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Abstract: Previous studies have shown that scattering mechanism ambiguity and negative power
issues still exist in model-based polarization target decomposition algorithms, even though deorien-
tation processing is implemented. One possible reason for this is that the dynamic range of the model
itself is limited and cannot fully satisfy the mixed scenario. To address these problems, we propose
a hybrid polarimetric target decomposition algorithm (GRH) with a generalized volume scattering
model (GVSM) and a random particle cloud volume scattering model (RPCM). The adaptive volume
scattering model used in GRH incorporates GVSM and RPCM to model the volume scattering model
of the regions dominated by double-bounce scattering and the surface scattering, respectively, to
expand the dynamic range of the model. In addition, GRH selects the volume scattering component
between GVSM and RPCM adaptively according to the target dominant scattering mechanism of fully
polarimetric synthetic aperture radar (PolSAR) data. The effectiveness of the proposed method was
demonstrated using AirSAR dataset over San Francisco. Comparison studies were carried out to test
the performance of GRH over several target decomposition algorithms. Experimental results show
that the GRH outperforms the algorithms we tested in this study in decomposition accuracy and
reduces the number of pixels with negative powers, demonstrating that the GRH can significantly
avoid mechanism ambiguity and negative power issues.

Keywords: hybrid polarimetric target decomposition; generalized volume scattering model (GVSM);
random particle cloud model (RPCM); adaptive volume scattering model; polarimetric synthetic
aperture radar (PolSAR)

1. Introduction

Polarimetric target decomposition is a powerful technique used to interpret scattering
mechanisms in polarimetric synthetic aperture radar (PolSAR) data and has been widely
used in geological disaster monitoring [1,2], forest monitoring [3,4], soil moisture inver-
sion [5,6], and land cover classification [7]. Many target decomposition techniques have
been proposed over the past 20 years, and they can be mainly categorized into two groups.
The first group is based on eigenvalues and eigenvectors of the coherency matrix [8]; al-
though this kind of method provides mathematically unique results, some approximations
have to be made to interpret the results in terms of known scattering mechanisms [9].
The second major group is based on the physical scattering model [10–13], which can
obtain different decomposition solutions in terms of various scattering models. Meanwhile,
conventional methods with models or assumptions that do not fit the observations may
induce deficiencies [14], such as problems of volume scattering power overestimation or

Remote Sens. 2022, 14, 2441. https://doi.org/10.3390/rs14102441 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14102441
https://doi.org/10.3390/rs14102441
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1541-6992
https://orcid.org/0000-0001-9071-9470
https://doi.org/10.3390/rs14102441
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14102441?type=check_update&version=2


Remote Sens. 2022, 14, 2441 2 of 19

generating pixels with negative powers. These deficiencies do not meet the minimum
requirements that these model-based decomposition algorithms must satisfy [15,16]. There-
fore, the development of effective model-based decompositions has received considerable
attention, and many advances have been reported.

To improve the effectiveness of model-based methods, numerous studies have been
carried out on scattering models. In early studies, volume scattering was modeled as
randomly distributed needle-like particles, which hypothesizes that the parameters of one
dimension of the particles approximate zero [17]. This assumption caused volume scat-
tering power overestimation and some pixels with negative powers in the double-bounce
scattering component or/and surface scattering component. Then, researchers improved
the polarimetric target decomposition algorithms by optimizing the volume scattering
models or adding extra scattering components. To optimize volume scattering models,
researchers have proposed new volume scattering models by taking nonrandomly dis-
tributed particles into account [18] or proposed new volume scattering models to fit urban
areas [19,20]. In terms of adding more scattering components, researchers developed the
helix scattering model [21], wire scattering model [16], mixed dipole scattering model [22],
±45◦ oriented dipole scattering model, ±45◦ oriented quarter-wave reflectors [23], rotated
dihedral scattering model [24], and disk-shaped random scatterers [25], et al. [26]. However,
these scattering models are non-adaptive because they don’t include any parameters that
vary with the observed data, but the fact is that different targets perform different scattering
mechanisms [27].

Therefore, scholars introduce an adaptive parameter to the scattering model [27,28].
One approach is to use machine learning methods to achieve optimal model selection. Chen
et al. chose a model from four different volume scattering models with the minimum resid-
ual and then performed decomposition using the nonlinear least-squares algorithm [29].
Thomas et al. proposed a new approach to solve model-based decomposition by employing
an L1-regularized optimization procedure, which automatically selected a set of optimal
polarimetric scattering mechanisms and guaranteed nonnegative powers for the selected
scattering mechanisms [30]. Another approach is to build physical models with adap-
tive properties. Van et al. used variable cylinders to model volume scattering in forest
areas, which can distinguish forested and deforested land [31]; later, adaptive scattering
models for forest areas and dihedral angle areas were proposed [32–35]. Xie et al. used
a simplified Neumann volume scattering model to cover both random and nonrandom
volume cases [36]. Wang et al. especially used the aggregation parameter to introduce
the adaptive property into the division of needle-like particles to reduce the generation of
negative power pixels [37]. Although the adaptive volume scattering model can adjust the
coherency matrix or the covariance matrix automatically, all the above models, regardless
of the effect of particle shape on scattering models, nor do they model the volume scattering
for different scattering mechanisms dominant regions respectively [38], cause confusion in
polarimetric target decomposition components or generate pixels with negative powers.

To address these issues, this paper proposes a novel hybrid polarimetric target de-
composition algorithm named GRH based on an adaptive volume scattering model that is
further composed of two models: the generalized volume scattering model (GVSM) and the
random particle cloud model (RPCM). In contrast to previous models, the RPCM consists
of particles with both shape and orientation rather than needle-like particles with a radius
approximated to zero or distributed only in the radar plane of incidence. The adaptive
volume scattering model in the GRH was determined during the procedure for polarimetric
target decomposition calculation. Our tests on the L-band AirSAR dataset outperformed
the existing popular/new polarimetric target decomposition algorithms. The GRH shows
appreciable improvements in the decomposition component extraction accuracy compared
with Freeman two-component decomposition (FRE2) [39], Yamaguchi four-component
decomposition (YRO) [18], Yamaguchi four-component decomposition with rotation trans-
formation (Y4R) [27], model-free four-component decomposition (MF4CF) [40] and hybrid
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three-component decomposition (HTCD) [8]. The tests also shows that GRH yields a
smaller percentage of pixels with negative powers than FRE2, YRO, Y4R, and HTCD.

2. Methodology

In this section, we calculated the coherency matrix in the radar line of sight direction
using the polarimetric angle compensation method. Then, we used GVSM and RPCM to
construct covariance matrices for the regions dominated by different scattering mecha-
nisms, and eventually extracted decomposition components by solving the positive definite
equations.

2.1. Orientation Angle Compensation

Orientation angle compensation (OAC) is a common polarimetric target decomposi-
tion data processing method used to minimize volume scattering components. The real
unitary transformation (RUT) of a coherency matrix is introduced as the rotation of T about
the line of sight by angle θ in [28]. The coherency matrix T0 of the line of sight radar can be
defined as follows:

T0 =

 T11(θ) T12(θ) T13(θ)

T21(θ) T22(θ) T23(θ)

T31(θ) T32(θ) T33(θ)

 =

 1 0 0
0 cos2θ sin2θ

0 −sin2θ cos2θ

T

 1 0 0
0 cos2θ −sin2θ

0 sin2θ cos2θ

 (1)

where T is the coherency matrix derived from measured fully PolSAR data.

T =

 T11 T12 T13
T21 T22 T23
T31 T32 T33

 (2)

To minimize the T33 term to constrain the problem of the volume scattering over-
estimation problem, it is necessary to rotate T33 to the position where its derivative is
zero [27]

T33(θ) = T33cos2(2θ)− Re(T23)sin(4θ) + T22sin2(2θ) (3)

T
′
33(θ) = 2(T22 − T33) sin(4θ)− 4 Re(T23)cos(4θ) (4)

where T
′
33(θ) is the derivative of T33(θ), and the polarization angle θ was determined by

T
′
33(θ) = 0, which corresponds to T33 with the minimum value when

tan(4θ) =
2Re(T23)

T22 − T33
(5)

θ =
1
4

tan−1
(

2Re(T23)

T22 − T33

)
(6)

where Re(T23) is the real part of T23.
Then, the covariance matrix of the measured fully PolSAR data can be expressed as:

C =

 C11 C12 C13
C21 C22 C23
C31 C32 C33

 = UL_P T0U−1
L_P (7)

where

UL_P =
1√
2

 1 0 1
1 0 −1
0
√

2 0

 (8)

U−1
L_P =

1√
2

 1 1 0
0 0

√
2

1 −1 0

 (9)
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The covariance matrix C we obtained in Equation (7) is to be further used in the
following polarimetric target decomposition algorithms.

According to Maurya et al. [8], based on the sign of (T11 − T22), either double-bounce
or surface scattering was considered the dominant contribution in the measured fully
PolSAR data. If (T11 − T22) ≥ 0, surface scattering is considered dominant; if (T11 − T22) < 0,
double-bounce scattering is considered dominant. In the following steps, we used the
GVSM and the RPCM to model the volume scattering components of the regions dominated
by the double-bounce scattering and the surface scattering, respectively.

2.2. Polarimetric Target Decomposition Algorithm for Regions Dominated by Double-Bounce
Scattering
2.2.1. Volume Scattering Model for Regions Dominated by Double-Bounce Scattering

In a region where the double-bounce scattering mechanism is dominant, the volume
scattering component is represented by the GVSM [38,41], and its covariance matrix can be
expressed as:

Cv =
1

1 + e + r

 r 0 p
√

r
0 e 0

p
√

r 0 1

 (10)

where
r =

σvvvv

σhhhh
(11)

e =
σhvhv
σvvvv

(12)

p =
σhhvv√

σhhhhσvvvv
(13)

where σvvvv and σhhhh are the theoretical backscattering intensities of the co-polarized
channel, σhvhv is the theoretical backscattering intensity of the cross-polarized channel of
the scattering models, r and e are the intensity ratios, and p is the correlation coefficient of
the horizontal polarization signal and vertical polarization signal. The parameters above
are dependent on the physical parameters of the scattering model. Then, Ngiem et al.
proposed [41]

e =
1 + r

2
− p
√

r (14)

Introducing (14) into (13) renders the following covariance matrix Cv for the volume
scattering model:

Cv =
1

3(1+r)
2 − p

√
r

 r 0 p
√

r
0 1+r

2 − p
√

r 0
p∗
√

r 0 1

 (15)

In (15), the parameter p changes according to the scattering mechanism of the volume
scattering model. To ensure that the GVSM represents the volume scattering caused by
dipole and dihedral angle, p was selected according to the polarization characteristics of
GVSM. The polarimetric scattering entropy (H) and polarimetric scattering α parameter of
GVSM are shown in Figure 1 for different p values.
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Figure 1. Polarization characteristics of GVSM. (a) H of GVSM with different p; (b) α of GVSM with
different p.

Without loss of generality, p was taken as 1, 1/2, 1/3, 1/4 and 1/5 to analyze the
polarization characteristics of the GVSM, as shown in Figure 1. When p > 1/3, we set p to 1
and 1/2, and the corresponding α ranged from 0◦ to 60◦ and from 36◦ to 60◦, respectively.
The scattering mechanism includes surface, dipole, and dihedral scattering. When p < 1/3,
we set p to 1/4 and 1/5, and the corresponding α ranged from 49.09◦ to 60◦ and 51.43◦ to
60◦, and the scattering mechanism here does not include the dipole scattering mechanism.
When p = 1/3, the range of α was from 45◦ to 60◦, which includes dipole and dihedral
scattering. To model the volume scattering components of the regions dominated by
double-bounce scattering, we chose the model with p = 1/3 (where α ≥ 45◦). For the model
with p = 1/3, when r = 1, corresponding to α = 45◦, the polarization entropy reaches its
maximum value (0.9464); when r is far from 1, the value of α will be greater than 45◦, and
the corresponding polarization entropy will decrease, as shown in Figure 1a,b. Therefore,
the GVSM with p = 1/3 characterizes the polarization of the dihedral scattering mechanism
and dipole scattering mechanism, and the covariance matrix C3_GVSM can be expressed as

C3_GVSM =
1

3(1+r)
2 −

√
r

3

 r 0
√

r
3

0 1+r
2 −

√
r

3 0√
r

3 0 1

 (16)

2.2.2. Polarimetric Target Decomposition Algorithm with GVSM

For regions dominated by double-bounce scattering, the volume scattering was mod-
eled using GVSM, and the second-order statistics covariance matrix C3V_GVSM is given by

C3V_GVSM = fVC3_GVSM (17)

where fV corresponds to the volume scattering component contribution. According to
FRE2, double-bounce scattering was modeled by the second-order statistics covariance
matrix C3G given by [39].

C3G = fG

 1 0 α
0 0 0
α∗ 0 |α|2

 (18)
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where fG corresponds to the double-bounce scattering component contribution in this case.
Then, the covariance matrix C of the measured fully PolSAR data can be expressed as:

C = C3G + C3V_GVSM =


fV
k .r + fG 0 fV

k .
√

r
3 + α fG

0 fV
k

(
(1+r)

2 −
√

r
3

)
0

fG
k .
√

r
3 + α∗ fG 0 fV

k + |α|2 fG

 (19)

There are four unknowns, namely fV , fG, α, and r, where α is a complex number and
the other unknowns are real numbers, with

k =
3(1 + r)

2
−
√

r
3

(20)

Then, we obtained four equations according to Equations (7) and (19):

fV
k ( (1+r)

2 )−
√

r
3 )2 = C22 (a)

fV
k · r + fG = C11 (b)
fV
k ·
√

r
3 + α fG = C13 (c)

fV
k + |α|2 fG = C33 (d)

(21)

We set

m0 =
(1 + r)

2
−
√

r
3

(22)

then
fV =

kC22
m0

(23)

fG = C11− C22
m0

r (24)

We name
α = y + zj (25)

Then, from Equation (21) (c), we have

y =
Re(C13)m0 − C22

√
r

3
C11m0 − C22r

(26)

z =
Im(C13)

C11m0 − C22r
(27)

After polynomial elimination calculations, we obtained a unary quartic equation of√
r as

a
(√

r
)4

+ b
(√

r
)3

+ c
(√

r
)2

+ d
√

r + e = 0 (28)

where
a =

1
4

(
|C13|2 − C11C33 + 2C22C33

)
(29)

b = −1
3
(|C13|2 + Re(C13)C22− C11C33 + C22C33) (30)

c =
1
2
(C11C22 + C22C33) +

11
18

(
|C13|2 − C11C33

)
+

1
9

(
C2

22 + 2Re(C13)C22
)

(31)

d = −1
3
(C11C22 + |C13|2 + Re(C13)C22− C11C33) (32)

e =
1
2

C11C22 +
1
4
|C13|2 − C11C33 (33)
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By solving Equation (28) using the Ferrari formulas, we obtained four roots. Among
the four roots, we needed to choose one root to determine the volume scattering model
to calculate the volume scattering component of the measured fully PolSAR data. The
root was selected based on the characteristics of the volume scattering model, as shown in
Figure 1b, and the value of r with the closest α to 45◦ was selected as the final root. If the
obtained

√
r had multiple valid roots (

√
r > 0), the minimum of abs

(
log10 r

)
was selected

as the final resultant value. Subsequently, the volume scattering power and double-bounce
scattering power can be calculated as follows:

PV =
fV
k
(r + m0 + 1) (34)

Pd= fG

(
1 + |α|2

)
(35)

2.3. Polarimetric Target Decomposition Algorithm for Regions Dominated by Surface Scattering
2.3.1. Volume Scattering Model for Regions Dominated by Surface Scattering

For regions dominated by surface scattering, volume scattering component was char-
acterized by RPCM [9,42]; in contrast to the Freeman–Durden and Yamaguchi volume
scattering model, we no longer assumed one dimension of the particles approximated to
zero, and we took the shape of the particles into account instead. The particle-specific pa-
rameters were determined based on the measured fully PolSAR data. The geometric model
of a single ellipsoidal particle in the Cartesian coordinate system is shown in Figure 2.
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Figure 2. Ellipsoidal particle model in the Cartesian coordinate system. Figure 2. Ellipsoidal particle model in the Cartesian coordinate system.

Given an ellipsoidal scatterer with axes x1, x2, x3 (x1 > x2 = x3); and Eulerian tilt
and rotation angles of τ and θ, respectively, relative to the radar line of sight ‘k’, both τ

and θ are within the range of [0, 180]. The initial position of the ellipsoid was located at
the position where both τ and θ are zero. To obtain the ellipsoidal particle with arbitrary
orientation distribution in space, the ellipsoidal particle was rotated as follows: first, the
ellipsoidal particle was rotated by an inclination angle τ on the x coordinate direction of
the Cartesian coordinate system to obtain the position in the new coordinate system (x1,
y1, z1), and then the ellipsoidal particle was rotated by an angle of θ on the y1 coordinate
axis direction on the x1 axis around the z1 axis. After the two rotations above, we obtained
an ellipsoidal particle with an arbitrary angle. Under the assumption that each particle
is independent, we considered only single scattering, and the backscattering coefficient
matrix can be expressed in terms of the physical particle characteristics as

S =

[
s11 s12
s21 s22

]
(36)
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According to the reciprocity principle, the two cross-polarizations were considered
equal; that is, s12 = s21, where

s11 = cos2θsin2τ + Asin2θ + Acos2θcos2τ (37)

s22 = sin2θsin2τ + Acos2θ + Asin2θcos2τ (38)

s12 =
(

sin2τ − A + Acos2τ
)

cosθsinθ (39)

As shown above, the scattering coefficient matrix of the random ellipsoidal particle
can be expressed in terms of the particle anisotropy degree A for its shape, and the Euler
angles τ and θ to represent the orientation of the particle. In the single-station backward
scattering regime, the polarization scattering matrix satisfied reciprocity, and the Pauli basis
vector for the scattering target obtained from the matrix S can be expressed as:

K =
1√
2

[
s11 + s22 s11 − s22 2s12

]T (40)

The coherency matrix can be calculated as:

T = 〈K ∗ K∗T〉 = 1
2
〈

 (s11 + s22)
2 s11

2 − s22
2 2(s11 + s22)s12

s11
2 − s22

2 (s11 − s22)
2 2(s11 − s22)s12

2(s11 + s22)s12 2(s11 − s22)s12 4s12
2

〉 (41)

The coherency matrix elements in Equation (41) are all functions of θ and τ, which
are denoted as tij(θ, τ). Then, the overall average coherency matrix elements 〈tij〉 of the
randomly distributed ellipsoidal particles in the direction perpendicular to the radar line of
sight can be obtained by integrating tij(θ, τ)sin τ over all angles, as follows:

Tij_RPCM = 〈tij〉 =
1

4π

∫ Θ

−Θ

∫ π

0
tij(θ, τ) sin τdτdθ (42)

where 1/4π is the normalization factor, the range of τ is [0, 180◦] and the range of θ is
limited to [−Θ,Θ]. First, we considered only the case of the random ellipsoidal particle
cloud at τ = 90◦, and the ellipsoidal particle orientation can be in any direction in the radar
sight plane. The range of θ was limited to −90◦ < θ < 90◦ via ellipsoidal particle symmetry,
so Equation (42) yielded the coherency matrix elements as:

T11_RPCM = (A + 1)2 (43)

T22_RPCM =
1
2
(A− 1)2 (44)

T33_RPCM =
1
2
(A− 1)2 (45)

Then, the coherency matrix of the new volume scattering model can be obtained as:

T3_RPCM =

 (A + 1)2 0 0
0 1

2 (A− 1)2 0
0 0 1

2 (A− 1)2

 (46)

The corresponding covariance matrix C3_RPCM is

C3_RPCM = U−1
L_PT3V_RPCMUL_P =

1
2

 (A + 1)2 + 1
2 (A− 1)2 0 (A + 1)2 − 1

2 (A− 1)2

0 (A− 1)2 0
(A + 1)2 − 1

2 (A− 1)2 0 (A + 1)2 + 1
2 (A− 1)2

 (47)
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2.3.2. Polarization Decomposition Algorithm with RPCM

For surface scattering dominant regions, the volume scattering was modeled using
the above RPCM, and the second-order statistics covariance matrix C3V_RPCM is given by

C3V_RPCM = fVC3_RPCM (48)

The surface scattering was also modeled using FRE2, as shown in Equation (18),
where fG corresponds to the surface scattering component contribution in this case. The
covariance matrix C of the measured fully PolSAR data can be expressed as:

C = C3G + C3V_RPCM =


1
4

(
2(A + 1)2 + (A− 1)2

)
fV + fG 0 1

4

(
2(A + 1)2 − (A− 1)2

)
fV + α fG

0 1
2 (A− 1)2 fV 0

1
4

(
2(A + 1)2 − (A− 1)2

)
fV + α∗ fG 0 1

4

(
2(A + 1)2 + (A− 1)2

)
fV + |α|2 fG

 (49)

Then, the four equations can be formulated according to Equations (7) and (49):

1
2 (A− 1)2 fV = C22 (a)
1
2 (A + 1)2 fV + 1

4 (A− 1)2 fV + fG = C11 (b)
1
2 (A + 1)2 fV − 1

4 (A− 1)2 fV + α fG = C13 (c)
1
2 (A + 1)2 fV + 1

4 (A− 1)2 fV+
∣∣∣α∣∣∣2 fG = C33 (d)

(50)

By solving the above equations, we obtained

fG =
Im2(C13) + (Re(C13)− C11− C22)2

C33− 2Re(C13)− C22 + C11
(51)

from Equation (50) (c)
Im(α) = Im(C13)/ fG (52)

Re(α) = (Re(C13) + C22− C11)
1
fG

+ 1 (53)

We set
K =

1
2
(A + 1)2 fV = C11− 1

2
C22− fG (54)

then

A =
(2K + 2C22)±

√
4(K + C22)2 − 4(K− C22)2

2(K− C22)
(55)

There are two roots for Equation (55), which are denoted as A1 and A2. According to
the physical characteristics of the RPCM, the shape approached the dipole, while A was
farther from 1. Therefore, the value of A was taken as shown in Table 1.

Table 1. A-value selection strategy.

A2 > 0 A2 < 0

A1 > 0 max
(∣∣log10 A1

∣∣, ∣∣log10 A2
∣∣) A1

A2 < 0 A2 Nan

In addition, where fV is positive, K > 0.
Subsequently, the volume scattering power and the surface scattering power can be

calculated as follows:
PV = 2(C22 + K) (56)

PS = fG

(
1 + |α|2

)
(57)
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2.4. Hybrid Polarimetric Target Decomposition Algorithm with Adaptive Volume Scattering Model

According to the dominant scattering mechanisms of different regions, the correspond-
ing volume scattering model was selected to build the hybrid polarization decomposition
algorithm with the following steps:

1. Extract coherency matrix T from the measured fully PolSAR data using PolSARpro
software;

2. Boxcar filtering with an 3× 3 window for the elements of the coherency matrix to
reduce speckle noise;

3. Calculate the polarization angle using T22, the real part of T23, and T33 according to
Equation (6), and obtain the scattering matrix T0 in the radar line of sight direction
following Equation (1);

4. Calculate the covariance matrix C by converting the coherency matrix T0 following
Equation (7);

5. Determine the dominant scattering mechanism for each pixel using the relationship be-
tween T11 and T22. The pixel will be surface scattering dominant when (T11 − T22) ≥ 0;
otherwise, double-bounce scattering will be dominant;

6. Calculate the polarimetric target decomposition components using the corresponding
polarimetric target decomposition algorithms according to the different scattering
mechanisms to obtain the value of each scattering component of each pixel.

3. Experimental Results and Discussion

Our intention in this study was to improve the decomposition algorithm by developing
an adaptive volume scattering model. We first compared the scattering characteristics
of the GVSM, RPCM and other commonly used volume scattering models to illustrate
the theoretical feasibility of our proposed algorithm, GRH. To verify the effectiveness of
the GRH, experiments were conducted on the L-band AirSAR dataset near the Golden
Gate Bridge in San Francisco. The effectiveness of the GRH was evaluated based on two
factors [8,10].

1. Accuracy in the decomposition component;
2. Percentage of negative power pixels.

3.1. Theoretical Feasibility of the Adaptive Volume Scattering Model

The polarimetric scattering entropy (H) and polarimetric scattering α parameter are
important parameters used to study the scattering properties of observation targets. The
entropy H is a measure of the randomness of scattering mechanisms, and the parameter
α identifies the dominant scattering mechanism [43]. The reasonable ranges for H and α
are [0, 1] and [0◦, 90◦], respectively. The two-dimensional H/α plane contains nine sections,
each related to specific scattering characteristics that can be measured by the coherency,
the position of the values of H and α, indicating different types of targets. On the H/α
plane, H = 0 and α = 0◦ correspond to surface scattering, while H = 0 and α = 45◦ indicate
dipole scattering with a cloud of anisotropic particles, which has the maximum entropy
when following the random distribution, where H = 0 and α = 90◦ correspond to dihedral
scattering from metallic surfaces [44].

The H and α variation curves of the GVSM, RPCM and FRE2 volume scattering
model are shown in Figure 3. The horizontal axes of the plots reflect the parameters
representing the scattering particle aspect ratio: r for GVSM, A for RPCM, and η for FRE2
volume scattering model. The vertical axes are the polarimetric scattering entropy (H) and
polarimetric scattering α parameter.
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For the GVSM in Figure 3a,d, α changes from 60◦ to 45◦, which contains the scattering
mechanisms of dihedral scattering and dipole scattering; when r = 1, α and H will be
45◦ and 0.9464, respectively, indicating dipole scattering; when r is far from 1, the scat-
tering characteristics will be close to dihedral scattering, and the value of H decreases
correspondingly.

For the RPCM in Figure 3b,e, α changes from 45◦ to 0◦, which contains both scattering
mechanisms of dipole and surface scattering. When A = 1, the shape of the particles is close
to a sphere; as is well known, the scattering mechanism of a sphere is surface scattering,
where H = 0 and α = 0. When A is far from 1, the shape of the particles becomes thinner,
and α and H will be 45◦ and 0.9464, respectively, which is equal to the maximum value of
the GVSM, with p = 1/3. Thus, RPCM can now be considered random dipole scattering,
such as the volume scattering model of Freeman–Durden three-component decomposition
(FDD) [17].

For the FRE2 volume scattering model shown in Figure 3c,f, when η < 1, α changes from
60◦ to 0◦, which contains all scattering mechanisms of dihedral angle, dipole, and surface
scattering, while when η ≥ 1, α no longer varies with the parameter η, and parameter α will
be out of the valid value range. When α ≥ 60◦, the entropy H corresponds to the maximum
value of 1.

The above volume scattering models are all adaptive volume scattering models, and
their scatterplot on the two-dimensional H/α plane can be obtained from the above H, α,
as shown in Figure 4. There are also some commonly used volume scattering models that
are nonadaptive scattering models, such as the YRO volume scattering model [18], An’s
volume scattering model [45], and FDD volume scattering model [17], for which H and α
are all fixed values. The polarimetric scattering characteristics of those volume scattering
models are also shown in Figure 4. The relationship between these volume scatting models
can be found as follows:

• The polarimetric scattering characteristic line of GVSM (in red line) is in Zones 5, 4 and
2 of the H/α plane. Among them, Zone 5 is medium entropy vegetation scattering,
Zone 4 is medium entropy multiple scattering, and Zone 2 is high entropy vegeta-
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tion scattering. This means that the GVSM can represent double-bounce scattering
mechanisms and volume scattering mechanisms;

• The polarimetric scattering characteristic line of RPCM (in blue line) overlaps with the
boundary line of the two-dimensional H/α plane (in black line); they are in Zones 9, 6,
and 2 of the H/α plane. Among these zones, Zone 9 has a low entropy surface scatter,
and Zone 6 has a medium entropy surface scatter, which means that the RPCM scan
represents both surface scattering and volume scattering;

• The lower left part of the FRE2 volume scattering model polarimetric scattering charac-
teristic line (in gray) overlaps with the RPCM polarimetric scattering characteristic line
(in blue) and the boundary line of the two-dimensional H/α plane (in black line). The
upper part of the FRE2 volume scattering model polarimetric scattering characteristic
line (in gray) drops out of the two-dimensional H/α plane, and the right part of the
characteristic line is irregular;

• The FDD volume scattering model (the red pentagram in Zone 2) is at the intersection
point of the GVSM line and RPCM line, indicating that the FDD volume scattering
model is a special case of these two models;

• The YRO volume scattering model (the blue diamond in Zone 4) is at the edge of the
polarimetric scattering characteristic line of GVSM (in red), showing that the YRO
volume scattering model is a special case of GVSM;

• An’s volume scattering model (black star in Zone 1) is a completely random model
located on the right tip point of the H/α plane, which belongs to high entropy multiple
scattering and overlaps with points of the FRE2 volume scattering model.
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In summary, the YRO, FDD and An’s volume scattering models cannot adjust to the
measured fully PolSAR data and are unable to accurately characterize the volume scatter-
ing of the observed targets. The FRE2 volume scattering model considers all scattering
mechanisms, but there are irrational situations, such as the right part of the characteristic
line in Figure 4. Although GVSM can characterize double-bounce and volume scattering,
it fails to characterize surface scattering, while RPCM can characterize surface scattering
and volume scattering but fails to characterize double-bounce scattering. Therefore, we
combined GVSM and RPCM to build an adaptive volume scattering model that has a larger
adaptive dynamic range. Its useful range covers the surface, encompassing dipole and
double-bounce scattering. Meanwhile, the model can be selected appropriately according
to the dominant scattering mechanism of the data.
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The above analysis shows that the adaptive volume scattering model based on the
GVSM and RPCM proposed in this paper has more reasonable polarization scattering
characteristics than other commonly used volume scattering models, illustrating its theo-
retical feasibility. In the following section, we analyze the effectiveness of GRH using the
measured fully PolSAR dataset.

3.2. Experiments on the AirSAR Dataset

The L-band AirSAR dataset used in this paper was a 4-look measured fully PolSAR
dataset with a spatial resolution of 10 m and an incidence angle of 5◦–60◦ [11]. The data
were downloaded from the Institute of Electronics and Telecommunications of Rennes
(IETR) (URL: https://ietr-lab.univ-rennes1.fr/polsarpro-bio/san-francisco/, accessed on
2 December 2021). The original image was 900 × 1024 pixels, and the Pauli pseudo-color
image is shown in Figure 5.
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Figure 5. Pauli pseudo-color image of the AirSAR data.

The regions in Figure 5 labeled with rectangles were used to demonstrate the effective-
ness of the proposed method. For convenience, hereinafter, we named the four selected
regions as Zone 1, Zone 2, Zone 3, and Zone 4. These regions were chosen to cover different
land covers featuring different but representative scattering characteristics. Zone 1 was the
ocean area that is considered strong surface scattering targets, Zone 2 and Zone 3 were the
city blocks that have strong double-bounce scattering characteristics, and Zone 4 was the
vegetation area where mainly volume scattering occurs. The sizes of Zones 1, 2, 3, and 4
were 100 × 100 pixels, 100 × 100 pixels, 100 × 100 pixels, and 50 × 200 pixels, respectively.

We used AirSAR data to compare the performance of GRH with that of FRE2, YRO,
Y4R, MF4CF and HTCD, among which FRE2, YRO and Y4R are classic algorithms, while
MF4CF and HTCD are relatively new. The pseudo-color images generated from these six
algorithms are shown in Figure 6. The color of each pixel is determined by double-bounce
scattering power (Pd), volume scattering power (Pv) and surface scattering power (Ps)
together, where Pd, Pv and Ps correspond to red, green and blue, so the color presented by
each pixel represents the intensity of the three scattering components corresponding to that
element. The color of the figure can be used for visual interpretation.

https://ietr-lab.univ-rennes1.fr/polsarpro-bio/san-francisco/
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The decomposition result of GRH is shown in Figure 6f. Compared with the five
existing methods, it seems more red in urban areas and bridge areas, more green in
vegetation areas than most other algorithms and more blue in ocean areas than FRE2.
Specifically, as shown in Figure 6a, FRE2 decomposition had a serious problem of volume
scattering overestimation in both urban and ocean areas; YRO also had a problem with
volume scattering overestimation in urban areas, as shown in Figure 6b. For Figure 6c, Y4R
had a more reasonable performance in all three scattering regions and could distinguish the
three different scattering mechanisms on the image; however, the urban area was less red
than the GRH, especially in the upper left part of the urban area. MF4CF decomposition in
Figure 6d appears red in the urban area but darker in the vegetation area. For the HTCD
decomposition shown in Figure 6e, there were many volume scattering components in
the upper left part of the urban area. The GRH in Figure 6f had good performance in all
three scattering regions and the best performance in detailed feature extraction, such as the
bridge and the ship. The visual assessment showed that the GRH outperformed the other
methods in our tests.

To quantitatively evaluate the performance of the scattering component extraction
accuracy, we calculated the scattering power of the AirSAR data as shown in Table 2. The
GRH had a preferable result over the other five algorithms. The double-bounce scattering
component of GRH increased by 27.35%, 17.19%, 5.95%, and 6.90% over FRE2, YRO, Y4R,
and HTCD, respectively, and decreased by 1.05% over MF4CF. Although MF4CF’s double-
bounce scattering was higher than that of the GRH, it can be seen in Figure 6d that it had
the problem of the underestimation of volume scattering because the boat demonstrated
typical dipole scattering, which belongs to the volume scattering mechanism, but as shown
in Figure 6d, it was characterized by surface scattering, so that we could hardly see it in the
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image. The volume scattering component contribution obtained via the GRH decreased
over FRE2, YRO, and Y4R and increased in the double-bounce scattering component over
the whole image. The volume scattering component decreased by 29.98%, 13.15%, and
0.37% over FRE2, YRO, and Y4R, and increased by 7.69% and 3.91% over MF4CF and
HTCD, respectively. The surface scattering decreased by 4.04%, 5.58%, 6.64%, and 10.81%
over YRO, Y4R, MF4CF, and HTCD, respectively, and increased by 2.63% over FRE2.

Table 2. The percentage of every polarization decomposition component for each algorithm (%).

Component FRE2 YRO Y4R MF4CF HTCD GRH

Pd 8.47 18.63 29.87 36.87 28.92 35.82
Pv 52.25 35.42 22.64 14.58 18.36 22.27
Ps 39.28 45.95 47.49 48.55 52.72 41.91

Therefore, the results of the quantitative analysis are consistent with the visual assess-
ment described above.

To further evaluate the performance of the proposed method in regions dominated
by different scattering, we selected the four regions delineated in Figure 5 to analyze the
decomposition component extraction accuracy. We marked urban areas dominated by
double-bounce scattering as Mask_1 (Zones 2 and 3), vegetated areas dominated by volume
scattering as Mask_2 (Zone 4), and ocean areas dominated by surface scattering as Mask_3
(Zone 1). The percentage of each decomposition component of all methods in the three
masks is listed in Table 3.

Table 3. The percentage of each polarization component of all methods in the three masks (%).

Region Component FRE2 YRO Y4R MF4CF HTCD GRH

Pd 12.48 34.19 69.52 83.05 64.93 72.78
Mask_1 Pv 78.72 58.13 19.19 9.23 16.89 23.74

Ps 8.79 7.68 11.29 7.72 18.18 3.48

Pd 2.25 6.07 7.77 19.75 8.36 16.11
Mask_2 Pv 87.85 86.93 82.80 66.30 71.12 78.03

Ps 9.89 7.00 9.43 13.95 20.52 5.86

Pd 0.00 0.00 0.00 0.00 0.00 0.00
Mask_3 Pv 26.03 0.00 0.00 0.00 0.00 0.00

Ps 73.97 1.00 1.00 1.00 1.00 1.00

According to Table 3, the percentage of each polarization component in the regions
dominated by different scattering mechanisms is shown in Figure 7. Figure 7a shows that
the double-bounce scattering of the GRH was higher than that of the other methods in
urban areas (Mask_1), except MF4CF, and most of the pixels in this area showed double-
bounce scattering. Figure 7b shows that the volume scattering of the GRH was lower than
that of FRE2, YRO, and Y4R, but higher than that of HTCD and MF4CF in the vegetation
area (Mask_2). Electromagnetic waves in the L-band could penetrate the vegetation canopy
and reach the ground, resulting in double-bounce scattering between the ground surface
and the tree trunk, so there were double-bounce scattering-dominated pixels in this area,
but the dominant scattering mechanism in this region was still volume scattering. Mask_3
is an ocean area with pure surface scattering, and pixels of this area were occupied by
surface scattering for YRO, Y4R, MF4CF, HTCD and GRH decomposition results; however,
FRE2 had a volume scattering overestimation problem for this area.
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In summary, GRH was more consistent with the actual scattering mechanism of the
scattering targets than the other algorithms and had a more accurate scattering component
extraction capability. Combined with Figure 6, the algorithm proposed in this paper had
the best scattering feature extraction accuracy compared with the other algorithms in the
overall view.

In addition, the occurrence of negative scattering powers is an important indicator to
evaluate the performance of polarimetric target decomposition algorithms [10]. The per-
centages of the negative power pixels obtained via the aforementioned six decomposition
methods for the AirSAR data we used are listed in Table 4.

Table 4. The percentage of negative power pixels for each algorithm (%).

Component FRE2 YRO Y4R MF4CF HTCD GRH

Pd 5.78 18.09 17.75 0.00 15.64 0.00
Pv 15.59 0.00 0.00 0.00 0.00 0.00
Ps 2.09 15.96 5.42 0.00 0.95 0.00

Total 23.46 34.05 23.17 0.00 16.59 0.00

According to Table 4, FRE2, YRO, Y4R, and HTCD were plagued by pixels with nega-
tive powers, whereas this problem was not encountered in the decomposition results of
either GRH or MF4CF. For FRE2, there were negative power pixels in all three components
(Pd, Pv, and Ps), which is due to confusion in scattering characteristic modeling as shown
in Figure 3f. For model-based decomposition methods, such as YRO and Y4R, negative
scattering powers typically occur in surface scattering or double-bounce scattering com-
ponents. The Yamaguchi volume scattering model assumes one dimension of needle-like
scatters to be zero, which may cause overestimation of the volume scattering component,
resulting in negative power pixels in the double-bounce scattering component and/or
surface scattering component. Eigenvalue-based HTCD polarization decomposition was
performed by calculating the eigenvalues of the coherency matrix from the scattering model
of each model. The choice of scattering model affected the value of the eigenvalues, and
there were also many negative pixels due to the unfit scattering models.

MF4CF and GRH were the only algorithms to produce almost no negative pixels
in our test. MF4CF used the depolarization coefficient (calculated from the 3-D Barakat
degree of polarization) to derive the volume scattering component, and it was considered
that the depolarization component corresponded to the volume scattering component.
However, the algorithm considered that the double-bounce scattering components and the
surface scattering components contained no depolarization components, which sacrificed
the depolarization accuracy to avoid pixels with negative powers. The GRH in this paper
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can avoid pixels with negative powers because separate modeling of different scattering
mechanisms can be adapted to the characteristics of the data.

4. Conclusions

Previous studies have shown that the existing methods commonly encounter problems
regarding the polarimetric decomposition accuracy and pixels with negative powers, the
main reason for which is that most volume scattering models are empirical models based
on data or simplified assumptions, resulting that the dynamic range of the model itself is
limited and cannot fully satisfy the mixed scenario. In this paper, we propose a hybrid
polarimetric decomposition method (GRH) with an adaptive volume scattering model.
The volume scattering model is proposed by considering the shape and distribution of the
scattered particles based on the physical scattering characteristics. This is the first model-
based adaptive model proposed to characterize the volume scattering component in regions
dominant by different scattering mechanisms using adaptive scattering models. In other
words, GRH adaptively selects either the GVSM or the RPCM according to the dominant
scattering mechanisms in the target area. In contrast to existing adaptive models, the
volume scattering model of GRH varies according to the dominant scattering mechanisms
of surface or double-bounce scattering. GRH identifies the dominant scattering mechanisms
using the sign of (T11 − T22): If (T11 − T22) ≥ 0, GRH selects RPCM to calculate the
decomposition components; otherwise, GRH selects GVSM.

We tested GRH using 4-look fully PolSAR data and compared its performance with that
of both existing classic and new algorithms. The results showed that the proposed method
can extract reasonable scattering components and considerably reduce the percentage
of pixels with negative powers, demonstrating the effectiveness of the adaptive volume
scattering model.

The proposed method provides a new approach to selecting scattering models to im-
prove decomposition accuracy and reduce negative power pixels, which selects scattering
models according to scattering characteristics. Further research may focus on exploring
new models that fit specific targets, such as ships, bridges, and forests, following this
framework.
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