
The classification performance directly determines the availability of hyperspectral images.
Therefore, hyperspectral image classification has attracted more and more attention and
become a research hotspot in the field of remote sensing.

There are many remote sensing image classification algorithms, which can be divided
into supervised classification and unsupervised classification according to whether data
labels are used in the classification process. The unsupervised classification algorithm
means that the samples are classified directly in the classification process without prior
information. Its advantage is that the experimental results are less affected by human
intervention, and the design parameters of the algorithm are relatively few. Its disadvantage
is that when the gap between heterogeneous features is small, the classification effect is
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poor. The algorithms often used in unsupervised classification are K-means, ISODATA
clustering and so on. The supervised classification algorithm first trains the algorithm
model under the condition of prior information, and then classifies the test samples when
the characteristic parameters of the algorithm model are determined. Its advantage is
that the algorithm model can obtain higher classification accuracy through the learning of
prior knowledge. The disadvantage is that it is greatly affected by human factors, and the
accuracy of classification is affected by the number of training samples to a certain extent.
Among the supervised algorithms, the algorithms that are often used in remote sensing
data classification are KNN [8], decision tree [9,10] and support vector machine [11–13].
Among these algorithms, support vector machine (SVM) has been widely studied and used
because of its good performance.

Support vector machine (SVM) is proposed by Vapnik et al., which is suitable for
pattern recognition and other fields. The characteristic of SVM is that it can take into
account both empirical risk and structural risk, that is, supervised learning can be realized
by finding a hyperplane that can not only ensure the accuracy of classification but also
maximize the interval between the two types of data [14]. SVM has some good characteris-
tics, such as kernel technique, sparsity and global solution. Because of its solid theoretical
foundation and good generalization, it is widely used in remote sensing image classifica-
tion [15]. The support vector machine classification model presupposes that the positive
and negative category boundaries are parallel. However, for the actual remote sensing
data, this assumption is difficult to establish, which affects the generalization ability of
the model. To solve this problem, Jayadeva et al. proposed Twin Support Vector Machine,
(TWSVM) [16–18]. The goal of TWSVM is to find a pair of non-parallel hyperplanes (paral-
lel can be regarded as a special state of non-parallel). Each type of data point is close to
one of the two non-parallel hyperplanes and is far away from the other, and the category
to which it belongs is determined by comparing the distance between the sample and the
two hyperplanes. TWSVM is particularly successful, but it still has obvious shortcomings:
the TWSVM model only considers the empirical risk but does not consider the structural
risk [19], and its generalization performance is affected, so that in many cases, its classifica-
tion effect is not as good as that of the traditional support vector machine. Kaya, G. T. et al.
studied the classification of TWSVM on hyperspectral images [20]. In the linear case, the
classification effect of TWSVM is better than that of SVM. In the case of nonlinearity, the
classification accuracy of TWSVM has no advantage over SVM. Only using the SVM and
TWSVM classification algorithm models for hyperspectral image classification has a limited
effect, and some scholars have carried out some research in other directions to further
improve the accuracy of hyperspectral image classification. Liu Zhiqiang et al. proposed
a remote sensing image classification algorithm based on multi-feature optimization and
TWSVM [21]. The features of hyperspectral images are extracted from multiple aspects
and combined reasonably, and then TWSVM is used for classification, which improves
the accuracy of hyperspectral image classification. Wang, Li-guo et al. proposed a sample
reduction algorithm to reduce the size of training samples [22], combined with the least
squares twin support vector machine for hyperspectral image classification, speeding up
the training speed when the classification accuracy is similar. Wang, Li-guo et al. proposed
a semi-supervised classification algorithm for hyperspectral images combining K-means
clustering and twin support vector machine [23]. A small amount of labeled supervised
information and a large amount of unsupervised information are used to solve the problem
of obtaining a large amount of supervised information, thereby reducing the computational
complexity of classification and shortening the computational time. There are also some
algorithms worth discussing. Inspired by deep neural networks, Onuwa Okwuashi et al.
built a deep support vector machine (DSVM) model for hyperspectral data classification
by combining deep neural networks and SVM [24]. In the classification performance of
hyperspectral images, the classification accuracy of DSVM is better than that of deep neural
network and SVM. The purpose of this article is to propose a new non-parallel vector
machine algorithm to further improve the classification accuracy of hyperspectral images.
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A new algorithm model is obtained by modifying the original problem of the support
vector machine itself, and this algorithm model is used to improve the effect of hyperspec-
tral image classification. This algorithm does not conflict with the improved algorithm
mentioned above, and it is a parallel relationship. For example, the algorithm in this article
can be combined with the multi-feature optimization method as in [21] to further optimize
the algorithm or to try to replace the hidden layer support vector machine algorithm of the
network in [24] with the algorithm in this article. These techniques can be used as future
research directions.

In view of the above situation, this article constructs a non-parallel support vector
machine model, namely Additional Empirical Risk Minimization Non-parallel Support
Vector Machine, AERM-NPSVM, by adding the empirical risk minimization additional
term on the basis of the traditional parallel support vector machine. Furthermore, the bias
constraint AERM-NPSVM (BC-AERM-NPSVM) is formed by adding the bias constraint to
the AERM-NPSVM model. The support vector machine classification model presupposes
that the positive and negative category boundaries are parallel. However, hyperspectral
datasets do not necessarily meet the above assumptions. These two improved non-parallel
support vector machine algorithms based on support vector machines are used to classify
hyperspectral images, in the case that the hyperspectral data distribution is not suitable for
the SVM parallel plane classification method, to obtain better classification results.

2. Materials and Methods
2.1. Software Description

This project used Python 3.8. Python code which was written on a personal computer
using the pycharm software. The processor of the computer is AMD R7 4800 H; random
access memory size (RAM) is 16 GB. In this project, functions in the sklearn software toolkit
are used to normalize hyperspectral data. The numpy toolkit for matrix computations
in algorithmic models was used. The cvxopt toolkit was used to solve convex quadratic
programming problems in dual problems.

2.2. Data

The research data are the information of four publicly available hyperspectral scenes.
All these are Earth Observation images taken from the air or satellite.

2.2.1. Salinas-A Dataset

The Salinas-A dataset is collected by AVIRIS sensors over the Salinas Valley in Califor-
nia, with a band number of 224, a spatial resolution of 3.7 m and a pixel count of 512 × 217.
It consists of 86 × 83 pixels and includes six categories. Figure 1 shows the sample band of
the Salinas-A dataset.

2.2.2. Pavia Center Dataset

The Pavia Center dataset was obtained by the ROSIS sensor in Pavia, northern Italy.
The number of spectral bands in the Pavia Center is 102. The Pavia Center is an image with
1096 × 1096 pixels, which contains nine categories. Figure 2 shows the sample band of the
Pavia Center dataset.

2.2.3. Pavia University Dataset

The Pavia University dataset was obtained by the ROSIS sensor in Pavia, northern
Italy. The number of spectral bands in Pavia University is 103. The University of Pavia is
610 × 610 pixels and contains nine categories. Figure 3 shows the sample band of the Pavia
University dataset.
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Figure 1. Sample band of Salinas-A dataset.

Figure 2. Sample band of Pavia Center dataset.

2.2.4. Kennedy Space Center Dataset

The Kennedy Space Center dataset was collected by AVIRIS over the Kennedy Space
Center in Florida. The number of spectral bands is 224 and the pixel is 512× 614. It contains
13 categories. Figure 4 shows the sample band of the Kennedy Space Center dataset.

2.3. Task

Support vector machines are widely used in hyperspectral image classification. How-
ever, the SVM classification mechanism assumes that the datasets are separable in parallel
planes. For real hyperspectral image data, its data distribution makes it difficult to meet
the property of being separable in parallel planes; therefore, using support vector machine
classification means losing certain classification accuracy to a certain extent.
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Figure 3. Sample band of Pavia University dataset.

Figure 4. Sample band of P Kennedy Space Center dataset.

For the problem that the decision plane of support vector machine in hyperspectral
image classification makes it difficult to conform to the trend of data distribution, this article
proposes a classification method using non-parallel support vector machine to improve the
support vector machine. Compared with SVMs, non-parallel SVMs have better decision
hyperplane degrees of freedom. The classification hyperplane structure of the non-parallel
SVM makes the decision plane more in line with the distribution trend of hyperspectral
data, thus obtaining better classification accuracy than SVM.

2.4. Support Vector Machine

For the second-class classification of m data points in n dimensional feature space
Rn, the matrix A is used to represent all data points by using m× n, and the No. i data
point is Ai(i = 1, 2, . . . , m), Ai = (i = Ai1, Ai2, . . . , Ain)

T . Let yi ∈ {1,−1} represent the
category information to which the No. i data point belongs. The m×m diagonal matrix Y
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is established by using yi as diagonal line, that is, Yii represents the category information to
which the Ai data point belongs.

First, consider the case of linear SVM, which looks for a classification hyperplane
as follows:

f (x) = ωT ·x + b = 0 (1)

Here, ω ∈ Rn and b ∈ Rn. The soft interval hinge loss function is introduced to
measure the empirical risk. The SVM original optimization problem can be expressed as
follows by introducing regularization term 1

2 ωTω and relaxation variable ξ = (ξ1, . . . , ξm):

min
ω,b,ζ

1
2 ωTω + CeTξ

s.t. Y(Aω + eb) + ξ ≥ e
ξ ≥ 0.

(2)

Here, C > 0 is the penalty coefficient, and minimized regularization term 1
2 ωTω is

equivalent to the distance between the two maximized supporting hyperplanes, ωT·x + b = 1
and ωT ·x + b = −1 and the structural risk minimized principle is implemented for the
original problem.

The dual problem obtained by Lagrange Multiplier Method is shown as follows:

max
α
− 1

2 αTYAATYα + eTα

s.t. eTYα = 0
0 ≤ α ≤ Ce(
ω = ATYα

) (3)

The solution of Lagrange Multiplier and further solution can be obtained by solving
the above dual problem. Further, the solution of ω, b can be obtained. The new data points
are classified by the following decision function.

f (x) = sgn
(

ωT ·x + b
)

(4)

For the nonlinear classification problem, it can be transformed into a linear classifica-
tion problem in a certain dimensional feature space by nonlinear transformation, and the
linear support vector machine can be learned in the high-dimensional feature space. It is
specifically expressed as. Where, ϕ(x) represents a mapping of x to a high-dimensional
space. In the dual problem of linear support vector machine learning, the nonlinear support
vector machine is obtained by using kernel function instead of inner product. The dual
problem of nonlinear SVM is as follows:

max
α
− 1

2 αTYK
(

AAT)Yα + eTα

s.t. eTαY = 0
0 ≤ α ≤ Ce

(5)

The decision function of nonlinear support vector machine is:

f (x) = sgn
(

αTYTK(A·x) + b
)

(6)

2.5. Non-Parallel Support Vector Machine

AERM-NPSVM is the smallest square term of adding the positive and negative sam-
ples, respectively, on the basis of SVM, which adds additional empirical risk terms and
obtains two quadratic programming [25] problems. Hyperplane obtained by solving two
K(x, y) = ϕ(x)·ϕ(y) quadratic programming problems shifts to the direction of the dis-
tribution trend of positive and negative samples, so that two non-parallel classification
hyperplanes can be obtained.
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The two non-parallel decision planes obtained by AERM-NPSVM are:

f (x) = ω+x + b = 1 (7)

f (x) = ω−x + b = −1 (8)

where the optimization problem for the positive sample is as follows:

min
ω,b,ξ

1
2‖ω+‖2 + c1

2 η+
Tη+ + c3eTξ+

s.t. Aω+ + e+b+ = η+
Y(Cω+ + eb+) + ξ+ ≥ e

ξ+ ≥ 0.

(9)

The optimization problem for negative samples is as follows:

min
ω,b,ξ

1
2‖ω−‖

2 + c2
2 η−Tη− + c4 eTξ−

s.t. Bω− + e−b− = η−
Y(Cω− + eb−) + ξ− ≥ e

ξ− ≥ 0.

(10)

Here, A is a matrix of all positive sample points, B is a matrix of all negative sample
points, C is a matrix of all sample points, m+ represents the number of all positive samples,
m− represents the number of all negative samples, m represents the number of all samples,
η+ and η− are m dimensional vector, ξ+ and ξ− are slack variables and ci, i = 1, 2, 3, 4 is
penalty parameter. e+ is the vector with a value of 1 with dimension of m+, e− is a vector
with a value of 1 with dimension of m− and e is a vector with a value of 1 with dimension
of m. Taking Formula (9) as an example, the term 1

2‖ω+‖2 minimizes the structural risk
by maximizing the distance between the classification planes, and c3eTξ+ is the hinge loss
function. These two constitute the original problem of the standard support vector machine;
1
2 ηT

+η+ is the least square term of the positive sample. It adds an additional empirical risk
minimization to the original problem of S, which shifts the classification hyperplane in the
direction of the positive sample distribution trend, where c1 measures the magnitude of
this degree.

For the problems of (9) and (10), if the penalty parameters c1 and c2 are 0, we get
the optimization problem of SVM; that is, the traditional SVM model is a special case of
AERM-NPSVM in c1 = c2 = 0.

Solve the dual problem [26] by using the Lagrange Multiplier Method; the Lagrangian
function of the original problem (9) is as follows:

L(ω+, b+, ξ, α, β, λ) = 1
2‖ω+‖2 + c1

2 ηT
+η+

+c3eTξ+ + λT(Aω+ + e+b+ − η+)
+αT(e− ξ −Y(Cω+ + eb+))− βTξ+

(11)

Here, α = (α1, . . . , αm), β = (β1, . . . , βm) and λ = (λ1, . . . , λm+) are the Lagrange
multiplier vector. The KKT conditions for the partial derivatives of ω+, b+, ξ+, α, β, λ in
Lagrange functions (11) are as follows:

∇ω+ L = ω+ + ATλ− CTYTα = 0 (12a)

∇b+ L = e+Tλ− eTYTα = 0 (12b)

∇η+ L = c1η+ − λ = 0 (12c)

∇ξ+ L = c3eT − αT − βT = 0 (12d)

Y(Cω+ + eb+) + ξ+ ≥ e, ξ+ ≥ 0 (12e)
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αT(e− ξ+ −Y(Cω+ + eb+)) = 0, βTξ+ = 0 (12f)

α ≥ 0, β ≥ 0 (12g)

Because β ≥ 0, it can be concluded that from (12d):

0 ≤ α ≤ c3eT (13)

Bring (12a)–(12g) into the Lagrangian function (11) to get the dual formula, which is
as follows:

max
α

eTα− 1
2
[
λT αT][ AAT + 1

c1
I+ −ACTYT

−YCAT YCCTYT

][
λT αT]T

s.t.
[
eT
+
−eTYT]T [

λT αT]T
= 0

0 ≤ α ≤ c3eT

(14)

Here, I+ is the unit matrix with dimension m+. The dual Equation (14) is similar to
the dual Equation (3) of the support vector machine. Solving the dual problem gives the
solution to the original problem.

The optimal solution [λ∗, α∗] is obtained by solving the above dual problem, and then
the normal vector is obtained by the Formula (12a):

ω+ = −ATλ∗ + CTYTα∗ (15)

Obtain from the formula of (12b) and (12c):

Aω+ + e+b+ = η+ =
1
c1

λ∗ (16)

Equation (16) calculates the offset b+ of the positive class classification hyperplane by
the average of all positive sample offsets, making the result more robust. It can be further
concluded that the offset b+ is:

b+ =
eT
+

(
−Aω+ + 1

c1
λ∗
)

m+
(17)

Similarly, the dual formula of negative samples can be obtained as follows:

max
α

eTα− 1
2
[
θT γT][ BBT + 1

c2
I− −BCTYT

−YCAT YCCTYT

][
θT γT]T

s.t.
[
eT
− − eTYT]T [

θT γT]T
= 0

0 ≤ γ ≤ c4eT

(18)

Here, I− is the unit matrix with dimension of m−.
The optimal solution [θ∗, γ∗] is obtained by solving the above dual problem, and the

normal vector ω− and offset b− are further solved.

ω− = −BTθ∗ + CTYTγ∗ (19)

b− =
eT
−

(
−Bω− +

1
c2

γ∗
)

m−
(20)
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By comparing the distance between the data point and the two hyperplanes, we can
judge which category it should belong to. b+ = b+ − 1, b− = b− + 1. The decision function
can be written as follows:

Class = arg min
i=+,−

∣∣(xT ·ωi
)
+ bi

∣∣
‖ωi‖

(21)

Here, |·| is an absolute value operation and ‖·‖ is a two-norm operation.
The above only illustrates the linear case of the AERM-NPSVM model. Because the

derivation of the formula is too complicated, please refer to the Appendix A.1 for the
description of the nonlinear situation. Furthermore, the BC-AERM-NPSVM algorithm is
an improvement over the AERM-NPSVM algorithm. It makes the offset have a unique
value, makes the solution of the offset easier. The dual problem has no equality constraints,
which makes the solution algorithm better and more diverse. See the Appendix A.2 for
details. Both AENSVM and AEBNSVM, proposed above, are binary classification models,
which cannot directly classify multi-class hyperspectral datasets. AENSVM and AEBNSVM
are used in the same way on hyperspectral datasets. The following uses AENSVM as an
example to illustrate how to classify hyperspectral images. The specific application method
is shown in Algorithm 1.

Algorithm 1. The classification process of the AENSVM algorithm model on the hyperspectral dataset.

Step 1: Combining each category of the hyperspectral dataset in pairs is used to obtain
1
2 (n× (n− 1)) binary classification tasks.
Step 2: Set the hyperparameters c1, c2, c3, c4 of the AENSVM model.
Step 3: Each binary classification task is trained using AENSVM.

1. Use the parameters set in Step 2 to solve the parameters α∗, λ∗, θ∗, γ∗ according to
Formulas (14) and (18).

2. The offsets of the two decision hyperplanes are obtained by (17) and (20).
Finally, 1

2 (n× (n− 1)) classifier models are obtained.
Step 4: For the 1

2 (n× (n− 1)) classifier models trained in Step 3, the category of the new sample
is predicted by Formula (30), all predicted categories are recorded, and the sample is classified
into the category with the most votes by voting.

2.6. Accuracy Assessment

Confusion matrix is often used in classification performance evaluation in the form of:

H =


h11 h12 · · · h1N
h21 h22 · · · h2N

...
...

...
hN1 hN2 · · · hNN

 (22)

The overall classification accuracy (OA) and Kappa coefficient (Kappa) derived from
the confusion matrix are used as important evaluation indexes of classification. Although
the OA value can well represent the classification accuracy, for multi-category features
with extremely unbalanced number of category pixels, its value is greatly affected by the
category with more pixel data and cannot well represent the features of each category.
The Kappa coefficient comprehensively considers various factors in the confusion matrix
and can comprehensively reflect the accuracy of the overall classification. The larger the
value of the kappa coefficient, the higher the accuracy of the corresponding classification
algorithm. Therefore, the OA and Kappa coefficients are usually used to jointly evaluate
the classification accuracy of hyperspectral images.

3. Results

This part shows the classification performance comparison of SVM, TWSVM, AENSVM
and AEBNSVM under the four hyperspectral datasets of Salinas-A, Pavia Center, Pavia
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University and Kennedy Space Center. All the classification algorithms are carried out in a
nonlinear way by using Gaussian kernel functions.

The division of training test set of Salinas-A is shown in Table 1.

Table 1. Ground truth classes for the Salinas-A scene and their respective samples number.

Class Samples Train Test

Brocoli_green_weeds_1 391 39 352
Corn_seesced_green_weeds 1343 134 1109

Lettuce_romaine_4wk 616 61 555
Lettuce_romaine_5wk 1525 152 1373
Lettuce_romaine_6wk 674 67 607

3.1. Salinas-A Dataset

Figure 5b–e are the recovery graphs of the prediction results of Salinas-A data using
SVM, TWSVM, AENSVM and AENBSVM, respectively. If you look closely, you can see that
the classification accuracy of AENSVM and AENBSVM has improved compared to SVM.
The classification accuracy of each category is shown in Figure 6, and Figure 5 is analyzed
in detail through Figure 6. AENSVM and AEBNSVM achieve 0.08%, 0.92% and 0.16% accu-
racy improvement over SVM on Corn_senesced_green_weeds, Lettuce_romaine_4wk and
Lettuce_romaine_6wk categories, respectively, where TWSVM has 1.11% better accuracy
over SVM in the Lettuce_romaine_4wk category. AENSVM and AEBNSVM can balance
empirical risk minimization and structural risk minimization by adjusting parameters c1
and c3. The classification results of TWSVM show that empirical risk minimization can
make the Lettuce_romaine_4wk classification effect better. AENSVM and AEBNSVM also
achieve better results than SVM by adjusting the degree of empirical risk minimization,
and the characteristics of structural risk minimization also ensure the accuracy of other
categories. As in the Lettuce_romaine_5wk category, the classification accuracy of SVM,
AENSVM and AEBNSVM is 0.22% higher than that of TWSVM. It can be seen from Table 2
that the difficulty of Salinas-A classification is low, and SVM, TWSVM, AENSVM and
AEBNSVM all get more than 99% classification accuracy. The overall classification accuracy
of AENSVM and AEBNSVM is 0.14% higher than SVM and 0.32% higher than TWSVM,
the Kappa coefficient is 0.18% higher than SVM and 0.39% higher than TWSVM.AENSVM;
AEBNSVM non-parallel support vector machines are more suitable for data distribution
under the premise of good SVM properties, so they get better experimental results.

Figure 5. Salinas-A hyperspectral image classification result image. (a) (ground truth), (b) SVM,
(c) TWSVM, (d) AENSVM, (e) AEBNSVM.
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Figure 6. Classification results of different categories of Salinas-A hyperspectral images.

Table 2. Classification results of Salinas-A hyperspectral images.

Experimental Method SVM TWSVM AENSVM AEBNSVM

OA 99.29 99.11 99.43 99.43
Kappa 99.12 98.91 99.30 99.30

The division of training test set of Pavia Center is shown in Table 3.

Table 3. Ground truth classes for the Pavia Center scene and their respective numbers of samples.

Class Samples Train Test

Water 65,971 300 65,671
Trees 7598 300 7298

Asphalt 3090 300 2790
Self-Blocking Bricks 2685 300 2385

Bitumen 6584 300 6284
Tiles 9248 300 8948

Shadows 7287 300 6987
Meadows 42,826 300 42,526
Bare Soil 2863 300 2563

3.2. Pavia Center Dataset

Figure 7b–e are the recovery results of the Pavia Center data predicted by SVM,
TWSVM, AENSVM and AENBSVM, respectively. Figure 8 shows the classification accu-
racy of each category in Figure 7 in detail. On the Tree, Self-Blocking Bricks, Bitumen, Tiles,
Shadows and Meadows categories, the classification accuracy of AENSVM and AEBNSVM
is 0.25%, 0.67%, 0.46%, 0.22%, 0.41% and 0.58% higher than SVM, respectively. The classifi-
cation accuracy of TWSVM is 0.86%, 2.98%, 0.44% and 0.53% higher than that of SVM in the
categories of Tree, Self-Blocking Bricks, Tiles and Meadows, respectively. The classification
accuracy of Bitumen and Shadows categories is reduced by 0.35% and 1.71%, respectively.
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It can be seen that the classification results of TWSVM on Tree, Self-Blocking Bricks and
Tiles categories are better, indicating that these categories can obtain better classification
accuracy when the proportion of empirical risk minimization is high. However, it can be
seen from Table 4 that the overall classification accuracy of TWSVM is 0.08% lower than that
of SVM, and the kappa coefficient is 0.12% lower than that of SVM. In order not to affect
the overall accuracy, the empirical risk minimization terms of AENSVM and AEBNSVM
cannot be weighted too high, so the classification accuracy of TWSVM cannot be achieved
on these categories. On the Asphalt category, the classification accuracy of AENSVM and
AEBNSVM is 0.22% lower than that of SVM, and the classification accuracy of TWSVM is
2.44% lower than that of SVM. It can be seen that increasing the weight of empirical risk
minimization will reduce the classification accuracy of the Asphalt category, but in order to
make the overall classification accuracy higher, the classification accuracy of this category
is traded off. From the overall classification accuracy in Table 4, it can be seen that the
classification accuracy of AENSVM and AEBNSVM is 0.25% higher than that of SVM, and
the kappa coefficient is 0.36% higher than that of SVM. AENSVM and AEBNSVM still have
higher kappa coefficients on the premise of higher accuracy, confirming their effectiveness
in adding an additional empirical risk minimization term.

Figure 7. Pavia Center hyperspectral image classification result image. (a) (ground truth), (b) SVM,
(c) TWSVM, (d) AENSVM, (e) AEBNSVM.

Table 4. Classification results of Pavia Center hyperspectral images.

Experimental Method SVM TWSVM AENSVM AEBNSVM

OA 98.33 98.25 98.50 98.50
Kappa 97.62 97.50 97.86 97.86

The division of training test set of Pavia University is shown in Table 5.

Table 5. Ground truth classes for the Pavia University scene and their respective numbers of samples.

Class Samples Train Test

Asphalt 6631 300 6331
Meadows 18,649 300 18,349

Gravel 2099 300 1790
Trees 3064 300 2764

Painted metal sheets 1345 300 1045
Bare Soil 5029 300 4729
Bitumen 1330 300 1030

Self-Blocking Bricks 3682 300 3382
Shadows 947 300 647
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Figure 8. Classification results of different categories of Pavia Center hyperspectral images.

3.3. Pavia University Dataset

Figure 9b–e are the recovery graphs of the prediction results of Pavia University
data using SVM, TWSVM, AENSVM and AENBSVM, respectively. It can be seen that the
prediction results of AENSVM and AENSVM are better in some categories. Figure 10 shows
the classification accuracy of each category in Figure 9 in detail, followed by a detailed
analysis of Figure 10. AENSVM and AEBNSVM have the same weights for the additional
empirical risk minimization term added when all categories are classified during parameter
tuning. This behavior will produce better or worse results for the classification accuracy of
a single category than SVM. Take Meadows and Bare Soil as the two more representative
categories to illustrate. For the Meadows category, the classification accuracy of AENSVM
and AEBNSVM is 2.88% higher than that of SVM, indicating that the additional empirical
risk minimization term under the current weights improves the classification accuracy
of the Meadows category. For the Soil category, the classification accuracy of AENSVM
and AEBNSVM is 2.95% lower than that of SVM, indicating that the additional empirical
risk minimization under the current weights has a detrimental effect on the Soil category.
However, from the overall classification accuracy in Table 6, the classification accuracy of
AENSVM and AEBNSVM has better performance than that of standard SVM and TWSVM.
The accuracy of AENSVM is 1.05% higher than that of standard SVM, and the Kappa
coefficient is 1.29% higher than that of SVM. The accuracy of AEBNSVM is 0.95% higher
than that of standard SVM, and the Kappa coefficient is 1.16% higher than that of SVM. This
shows that although the additional empirical risk minimization makes the classification
results of some single categories worse than SVM, it can achieve better classification results
as a whole. The effectiveness of AENSVM and AENBSVM on the multi-classification
problem of hyperspectral remote sensing images is demonstrated.
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Figure 9. Pavia University hyperspectral image classification result image. (a) (ground truth),
(b) SVM, (c) TWSVM, (d) AENSVM, (e) AEBNSVM.

Figure 10. Classification results of different categories of Pavia University hyperspectral images.

Table 6. Classification results of Pavia University hyperspectral images.

Experimental Method SVM TWSVM AENSVM AEBNSVM

OA 91.49 91.53 92.53 92.43
Kappa 88.76 88.77 90.05 89.92

The division of training test set of Kennedy Space Center is shown in Table 7.
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Table 7. Sample information for the Kennedy Space Center dataset.

Class Samples Train Test

Scrub 761 200 561
Willow swamp 243 194 49
CP hammock 256 200 56

Slash pine 252 200 52
Oak/Broadleaf 161 128 33

Hardwood 229 184 45
Swamp 105 84 21

Graminoid marsh 431 200 231
Spartina marsh 520 200 320
Cattail marsh 404 200 204

Salt marsh 419 200 219
Mud flats 503 200 303

Water 527 200 327

3.4. Kennedy Space Center Dataset

Figure 11b–e are the recovery charts of the Kennedy Space Center data using SVM,
TWSVM, AENSVM and AENBSVM, respectively. Figure 12 shows the classification accu-
racy of each category in Figure 11 in detail. It can be seen that the classification accuracy of
TWSVM, which only performs empirical risk minimization, is 3.56% higher than that of
SVM on the Hardwood class, and the classification accuracy of the other classes is generally
poor. For example, on the Swamp, Graminoid marsh and Spartina marsh categories, the
classification accuracy of TWSVM is 12.22%, 14.72 and 4.02% lower than that of SVM,
respectively. It can be seen from the data that in the case of fewer samples and more
categories, the classification performance of TWSVM is worse than that of SVM. It can be
seen from Table 8 that the overall classification accuracy of TWSVM is 1.39% lower than
that of SVM. Kappa coefficient is 1.5% lower than SVM. AENSVM and AENBSVM inherit
the structural risk minimization property of SVM, and at the same time, by adjusting the
weight of the empirical risk minimization term, the classification accuracy is improved to a
certain extent. For example, on the Scrub, Slash pine and Hardwood categories, AENSVM
and AEBNSVM improve the classification accuracy by 0.9%, 3.85% and 2.17%, respectively,
over SVM. From Table 8, the overall accuracy of AENSVM and AEBNSVM is 0.17% and
0.29% higher than SVM, respectively. This confirms the effectiveness of AENSVM and
AENBSVM on the multi-classification problem of hyperspectral remote sensing images.

Figure 11. Kennedy Space Center hyperspectral image classification result image. (a) (ground truth),
(b) SVM, (c) TWSVM, (d) AENSVM, (e) AEBNSVM.
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Figure 12. Classification results of different categories of Kennedy Space Center hyperspectral images.

Table 8. Classification results of Kennedy Space Center hyperspectral images.

Experimental Method SVM TWSVM AENSVM AEBNSVM

OA 96.78 95.39 96.95 96.95
Kappa 96.22 94.72 96.51 96.51

The experimental results on the above four datasets demonstrate the applicability of
the AENSVM and AENBSVM algorithms under different datasets.

4. Conclusions

As a traditional excellent classification tool, SVM has excellent performance in hyper-
spectral image classification. At present, most of the SVM models are based on parallel
distribution boundaries, but this premise is not consistent with the actual situation. Al-
though TWSVM breaks this premise, its classification effect is still not very satisfactory.
The fundamental reason is that it only minimizes the empirical risk, so its generalization
ability is relatively poor, and it does not obtain a better classification result than SVM in
the experiment. The non-parallel structure of AEBNSVM and AENSVM proposed in this
article has better classification results than the parallel structure of SVM. First of all, it
adds the empirical risk minimization term on the basis of SVM to obtain two non-parallel
hyperplanes and classifies them by way of non-parallel planes. Compared with the SVM
classification effect of parallel structures, it has a certain improvement. Furthermore, it
has the excellent property of structural risk minimization of parallel structure SVM, so its
generalization ability of TWSVM is stronger than that of the non-parallel structure. For the
algorithm proposed in this article, the premise is that the hyperspectral data distribution
does not follow the trend of being separable in parallel planes. When the hyperspectral
data distribution conforms to the parallel plane distribution trend, the algorithm proposed
in this article is similar to the SVM in classification accuracy, but the scale of the problem
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is more complicated. Therefore, the algorithm in this article is more effective when it is
difficult to classify the hyperspectral data distribution parallel decision plane.

In the experiments performed in this article, the classification of all hyperspectral
images only uses its spectral information, and the classification accuracy is not high,
compared with the current popular deep learning classification methods. It should be
noted that the main purpose of this article is to improve the performance of the traditional
parallel structure SVM by proving the effectiveness of the proposed non-parallel structure
of SVM. In the future, we will discuss the double-layer structure and even deep structure of
SVM on the basis of spatial information and spectral information fusion, combined with the
non-parallel structure proposed in this article, in order to further improve the classification
accuracy of SVM.
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Appendix A

Appendix A.1. AERM-NPSVM

The nonlinear case of AERM-NPSVM can be obtained by introducing the kernel
function into the linear model, just like the standard support vector machine. For AERM-
NPSVM, we need to consider the kernel generated surface and reconstruct the other two
nonlinear optimization functions. The kernel function K(x, x′) = φ(x)·φ(x′) and the
corresponding transformation X = φ(x) are introduced. Here, X ∈ H, H is the Hilbert
space. On the basis of the linear problems of (9) and (10), two original problems in the
nonlinear case can be obtained.

min
ω,b,ξ

1
2‖ω+‖2 + c1

2 η+
Tη+ + c3eTξ+

s.t. φ(A)ω+ + e+b+ = η+
Y( φ(C)ω+ + eb+) + ξ+ ≥ e

ξ+ ≥ 0.

(A1)

min
ω,b,ξ

1
2‖ω−‖

2 + c2
2 η−Tη− + c4eTξ−

s.t. φ(B) ω− + e−b− = η−
Y(φ(C)ω− + eb−) + ξ− ≥ e

ξ− ≥ 0.

(A2)

Then, obtain their dual problems:

max
α

eTα− 1
2
[
λT αT][ K

(
AAT)+ 1

c1
I+ −K

(
ACT)YT

−YK
(
CAT) YK

(
CCT)YT

][
λT αT]T

s.t.
[
eT
+ −eTYT][λT αT]T

= 0
0 ≤ α ≤ c3eT

(A3)

max
α

eTα− 1
2
[
θT γT][ K

(
BBT)+ 1

c2
I− −K

(
BCT)YT

−YK
(
CBT) YK

(
CCT)YT

][
θT γT]T

s.t.
[
eT
− −eTYT][θT γT]T

= 0
0 ≤ γ ≤ c4eT

(A4)

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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The dual Equations (A3) and (A4) for the nonlinear case are directly extended by
the dual problems (14) and (18) for the linear case. Use the method of solving the kernel
function to replace the inner product after the sample is mapped to the feature space. Then,
solve the convex quadratic programming problem to get the required parameters.

The two optimal classification hyperplanes in Hilbert space are:

− K
(

xT AT
)

λ∗ + K
(

xTCT
)

YTα∗ + b+ = 1 (A5)

b+ =
eT
+

(
K
(

AAT)λ∗ − K
(

ACT)YTα∗ + 1
c1

λ∗
)

m+
(A6)

− K
(

xT BT
)

θ∗ + K
(

xTCT
)

YTγ∗ + b− = −1 (A7)

b− =
eT
−

(
K
(

BBT)θ∗ − K
(

BCT)YTγ∗ + 1
c2

γ∗
)

m−
(A8)

The category attribute is judged by comparing the distance from a data point to two
hyperplanes. Make b+ = b+ − 1 and b− = b− + 1. Therefore, the decision function for
predicting new samples can be written in the following form:

Class = arg min
i=+,−

∣∣∣K(xT ·ω
i

)
+ bi

∣∣∣√
K
(

ωT
i

ω
i

) (A9)

where:
K
(

xTω+

)
= −K

(
xT AT

)
λ∗ + K

(
xTCT

)
YTα∗ (A10)

K
(

xTω−
)
= −K

(
xT BT

)
θ∗ + K

(
xTCT

)
YTγ∗ (A11)

K
(
ωT

+
ω

+

)
= λ∗TK

(
AAT)λ∗ − λ∗TK(AC)TYTα∗

−α∗TYK
(
CAT)λ∗ + α∗TYK

(
CCT)YTα∗

(A12)

K
(
ωT
−ω−

)
= θ∗TK

(
BBT)θ∗ − θ∗TK(AC)TYTγ∗

−γ∗TYK
(
CBT)θ∗ + γ∗TYK

(
CCT)YTγ∗

(A13)

Appendix A.2. BC-AERM-NPSVM

Add a bias constraint to the problems of (9) and (10) and you can obtain BC-AERM-
NPSVM. The reason for introducing this term is that its dual formula does not contain
equality constraints, like (14) and (18), and then the offset of the decision hyperplane has a
unique solution, which avoids the complexity that the offset can be obtained by solving the
mean value of all positive and negative samples, respectively, like (A6) and (A8). At the
same time, offset b is unique, and Successive Overrelaxation Iteration Method (SOR), Fast
Algorithm can be used to solve it.

Appendix A.2.1. Linear Case

According to the optimization expression relative to (9) and (10), it is modified as follows:

min
ω,b,ξ

1
2

(
‖ω+‖2 + b2

+

)
+ c1

2 η+
Tη+ + c3eTξ+

s.t. Aω+ + e+b+ = η+
Y(Cω+ + eb+) + ξ+ ≥ e

ξ+ ≥ 0.

(A14)
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min
ω,b,ξ

1
2

(
‖ω−‖2 + b2

−

)
+ c2

2 η−Tη− + c4eTξ−

s.t. Bω− + e−b− = η−
Y(Cω− + eb−) + ξ− ≥ e

ξ− ≥ 0.

(A15)

The Lagrangian function of the Formula (A14) is as follows:

L(ω+, b+, ξ, α, β) = 1
2

(
‖ω+‖2 + b2

+

)
+ c1

2 ηT
+η+ + c3eTξ+

+λT(Aω+ + e+b+ − η+)
+αT(e− ξ+ −Y(Cω+ + eb+))− βTξ+

(A16)

Solve the partial derivatives of ω+, b+, ξ+, α, β in Lagrangian functions (A16); the KKT
conditions are obtained, which is shown as follows:

∇ω+ L = ω+ + ATλ− CTYTα = 0 (A17a)

∇b+ L = b+ + eT
+λ− eTYTα = 0 (A17b)

∇η+ L = c1η+ − λ = 0 (A17c)

∇ξ+ L = c3eT − αT − βT = 0 (A17d)

Y(Cω+ + eb+) + ξ+ ≥ e, ξ+ ≥ 0 (A17e)

αT(e− ξ+ −Y(Cω+ + eb+)) = 0, βTξ+ = 0 (A17f)

α ≥ 0, β ≥ 0 (A17g)

Bring (A17a)–(A17g) into the Lagrangian function (A16) to obtain its dual formula,
which is shown as follows:

max
α

eTα− 1
2
[
λT αT][ AAT + 1

c1
I+ + E1 −

(
ACT + E2

)
YT

−Y
(
CAT + E3

)
Y
(
CCT + E4

)
YT

][
λT αT]T

s.t. 0 ≤ α ≤ c3eT
(A18)

Comparing the dual Equations (A18) and (14), Equation (A18) has one less equality
constraint than Equation (14) and can be solved directly by the SOR algorithm at this
time. The SOR algorithm can process efficiently very large datasets that need not reside in
memory.

Here, Ei, i = 1, 2, 3, 4 and the respective scales are matrices with m+ × m+, m+ ×
m, m×m+, m×m values of all 1. The optimal solution [λ∗, α∗] is obtained by solving the
dual problem (A18), and the value of ω+ and b+ can be obtained by the formulas of (A17a)
and (A17):

ω+ = −ATλ∗ + CTYTα∗ (A19)

b+ = −eT
+λ∗ + eTYTα∗ (A20)

Similarly, the dual formula of (A14) is shown as follows:

max
α

eTα− 1
2
[
θT γT][ BBT + 1

c2
I− + F1 −

(
BCT + F2

)
YT

−Y
(
CBT + F3

)
Y
(
CCT + F4

)
YT

][
θT γT]T

s.t. 0 ≤ γ ≤ c4eT
(A21)
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Here, Fi, i = 1, 2, 3, 4 and the respective scales are matrices with m− × m−, m− ×
m, m×m−, m×m values of all 1. The corresponding parameters are as follows:

ω− = −BTθ∗ + CTYTγ∗ (A22)

b− = −eT
−θ∗ + eTYTγ∗ (A23)

Make b+ = b+ − 1 and b− = b− + 1. The classification decision function is:

Class = arg min
i=+,−

∣∣∣(xT ·ω
i

)
+ bi

∣∣∣
‖ωi‖

(A24)

Appendix A.2.2. Nonlinear Case

Like AERM-NPSVM, the two nonlinear optimization functions that reconstruct BC-
AERM-NPSVM are shown as follows:

min
ω,b,ξ

1
2

(
‖ω+‖2 + b2

+

)
+ c1

2 η+
Tη+ + c3eTξ+

s.t. (A)ω+ + e+b+ = η+
Y( φ(C)ω+ + eb+) + ξ+ ≥ e

ξ+ ≥ 0.

(A25)

min
ω,b,ξ

1
2

(
‖ω−‖2 + b2

−

)
+ c2

2 η−Tη− + c4eTξ−

s.t. φ(B) ω− + e−b− = η−
Y(φ(C)ω− + eb−) + ξ− ≥ e

ξ− ≥ 0.

(A26)

After introducing kernel functions into the dual problem of (A18) and (A21) linear
BC-AERM-NPSVM, two nonlinear dual problems are obtained as follows:

max
α

eTα− 1
2
[
λT αT][ K

(
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(
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(A27)
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(A28)

By solving the above two dual problems, two classification hyperplanes are obtained:

− K
(

xT AT
)
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xTCT
)
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xT BT
)

θ∗ +
(

xTCT
)

YTγ∗ + b− = −1 (A30)

b+ = −eT
+λ∗ + eTYTα∗ (A31)

b− = −eT
−θ∗ + eTYTγ∗ (A32)

Make b+ = b+ − 1 and b− = b− + 1. The available decision functions are as follows:
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K
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)
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(
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